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Several human monoclonal antibodies (hmAbs) including b12, 2G12, and 2F5 exhibit relatively potent
and broad HIV-1-neutralizing activity. However, their elicitation in vivo by vaccine immunogens based
on the HIV-1 envelope glycoprotein (Env) has not been successful. We have hypothesized that HIV-1
has evolved a strategy to reduce or eliminate the immunogenicity of the highly conserved epitopes of
such antibodies by using ‘‘holes” (absence or very weak binding to these epitopes of germline antibodies
that is not sufficient to initiate and/or maintain an efficient immune response) in the human germline B
cell receptor (BCR) repertoire. To begin to test this hypothesis we have designed germline-like antibodies
corresponding most closely to b12, 2G12, and 2F5 as well as to X5, m44, and m46 which are cross-reac-
tive but with relatively modest neutralizing activity as natively occurring antibodies due to size and/or
other effects. The germline-like X5, m44, and m46 bound with relatively high affinity to all tested Envs.
In contrast, germline-like b12, 2G12, and 2F5 lacked measurable binding to Envs in an ELISA assay
although the corresponding mature antibodies did. These results provide initial evidence that Env struc-
tures containing conserved vulnerable epitopes may not initiate humoral responses by binding to germ-
line antibodies. Even if such responses are initiated by very weak binding undetectable in our assay it is
likely that they will be outcompeted by responses to structures containing the epitopes of X5, m44, m46,
and other antibodies that bind germline BCRs with much higher affinity/avidity. This hypothesis, if fur-
ther supported by data, could contribute to our understanding of how HIV-1 evades immune responses
and offer new concepts for design of effective vaccine immunogens.

Published by Elsevier Inc.
Introduction

Potent broadly cross-reactive neutralizing antibodies (bnAbs)
are relatively rarely found in patients with HIV-1 infection. Possible
causes include protection of conserved structures of the virus enve-
lope glycoprotein (Env) by variable loops, extensive glycosylation,
occlusion within the oligomer, and conformational masking, as well
as the rapid generation of HIV-1 mutants that outpace the develop-
ment of such antibodies and immunoregulatory mechanisms [1–4].
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The Env is immunogenic and a number of Env-specific hmAbs have
been identified [5]. However, only several hmAbs, including IgG b12
[6,7], IgG 2G12 [8–10], and IgG 2F5 [11], have been extensively char-
acterized [3,12] and found to exhibit relatively potent and broad
neutralizing activity to isolates from different clades. The existence
of these antibodies has fueled the hope that the development of effi-
cacious HIV vaccine is achievable provided that an immunogen con-
taining the epitopes of these antibodies is appropriately designed.
However, in spite of the large amount of research an antibody-based
vaccine capable of eliciting broadly neutralizing antibodies has not
been achieved [13]. Our inability to achieve elicitation of such bnAbs
in humans indicates that there are still unknown fundamental
immunological mechanisms that allow HIV-1 to evade elicitation
of bnAbs. Understanding these mechanisms could provide novel
tools for development of efficacious vaccines.

Early studies have found relatively extensive antigen-driven
maturation and non-restricted use of the V genes in several
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HIV-specific antibodies [14–17]. Later, an analysis of non-neutral-
izing HIV gp41-specific human antibodies showed an average
mutation frequency of approximately 10% [18]. A more recent
study of the gene usage and extent of maturation of CD4-induced
(CD4i) antibodies suggested a restricted VH1-69 gene usage for
CD4i antibodies with long CDR3 and VH1-24 for CD4i antibodies
with short CDR3s [19]. It was noted in this study that two of the
best characterized anti-gp120 bnAbs, b12 and 2G12, have nearly
2-fold higher somatic hypermutation (about 20% mutation fre-
quency) than other gp120-reactive antibodies analyzed in the
study (Table 1 in [19]).

