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Abstract: The impact of pharmaceuticals on non-target organisms in the environment is of increasing
concern and study. Pharmaceuticals and other pollutants are often present as mixtures in an environ-
mental compartment. Studies on the toxicological implications of these drugs on fish, particularly
as mixtures at environmentally relevant concentrations, are very limited. Thus, this study aimed to
evaluate the chronic effects of the anticonvulsant drug carbamazepine (CBZ) and progesterone (P4)
at environmentally relevant concentrations, individually and in binary mixtures, applying a suite of
biomarkers at the molecular level in zebrafish (Danio rerio). The effects on biotransformation enzymes
7-ethoxyresorufin O-deethylase (EROD) and glutathione-S-transferase (GST), antioxidant enzymes
catalase (CAT), superoxide dismutase (SOD), glutathione peroxidases (GPxSe and GPxTOT), and
glutathione reductase (GR), and markers of damage, such as DNA strand breaks (DNAsb), lactate
dehydrogenase (LDH), lipid peroxidation (LPO), and vitellogenin-like proteins (VTG), were evaluated.
Analyses of the biochemical markers indicated that a synergistic dose-ratio-dependent effect of CBZ
and P4 in zebrafish occurs after chronic exposure regarding VTG, biotransformation enzymes (EROD,
GST), and oxidative stress marker (DNAsb). The results suggest a synergistic effect regarding VTG,
thus indicating a high risk to the reproductive success of fish if these pharmaceuticals co-occur.

Keywords: carbamazepine; progesterone; oxidative stress; fish biomarker; zebrafish (Danio rerio);
chronic effects; joint toxicity

1. Introduction

Pharmaceuticals and their metabolites are found in almost every river worldwide [1].
These pharmaceuticals are released into the environment in high amounts mainly through
wastewater treatment plants (WWTP), which have very limited removal or biodegrading
efficiency [2,3]. In surface waters, these chemicals may undergo bioaccumulation [4] and/or
exert harmful effects in living organisms [5], particularly fish [6–8]. Pharmaceuticals are
biologically active chemicals, proposed to interact with specific processes and biochemical
processes in target species; however, changes in similar metabolic pathways on non-target
organisms exposed to pharmaceuticals may also occur [4]. Thus, this pollutant group
receives high attention nowadays [9].

The anticonvulsant drug, carbamazepine (CBZ), is used worldwide for the treatment
of bipolar disorder, trigeminal neuralgia, and psychomotor epilepsy [10]. CBZ is the
most frequently detected pharmaceutical in rivers worldwide [1]. Due to its high level
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of consumption, human healthcare serves as a continuous source of CBZ release to the
environment [11] since the majority (72%) of the received amount enters sewage within
urine [12]. WWTPs are unable to remove CBZ effectively and only 10% can be removed of
the total CBZ amount that enters WWTPs [13]. CBZ is one of the most common pharmaceu-
tical residues found in rivers worldwide [1], and when it is released into the environment
within WWTP effluent it is slow to degrade and has been found to have an 82-day perma-
nency time in surface waters [14]. The highest reported concentrations were up to 150 µg/L
in South Korea [15]. In Europe, the average amount of CBZ detected was 12 µg/L [16],
while in Hungary (river Danube), 0.8 µg/L was detected [17,18].

In humans, CBZ interacts with potassium and sodium channels, as well as some
signaling pathways [19]. CBZ is also known to modulate voltage-gated sodium channels,
resulting in reduced neuronal activity [20]. Regarding freshwater habitats, despite the
high attention CBZ receives, few studies have been performed. The studies that have
been conducted in the last decade have utilized algae, cladocerans, and fish [8,21–23] to
understand the lethal and sublethal effects of CBZ. There is a lack of knowledge concerning
the chronic effects of CBZ [24].

In zebrafish (Danio rerio), the bioconcentration factor (BCF) of CBZ in plasma was found
to be 0.83–1.45, with the half-life for total depuration of tissues being 0.48 ± 0.19 days [25].
Previous zebrafish research has indicated the potential endocrine-disrupting effects of CBZ
by noting chronic changes in fecundity, embryo production, and oocytes upon exposure
to CBZ [26]. Additional CBZ zebrafish research has found that DNA damage can occur,
as well as several enzymes (acetylcholinesterase (AChE), liver glutathione-S-transferase
(GST), catalase (CAT), and lactate dehydrogenase (LDH)) are impacted, after 63 days of
exposure to CBZ at environmentally relevant (10 µg/L) concentrations [8].

Similar to the zebrafish findings, when common carp (Cyprinus carpio) are exposed to
environmentally relevant concentrations (1–100 µg/L) of CBZ, there are alterations in sev-
eral enzymes related to oxidative stress (CAT, SOD, GR, DNAsb), toxicant biotransformation
(EROD, GST), and organ and tissue damage (LDH, AChE). In the same study, vitellogenin-
like protein levels were found to increase following CBZ exposure, supporting the as-
sumption that CBZ may have endocrine-disrupting effects [27]. Li et al. [28] demonstrated
elevated lipid peroxidation in the brain tissues of rainbow trout (Oncorhynchus mykiss) ac-
companied by inhibition in the activity of SOD and GR, with glutathione peroxidase and
CAT showing a non-linear response in the function of time, with an increase followed by a
reduction in their activities after CBZ exposure.

Natural progesterone (4-Pregnene-3,20-dione, P4) is generally used in combination
with estrogens as an oral contraceptive and in hormone replacement therapy. As a result
of their extensive usage combined with their excretion within human and animal feces
and urine into surface waters through WWTPs, progestogens are often detected in a
concentration range of 0.07 to 22.2 ng/L [9,29]. P4 is stable in sterile water but undergoes
biodegradation in the presence of some algae strains [30]. Steroid hormones are considered
strong endocrine disruptors [29], of which progestins are the least studied. A few studies
have confirmed the adverse effects of progestins on the reproduction and fertility of some
freshwater species [31–35].

In zebrafish, the reproductive effect of P4 [36] and synthetic progestins [37] was
demonstrated. The BCF of different progestins ranges from 7 (Dienogest) to 128 (Medrox-
yprogesterone acetate) [38]. More recently, Liang et al. [34] showed that environmentally
relevant concentrations of progesterone may affect sex differentiation of zebrafish. Cardoso
et al. [33] showed that the synthetic progestin, levonorgestrel, affected the liver and reduced
vitellogenin production in female zebrafish, but had no significant effects on CYP1A levels
at an environmentally relevant (10 ng/L) concentration after 21 days of exposure.

Pharmaceuticals and other micro- and macro-pollutants often occur as multi-component
mixtures in an environmental compartment [35,39–41]. Until now, studies on the toxic effects
of these drugs on non-target organisms, such as fish, particularly as mixtures at environ-
mentally relevant concentrations, have been very limited. Moreover, the joint toxic effect of
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mixtures is typically higher than the toxicity of the compounds individually [42,43]. Even
binary mixtures of different compounds often show a similar effect [44,45]. In the last
decade, it has become evident that standard acute toxicity tests do not have the adequate
sensitivity to assess the effects of pharmaceuticals on aquatic biota as teratogenicity was
detected on sea urchin (Paracentrotus lividus) after exposure to environmental concentrations
of carbamazepine and ibuprofen at a concentration of 0.00001 mg/L [46]. Thus, it is required
to use more sensitive response endpoints in toxicology studies, such as biochemical markers
at the molecular level.

As CBZ and P4 often co-occur in the environment, this study aims to evaluate their
chronic toxicological effects in zebrafish (Danio rerio) at environmentally relevant con-
centrations of these compounds, individually and in binary mixtures. To determine the
toxicological effects, we focused on a suite of molecular biomarkers which are widely
applied in pharmaceutical toxicity studies with fish and include: the biotransformation
enzymes (7-ethoxyresorufin O-deethylase (EROD), glutathione-S-transferase (GST)), an-
tioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidases
(GPxSe and GPxTOT), glutathione reductase (GR)), and markers of damage (DNA strand
breaks (DNAsb), lactate dehydrogenase (LDH), lipid peroxidation (LPO), and vitellogenin-
like proteins (VTG)) [27,33,34,47,48]. These biomarkers were selected to screen for and
identify any mechanistic effects of oxidative stress and damage, alterations in xenobiotic
metabolism, nervous effects, and endocrine disruption.

2. Materials and Methods
2.1. Chemicals

Carbamazepine (Cbz) (≥100%, CAS 298-46-4) and progesterone (≥99%, CAS 57-83-0)
were purchased from Sigma-Aldrich (Darmstadt, Germany). All other reagents were
analytical grade.

2.2. Test Organisms

The zebrafish (AB wildtype) used in this study were supplied by the zebrafish facility
of the Department of Environmental Toxicology at the Hungarian University of Agriculture
and Life Sciences (Gödöllő, Hungary). Fish were maintained at constant water quality
parameters (25 ± 0.5 ◦C; pH 7.0 ± 0.2; conductivity 500 ± 50 µS; alkalinity < MDL, 0 mM
CO3

2−, 0.4 mM HCO3
2−; hardness < 0.5◦ dH; DOC > 90%; system water) in a Tecniplast

ZebTec (Buguggiate, Italy) recirculating zebrafish housing system. The photoperiod was
set to a 14 h light/10 h dark cycle. The fish were fed twice a day with ZEBRAFEED (Sparos,
400–600 µm) and twice a week with brine shrimp (Ocean Nutrition > 230,000 NPG).

2.3. Experimental Design

For the subacute, 28-day adult exposure tests, 9–12-month-old male and female fish
were randomly distributed into 15 experimental tanks, each containing 3 L of the test
solution (nominal concentrations: 0, 1, 5, 50, 100 µg/L of CBZ, or 0, 1, 5, 50, 100 ng/L
of P4). Three replicates (with fifteen fish each) were used per treatment. The lowest and
highest CBZ concentrations tested, 1 and 100 µg/L, respectively, were selected based on the
recent papers by da Silva Santos (CBZ) [8] and Liang (P4) [34]. To evaluate the non-linear
response produced by the joint effect of CBZ and P4, the EC50 was calculated based on
VTG results. VTG was selected due to the expected effect of the test chemicals. Based on
toxicity units (TU; 1 TU = concentration of a compound in the mixture per the compound’s
EC50), mixtures were composed to equal 1 TU (CBZ:P4 ratios were: 0.75 TU:0.25 TU (MIX1),
0.5 TU:0.5 TU (MIX2), and 0.25 TU:0.75 TU (MIX3)) (Table 1). Mixtures were tested in
the same setup as described previously (0, MIX1, MIX2, MIX3, 3 replicates, 15 fish each).
In all mixtures, the theoretical toxic effect was expected to be 50%. In this setup, non-
linear mixture effects (synergistic or antagonistic) were easily identifiable, and the effect of
different concentration ratios were observable [49]. Fish were exposed for 28 days and fed
once daily with a quantity of ZEBRAFEED (Sparos, 400–600 µm) corresponding to 2% of
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the fish weight in the aquarium. The exposure media was completely renewed every three
days. Water quality parameters were kept within the ranges described in the preceding
“Test Organisms” section. Water samples were analyzed during the experimental period by
LC-MS/MS to ensure that nominal and actual test compound concentrations in the aquaria
were identical. Samples from the aquaria were collected from the test medium after 1 and
36 h of renewing the test solutions. The mean concentrations of CBZ and P4 in the water
samples were consistently within 20% of the intended concentrations.

Table 1. Composition of mixtures assessed.

CBZ P4
STU

TU µg/L TU ng/L

MIX1 0.75 11.5 0.25 4.375 1
MIX2 0.5 5.75 0.5 8.75 1
MIX3 0.25 2.875 0.75 17.5 1

At the 7th, 14th, and 28th days of exposure, 5 fish from each exposure concentration
and replicate were sacrificed after an anesthetic overdose (0.04% MS-222 (tricaine-methane-
sulphonate) (Sigma-Aldrich, Darmstadt, Germany)). The brain, liver, and intestine of each
fish were isolated and stored in microtubes at −80 ◦C for later biochemical analyses.

2.4. Biochemical Determinations

Homogenization and biochemical determinations were performed as described by
Liang et al. [27]. More detailed procedures are described in Supplement S1.

2.5. Statistical Analysis

All data were analyzed as described by Liang et al. [27], with the exception of categori-
cal predictor factors, which was the treatment (control, 1, 5, 50, 100 µg/L, 1, 5, 50, 100 ng/L,
or MIX1, MIX2, MIX3) in this study.

3. Results

No fish died, and no visible sublethal effects were detected during the experimental
assay (control, CBZ-, P4-, or mixture-exposed) at any of the tested conditions.

3.1. Vitellogenin-Like Proteins

After the first and second weeks of exposure to CBZ, VTG levels increased following a
concentration-dependent pattern, however, a significant (p < 0.05) elevation of VTG content
in the samples was detected only in fish exposed to 100 µg/L of CBZ. After 28 days, VTG
levels followed a concentration-dependent pattern, but this decrease was not significant
(p < 0.05) at any exposure concentration (Figure 1A). P4 caused a decrease in the VTG
content of fish samples after exposure to all applied concentrations (1, 5, 50, 100 ng/L).
Concentration and time dependence were also confirmed by statistics; however, significant
differences in VTG levels were only observable in fish exposed to 50 and 100 ng/L of
P4 for 28 days (Figure 1B). After seven days of exposure to MIX1, MIX2, or MIX3, no
significant change in VTG levels was visible. Two weeks of exposure to mixtures caused
a non-significant (p < 0.05) drop in VTG levels, and VTG concentrations decreased with
growing proportions of P4 in mixtures compared to control group levels. After 28 days of
exposure to mixtures, VTG levels followed an increasing pattern in proportion to P4 and
reached a significant (p < 0.05) increase in the case of MIX2 and MIX3 (Figure 1C).
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Figure 1. Changes in VTG content in the gonads of zebrafish exposed to (A) CBZ, (B) P4, and
(C) binary mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard
deviation of fifteen replicates (n = 15). Different letters indicate significant differences at p < 0.05 after
a two-way ANOVA followed by Tukey’s post hoc test.

3.2. AChE Activity

The results of AChE activity measured in the brain of zebrafish after exposure to
CBZ, P4, and mixtures containing both chemicals in different proportions are shown in
Figure 2A–C. After seven days of exposure to CBZ, no significant change was observable
in AChE activity, although an initial increase, peaking at a 5 µg/L CBZ concentration,
followed by a drop in AChE activity, was visible. This pattern was also apparent after
14 and 28 days of exposure to CBZ. A significant increase was observable after 14 days of
5 µg/L and 28 days of 1 and 5 µg/L of CBZ exposure. P4 induced an increase in AChE
activity, showing significant (p < 0.05) time and concentration dependence. After the first
and second weeks of exposure to 50 and 100 ng/L, P4 caused significantly higher AChE
activity compared to activity values measured in control groups. After 28 days, AChE
significantly (p < 0.05) increased at concentrations above 5 ng/L (5, 50, 100 ng/L) of P4.
After 7 days of exposure to mixtures of CBZ and P4, a significant (p < 0.05) drop was
observable in the case of MIX1. MIX2 and MIX3 did not cause any significant change in
AChE activity compared to control group values. After 14 and 28 days, exposure to MIX1,
MIX2, and MIX3 resulted in no significant change in AChE activity (Figure 2).

3.3. Biotransformation Enzymes

After 7 days of exposure to 1, 5, and 50 µg/L of CBZ, hepatic EROD activity levels in
fish showed a significant (p < 0.05) increase compared to the control group. The highest
EROD activity measured was observed at 5 µg/L of CBZ. Interestingly, 100 µg/L of
CBZ had no significant effect on EROD activity. After 14 and 28 days of CBZ exposure,
a non-significant decrease in EROD activity was detected as compared to the controls
and between different CBZ concentration exposures. P4 induced EROD activity in a
concentration-dependent way: significantly (p < 0.05) higher activity was measured at
50 and 100 ng/L P4 concentrations as compared to activity levels measured in the control
group. After two weeks of exposure to P4, EROD levels increased significantly (p < 0.05)
at lower concentrations of P4 (1, 5 ng/L), which was followed by the inhibition of EROD
activity at the 100 ng/L P4 concentration. After four weeks of P4 exposure, EROD activity
was decreased at all exposure concentrations, with EROD inhibition being significant at
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the 100 ng/L P4 concentration. After the first week, CBZ and P4 mixtures caused a non-
significant decrease in EROD activity. After two weeks of exposure to MIX1, MIX2, and
MIX3, hepatic EROD levels showed an increased activity, with a significant difference being
observed in MIX2 and MIX3 as compared to control group activity levels. After 28 days,
MIX1 did not alter EROD activity, but MIX2 and MIX3 still induced EROD activity, with
MIX3 being significantly higher as compared to control activity levels (Figure 3A–C).

Figure 2. Changes in AChE activity in the brain of Danio rerio exposed to (A) CBZ, (B) P4, and
(C) binary mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard
deviation of fifteen replicates (n = 15). Different letters indicate significant differences at p < 0.05 after
a two-way ANOVA followed by Tukey’s post hoc test.

GST activity at different exposure concentrations did not cause a significant change af-
ter the first week of CBZ exposure. After 14 and 28 days, GST levels showed a concentration-
dependent increase: significantly increased activities were observed after 14 days of expo-
sure to 100 µg/L, and after 28 days of exposure to 5, 50, and 100 µg/L of CBZ. Significant
(p < 0.05) P4-induced concentration-dependent GST activity changes were detectable only
after 28 days at 50 and 100 ng/L P4 concentrations. A significant decrease in GST activity
was found at 1 and 100 ng/L of P4 exposure after one week, but other test concentrations
did not trigger any change after one or two weeks. The CBZ and P4 mixtures (MIX1, MIX2,
MIX3) caused a significant (p < 0.05) decrease in GST activity in a concentration-dependent
manner. An increasing inhibitory effect was observed in proportion to the amount of P4
(MIX1 < MIX2 < MIX3) present in the mixtures. The inhibitory effect of the mixtures was
still detectable after two and four weeks of exposure, but differences as compared to the
control group were not so pronounced; specifically, a significant inhibition was only found
in MIX2 after two weeks, and after four weeks in MIX2 and MIX3 (Figure 3C–E).

3.4. Antioxidant Defense System

CBZ did not induce any concentration-dependent changes in CAT activity until the
fourth week of exposure. A significant change (decrease) was only observed at the 1 µg/L
CBZ concentration after two weeks. After 28 days, a concentration-dependent increase
was observed in the 1, 5, and 50 µg/L CBZ exposure groups. At the 100 µg/L CBZ
concentration, no significant difference in CAT activity was detected as compared to the
levels measured in the control group. P4 significantly (p < 0.05) altered CAT activity after
exposure to 100 ng/L of P4 for four weeks as compared to the control groups. Other CAT
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activity changes remained non-significant, with no time nor concentration dependency
being supported by statistics. In the binary mixtures of CBZ and P4, only MIX3 triggered a
significant increase in CAT activity after two weeks of exposure (Figure 4).

Figure 3. Changes of biotransformation enzymes’ activity—hepatic EROD (A–C) and GST (D–F) in
the liver of Danio rerio exposed to (A,D) CBZ, (B,E) P4, and (C,F) binary mixtures of CBZ and P4 for
7, 14, and 28 days. Data are expressed as mean ± standard deviation of fifteen replicates (n = 15).
Different letters show significant differences at p < 0.05 after a two-way ANOVA followed by Tukey’s
post hoc test.

GPxSe was increased after the first week of exposure to CBZ. The increase was
concentration-dependent and significant (p < 0.05) at 50 and 100 µg/L CBZ concentra-
tions. After 14 and 28 days of exposure to CBZ, at all applied concentrations, GPxSe was
strongly decreased in a time- and concentration-dependent manner, with the decrease being
significant (p < 0.05) at all exposure concentrations. Exposure to CBZ did not affect GPxTOT
activity after seven days of exposure. GPxTOT increased significantly (p < 0.05) after two
weeks at exposure concentrations of 5, 50, and 100 µg/L of CBZ. After 28 days of exposure,
5 and 50 µg/L of CBZ exposure significantly (p < 0.05) increased the activity of GPxTOT
in zebrafish, but at the 100 µg/L CBZ concentration, GPxTOT activity was not different
when compared to the activity levels of the control group. After exposure to P4, GPxSe was
increased in a time- and concentration-dependent manner at all applied concentrations and
time points. After the first week of P4 exposure, GPxSe increased significantly (p < 0.05)
at 50 and 100 ng/L of P4. After two weeks of exposure, the increase reached a significant
level at exposure concentrations of 1, 5, 50, and 100 ng/L of P4. There was a peak activity
detectable at the 5 ng/L concentration and the extent of the increase dropped slightly at the
50 and 100 ng/L P4 concentrations. This pattern was also observable after 28 exposure days.
GPxSe activity levels peaked at 50 ng/L of P4, with a drop being observed at the 100 ng/L
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exposure concentration. The results of GPxTOT activity showed an initial increase in
activity, peaking at 50 ng/L of P4 after one week of exposure, followed by a slight decrease.
A significant difference (p < 0.05) was confirmed at 5, 50, and 100 ng/L P4 concentrations.
This pattern was also observed after the second exposure week: GPxTOT activity peaked
at 5 ng/L of P4 and decreased slightly afterwards (50, 100 ng/L). Significance (p < 0.05)
was confirmed in the 5 ng/L P4 concentration only. After the fourth exposure week, a
significant (p < 0.05) alteration (decrease) of GPxTOT activity was only detected in the
100 ng/L P4 concentration (Figure 5).

Figure 4. Changes in CAT activity in the liver of Danio rerio exposed to (A) CBZ, (B) P4, and (C) binary
mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard deviation of
fifteen replicates (n = 15). Different letters indicate significant differences at p < 0.05 after a two-way
ANOVA followed by Tukey’s post hoc test.

Binary mixtures caused significant (p < 0.05) changes in both GPxSe and GPxTOT activity
in MIX3 after one week of exposure (decrease), and after four weeks of exposure (increase).

GR activity was significantly increased after the first week in fish exposed to 1, 5, and
50 µg/L of CBZ, but at the 100 µg/L CBZ concentration, no significant difference was
found as compared to control group activity values. Additionally, at a longer timescale
(14 and 28 days), no significant change in GR activity was detected, however, a time-
dependent tendency was supported by statistics. In response to P4, GR activity increased
significantly (p < 0.05) at exposure concentrations above 1 ng/L (5, 50, 100 µg/L) in a
time- and concentration-dependent manner, which was supported by statistics. Regarding
binary mixtures, only MIX3, after seven days of exposure, decreased the activity of GR
significantly (p < 0.05). No other significant effects were observable during the 28 days of
exposure (Figure 6).
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Figure 5. Changes of biotransformation enzymes’ activity—GPxSe (A–C) and GPxTOT (D–F) in the
liver of Danio rerio exposed to (A,D) CBZ, (B,E) P4, and (C,F) binary mixtures of CBZ and P4 for 7, 14,
and 28 days. Data are expressed as mean ± standard deviation of fifteen replicates (n = 15). Different
letters indicate significant differences at p < 0.05 after a two-way ANOVA followed by Tukey’s post
hoc test.

CBZ induced a strong significant (p < 0.05) increase in SOD activity after seven days
of exposure at 1, 5, and 50 µg/L CBZ concentrations when compared to control group
values. At the highest CBZ concentration (100 µg/L), SOD activity fell in relation to
control values. After the second and fourth exposure weeks, SOD values were significantly
(p < 0.05) lower as compared to control values in all exposure concentrations (1, 5, 50,
and 100 µg/L). Time and concentration dependency were also confirmed by statistics.
Compared to control values, P4 significantly (p < 0.05) altered (decreased) SOD activity
only at the 5 ng/L concentration after one week of exposure. Other changes were not
significant, and no concentration or time dependency was supported by statistics. The
binary mixtures significantly (p < 0.05) reduced the SOD activity only in MIX1 after 28 days
of exposure (Figure 7).
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Figure 6. Changes in GR activity in the liver of Danio rerio exposed to (A) CBZ, (B) P4, and (C) binary
mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard deviation of
fifteen replicates (n = 15). Different letters show significant differences at p < 0.05 after a two-way
ANOVA followed by Tukey’s post hoc test.

Figure 7. Changes in SOD activity in the liver of Danio rerio exposed to (A) CBZ, (B) P4, and (C) binary
mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard deviation of
fifteen replicates (n = 15). Different letters show significant differences at p < 0.05 after a two-way
ANOVA followed by Tukey’s post hoc test.

3.5. Damage Markers

After one week, DNAsb values showed an increase after 1, 5, and 50 µg/L of CBZ
exposure, with a significant (p < 0.05) increase at 50 µg/L. At a concentration of 100 µg/L
of CBZ, no significant difference was measured as compared to control values. Two weeks
of exposure caused significantly (p < 0.05) increased DNAsb values at concentrations of 1, 5,
and 50 µg/L of CBZ, with the highest levels appearing at 5 µg/L of CBZ. After 28 days and
only at the 1 µg/L CBZ concentration, elevated DNAsb levels were significant (p < 0.05).
At 5, 50, and 100 µg/L of CBZ, a significant decrease was observed. P4 caused a significant
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elevation of DNAsb after one week of exposure at concentrations of 1, 5, 50, and 100 ng/L.
The highest DNAsb values were measured in 5 ng/L of P4-exposed samples. After two
weeks of exposure, 50 and 100 ng/L of P4 significantly increased the DNAsb content of
the samples. By the fourth week of exposure, none of the applied exposure concentrations
of P4 caused any significant changes in DNAsb concentrations. After exposure to binary
mixtures for one week, only MIX3 significantly (p < 0.05) altered DNAsb (decreased)
values as compared to controls. After 28 days, MIX2 and MIX3 significantly increased the
measured DNAsb values (Figure 8).

Figure 8. Changes in DNAsb concentration in the liver of Danio rerio exposed to (A) CBZ, (B) P4, and
(C) binary mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard
deviation of fifteen replicates (n = 15). Different letters show differences at p < 0.05 after a two-way
ANOVA followed by Tukey’s post hoc test.

CBZ significantly (p < 0.05) altered (decreased) the LPO content of the samples at a
concentration of 100 µg/L of CBZ as compared to control samples. Other changes were not
significant during the exposure time of four weeks. A decreasing tendency was observable
in LPO content after two and four weeks of CBZ exposure. Compared to control values, P4
increased the LPO content in samples exposed to 5, 50, and 100 ng/L concentrations for
four weeks. Binary mixtures did not significantly affect LPO content in zebrafish during
the four-week exposure time (Figure 9).

CBZ did not affect LDH activity during the four-week exposure. P4 significantly
(p < 0.05) increased LDH activity in samples after one week of exposure to 50 and 100 ng/L,
and after two weeks of 100 ng/L. MIX1, MIX2, and MIX3 significantly increased the
LDH activity after one week. After two weeks of exposure to MIX2 and MIX3, there
were significantly altered LDH levels. MIX3 also increased activity levels after 28 days of
exposure (Figure 10).
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Figure 9. Changes in LPO concentration in the liver of Danio rerio exposed to (A) CBZ, (B) P4, and
(C) binary mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard
deviation of fifteen replicates (n = 15). Different letters show significant differences at p < 0.05 after a
two-way ANOVA followed by Tukey’s post hoc test.

Figure 10. Changes in LDH activity in the liver of Danio rerio exposed to (A) CBZ, (B) P4, and
(C) binary mixtures of CBZ and P4 for 7, 14, and 28 days. Data are expressed as mean ± standard
deviation of fifteen replicates (n = 15). Different letters indicate significant differences at p < 0.05 after
a two-way ANOVA followed by Tukey’s post hoc test.

4. Discussion

In recent studies, CBZ was shown to have a negative effect on the reproductive
success of zebrafish and was suggested to have similar toxic routes as other estrogenic
compounds [8]. Fish VTG is a glycolipophosphoprotein produced in the liver of fish, and
its production increases in response to 17β-estradiol or compounds which are capable
of interacting with the estrogen receptor, increasing estrogens and decreasing androgens
[50-53]. CBZ was shown to induce VTG production in common carp (Cyprinus carpio)
subjected to 100 µg/L of CBZ for seven days. Correspondingly, in this study, the VTG
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concentration in zebrafish was increased following CBZ exposure for one and two weeks,
with a significant elevation being detected in fish subjected to the 100 µg/L concentration.
Conversely, VTG levels decreased slightly after 28 days, as compared to the values in control
groups. P4 and other synthetic progestins are known to alter VTG levels in fish, with the
inhibition or induction of VTG production being dependent on the type of progestogen
and the applied concentrations, if applied in combination [54,55]. In the present study, a
time- and concentration-dependent decrease in VTG concertation was demonstrated. A
significant drop in VTG was observed after 28 days of exposure to 50 and 100 ng/L of
P4. Binary mixtures of CBZ and P4 significantly altered VTG production after 28 days
and VTG production was increased after exposure to MIX1 and MIX2, but MIX1 had no
significant effect. After two weeks, a non-significant decrease in VTG content was observed
following an increasing proportion of P4 and a decrease in CBZ concentration. An initial
drop, or increase, in VTG concentration may be attributed to a hormetic effect, which often
appears in endocrine signaling [56]. Increasing VTG concentrations in fish after long-term
exposure to mixtures of CBZ and P4 may support the suggestion that CBZ and P4 are
acting together as synergic compounds. The increase in the proportion of P4 seemed to
increase and prolong the CBZ effect at the tested concentration range.

The increasing AChE activity after CBZ exposure found in this study is in agreement
with other zebrafish studies [8]. In this study, only 1 and 5 µg/L CBZ concentrations
caused a significant increase after 28 days, with time and concertation dependency being
supported by statistics. The decrease at higher exposure concentrations may be from
other toxic effects. After 28 days, P4 also increased the level of AChE activity at the
100 ng/L exposure concentration. Previous animal studies have shown a relationship
between increased AChE activity, oxidative stress [57], the production of free radicals,
and apoptotic processes [58,59]. Physiologically, AChE breaks down the neurotransmitter
acetylcholine, resulting in decreased acetylcholine receptor stimulation and affecting an
organism’s cognitive function [60].

The phase I and phase II biotransformation enzymes EROD and GST are commonly
used in fish biomarker screening to detect the uptake and metabolism of environmental
organic pollutants. EROD is regulated by the aryl hydrocarbon (AhR) receptor and is
a member of the P450-dependent monooxygenase CYP1A family [61,62]. After seven
days of exposure to CBZ, increasing EROD activity shows that CYP1A enzymes were
biosynthesized to detoxify and metabolize CBZ. This result agrees with the findings of a
previous study with Carassius carassius, where 2 and 10 µg/L CBZ concentrations were
proven to elevate hepatic EROD activity after 1, 4, and 7 days [48]. The subsequent
decrease after 14 and 28 days of exposure to CBZ may be attributed to adaptations to the
chemical stressor or changing metabolism of CBZ. Initially, EROD activity was significantly
(50, 100 ng/L) increased after the first and second weeks of exposure to P4, then later
significantly decreased by the 28th exposure day. None of the assessed mixtures caused a
significant effect in EROD activity after 1 week of exposure, but MIX2 and MIX3 caused a
significant increase after 14 and 28 days. GST did not show increased activity after the first
seven days of CBZ exposure, then it increased significantly after the second and remained
significantly elevated during the fourth exposure week. In previous studies, GST was also
shown to increase in Cyprinus carpio, Carassius carassius, and Danio rerio after exposure
to environmentally relevant concentrations (1–100 µ/L) of CBZ [8,27,48]. Regarding the
effect of P4 on GST, only the lowest applied exposure concentration (1 ng/L) triggered a
significant change in GST activity, most probably due to a hormetic response. The observed
pattern of the mixtures in GST and EROD activity may suggest an altered metabolic route
for xenobiotics. In the case of EROD activity, mixtures of CBZ and P4 seemed to shift
significant effects in time, mitigating short-term effects and causing a significant increase in
chronic effects. Chronic effects were absent in single-compound exposures. For GST, the
observed effect was increasing in relation to a growing P4 ratio (MIX1 < MIX2 < MIX3).
These observations suggest that mixtures of P4 and CBZ may have a synergistic effect on a
chronic timescale, becoming more pronounced with the proportion of P4.
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In fish, phase I metabolism (e.g., EROD) produces reactive oxygen species (ROS) as
by-products [63]. Cells protect themselves against ROS, including non-enzymatic scav-
engers (e.g., reduced glutathione, GSH) and antioxidant enzymes. The most abundant
antioxidant enzymes, such as CAT, SOD, and GPx, are found in the peroxisomes of fish
liver cells [64–66]. SOD is the first line of antioxidant defense against ROS, and second-line
enzymes such as CAT and selenic-dependent GPx, which break down H2O2. GR converts
oxidized glutathione (GSSG) back to its reduced form (GSH) if oxidized by ROS, playing a
key role in glutathione balance [67,68]. In this study, CBZ stimulated SOD, GR, and GPxSe
activity after the first exposure week, resulting in a significantly high activity of SOD, GR,
and GPxSe. Subsequently, SOD and GR activities dropped to control levels at 100 µg/L,
even at the first week, and following the second week, they remained slightly suppressed
until the 28th day of exposure, as seen by EROD activities. Conversely, GPxTOT and
CAT activities were not altered until the second exposure week. After the second week,
GPxTOT, and then after the fourth week both CAT and GPxTOT activities were increased
significantly at 5 and 50 µg/L CBZ concentrations. After exposure to 100 µg/L of CBZ
for 28 days, GPxTOT and CAT activities decreased to control levels. The first week results
suggest that antioxidant enzyme activities were increased as a consequence of inorganic
ROS produced by EROD (or other phase I metabolites) and/or by SOD activity, which were
neutralized by GPxSe and GSH (as indicated by increased GR activity). The decreasing GST
activity also reflects the diminishing amount of glutathione after the first week. After the
second exposure week, most probably, EROD and SOD were failing to perform their func-
tions, and organic ROS were becoming predominant. There is evidence that antioxidant
enzyme activities may decrease under excess ROS production, if, for example, superoxide
radicals not eliminated by SOD are able to inhibit CAT or GPxSe, and proteins inhibiting
other antioxidant enzymatic activities [69,70]. It is also important to note that CAT and
GPxSe have complementary roles in H2O2 elimination [70], with each having different
subcellular localizations, such as peroxisomal (GPx) versus mitochondrial and cytosolic
fractions (CAT) [63], as well as different target molecules (reduction of H2O2 by CAT and
GPxSe, while selenic-independent GPx is able to reduce toxic hydroperoxides) [71]. In the
present case, a failure of phase I metabolism, including EROD which should eliminate or-
ganic xenobiotics, may have led to excess ROS, and thus resulted in the observed increased
GPxTOT and CAT activity, and the inhibition of SOD, GPxSe, and GR. It is also plausible
that an energy (NADPH) shortage following exposure to CBZ was causing the observed
effects [72,73].

Antioxidant system enzymes’ results of P4-exposed fish, meant to neutralize inorganic
ROS, were following the pattern of EROD activity changes: GR and GPxSe were increased
significantly after one week of exposure (50 and 100 ng/L of P4), and remained significantly
higher than control values during the second (1, 5, 50, 100 ng/L of P4) and fourth weeks
(1, 5, 50, 100 ng/L of P4). CAT showed significantly elevated activity at the 100 ng/L
P4 concentration after 28 days. SOD was not affected by P4 exposure. These results also
suggest that phase I metabolism or other processes producing inorganic ROS were mainly
causing the measured enzyme activity changes.

Regarding the binary mixtures of CBZ and P4, MIX3 caused significant alterations of
antioxidant enzymes GR, GPxSe, and GPxTOT. After the first exposure week, an inhibition
in the activity of GPxSe, GPxTOT, and GR was observed. At the fourth week, GPxSe and
GPxTOT showed significantly higher activity as compared to control group values. After
28 days, MIX1 caused a significant decrease in SOD activity. This result may suggest that
the metabolism or mode of action of the mixture of these compounds may differ from the
single chemical’s effect, as also suggested by xenobiotic metabolization enzymes’ results,
and the mode of action of the antioxidant system depends not only on exposure time,
but also on the proportion of CBZ and P4. Mixtures seem to mitigate, or even reverse,
the short- and long-term effects of all assessed antioxidant enzymes predicted from the
single-solution results. It is notable that MIX3, containing the highest proportion of P4, had
the most significant effects.
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Oxidative stress is known to cause damage to cellular lipids, proteins, and DNA [74].
A common indicator of oxidate damage to lipids, lipid peroxidation (LPO), is TBARS [75].
CBZ exposure did not cause elevated LPO levels of zebrafish in this study. After four
weeks of exposure to P4, TBARS levels were found to be significantly higher at 5, 50, and
100 ng/L concentrations, supporting the finding that exogenic P4 causes oxidative stress
in zebrafish. Binary mixtures did not cause increased TBARS levels in zebrafish during
our assessments. However, reduced LPO levels were observed after two and four weeks
of exposure to MIX3. The reduction in TBARS levels may be attributed to the lower lipid
content of the cells [76], suggesting a deteriorating condition within the fish. Initially,
increased DNAsb levels after CBZ exposure may be attributed to oxidative damage of the
genetic material of the cells following oxidative stress, as suggested by ROS defense enzyme
results. Subsequent observations of low DNAsb levels may be a result of the initiation
of repair and recovery mechanisms [77] initiated by oxidative stress effects, and/or the
inhibition of cell division [78]. In the P4 treatment, DNAsb levels were significantly higher
as compared to control groups after one week of exposure. After two and four exposure
weeks, DNAsb levels were found to not be significantly different from control group levels,
suggesting that the antioxidant system may cope with the oxidative stress. The decrease
after one week of exposure to MIX1 and the significantly higher levels of DNAsb after four
weeks of exposure to MIX2 and MIX3 are suggestive of an initial activation of the DNA
repair mechanism at the first week and genetical material being damaged after four weeks,
probably due to oxidative stress. The observed increase in DNAsb may be a result of a
suppressed antioxidant defense system, resulting in the elevation of this damage marker.

LDH has been used as a metabolic indicator of pathological organ and tissue dam-
age [79]. In this study, significantly increased levels of LDH activity in fish exposed to
P4 for one week at 50 and 100 ng/L, and for two weeks at 100 ng/L, together with the
AChE activity results, indicate structural damage to the liver cells. The results obtained for
mixtures also showed increased LDH activity in the liver, however the LDH activity was in
the same range as single-component solutions. After one week of exposure, MIX1, MIX2,
and MIX3 had a significantly increased effect on LDH activity. After two weeks, MIX1
and MIX3, and after four weeks only MIX3, resulted in a significant increase. Additionally,
MIX3 had the most pronounced effects on LDH, as seen in the other markers.

The results of the biochemical markers assessed in this study indicate a synergistic
dose-ratio-dependent effect of CBZ and P4 on xenobiotic metabolization enzymes and
VTG in zebrafish after chronic exposure [80]. Differences in the mixture combinations
revealed a non-linear response of zebrafish to the assessed mixtures. After short-term
exposure to binary mixtures, oxidative stress enzyme activities were lower than expected
based on single-component results. The observed marker responses to binary mixtures
showed that not only time but also the proportion of the components determines the main
toxicological effect of CBZ and P4. Changes of the response to oxidative stress depending
on single-component solutions or binary mixtures helps to better understand the toxic effect
mechanism of multiple chemical stressors. The results of VTG concentration changes also
confirm the risk concerning alterations in reproductive success caused by pharmaceuticals
co-appearing in surface waters [8]. This study confirms previous findings and exhibits the
co-toxic effects of different chemicals, which may exceed the effects of single components,
highlighting the risk to natural sustainable populations of fish and other freshwater species.

5. Conclusions

Chronic exposure to environmentally relevant concentrations of CBZ, P4, and their
mixtures inflicted significant biochemical alterations, and to mixtures biochemical markers
in zebrafish showed non-linear strengthening responses. These synergistic effects on VTG
production suggests a high risk to the reproductive success of fish, if these chemicals are
present simultaneously. In addition to the mixture effects on reproduction, xenobiotic
metabolizing enzymes (EROD, GST) and the oxidative stress marker (DNAsb) were also
significantly altered as compared to the results of single-chemical exposure after 28 days.
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