We have hypothesized that the high divergence of the known
bnAbs from their corresponding germline antibodies may indicate
that the germline antibodies lack the capability to bind the epi-
topes of the mature antibodies. We designed germline-like anti-
bodies corresponding to b12, 2G12, and 2F5 as well as to several
human HIV-1-specific hmAbs (X5 [20], m44 [21], and m46 [22]).
Fab X5 is a potent CD4i bnAb but as a full-size (IgG1) antibody
exhibits on average significantly decreased potency likely due to
size-restricted access to its epitope [23]. IgG1 m44 and IgG1 m46
are gp41-specific cross-reactive HIV-1-neutralizing hmAbs with
relatively modest potency. We found that germline-like b12,
2G12 and 2F5 did not bind to any of the Envs although the corre-
sponding mature antibodies did bind with relatively high level of
activity. In contrast the germline-like X5, m44, and m46 bound
with relatively high affinity to all tested Envs. These results provide
initial evidence that germline-like antibodies corresponding to
known bnAbs antibodies may not be capable of binding to the
Env to initiate and/or maintain an immune response leading to
their elicitation in vivo.

Materials and methods

Proteins. Bal gp120-CD4 was provided by Tim Fouts (University
of Maryland, Baltimore, MD) and other recombinant proteins
(gp120s and gp140s) were provided by Christopher Broder (USU-
HS, Bethesda, MD).

Analysis of antibody sequences and design of germline-like anti-
bodies. The heavy and light chain nucleotide sequences were ana-
lyzed with JoinSolver� [24]. The mAb V(D)J alignments were
assigned to the germline gene that yielded the fewest nucleotide
mismatches. Values of p < 0.05 were used to compare D segment
alignments to that expected from random chance. The minimum
requirement for D segment alignment was 9 or 10 (depending on
the length of the V to J region) matching nucleotides and at least
2 additional matches for every mismatch. Germline-like sequences
were determined by reverting mutations to the germline sequence
while retaining the original CDR3 junctions and terminal deoxynu-
cleotidyl transferase (TdT) N nucleotides.

Gene synthesis and expression plasmid constructions. ScFv DNAs
corresponding to mature and germline-like X5, m44, m46, b12,
2G12, and 2F5 were synthesized by Genescript (Genescript, Pisca-
tawy, NJ) and their accuracies were confirmed by sequencing. The
VH of each of the antibodies was followed by a (GGGGS)3 linker
and the VL. SfiI restriction site was added to both N and C termini
for each scFv during gene synthesis for cloning into pComb3X plas-
mid (provided by Dennis Burton, Scripps Institute, La Jolla, CA) for
expression in bacteria. The pComb3X vector adds a His tag to the C
terminus of each inserted scFv. The His tag was used subsequently
for scFv purification and detection in ELISA. The DNA fragments
encoding selected scFv antibodies were fused with Fc of human
IgG1 and cloned into the mammalian cell expression vector pSec-
Tag2B (Invitrogen, Carlsbad, CA) for expression of the fusion
proteins.

Antibody expression and purification. For scFv expression, Esche-
richia coli strain HB2151 was transformed by the scFv constructs
described above. A single clone was inoculated into 2YT supple-
mented with 100 U of ampicillin, 0.2% glucose and incubated at
37 �C with shaking. When the OD600 reached 0.9, IPTG was added
to achieve a final concentration of 1 mM and the culture continued
overnight at 30 �C with shaking. Cells were then collected, lysed
with polymyxin B (Sigma, St. Louis) in PBS, and the supernatant
was subjected to the Ni–NTA agarose bead (Qiagen, Hilden, Ger-
many) purification for the soluble scFvs. The scFv-Fc constructs
were transfected into the 293 freestyle cells with polyfectin trans-
fection agent (Invitrogen). Four days after transfection, the culture
medium was collected and the secreted scFv-Fc proteins were
purified using a protein-A Sepharose column (GE Healthcare, Pis-
cataway, NJ).

ELISA. Protein antigens diluted in PBS buffer in concentrations
ranging from 1 to 4 lg/ml were added to the 96 well plate and left
at 4 �C overnight to coat the plate. The plate was then blocked with
PBS + 5% dry milk buffer. ScFv and scFv-Fc in different concentra-
tions were diluted in the same blocking buffer and applied to the
ELISA plate. The mouse-anti-His-HRP was used to detect the His
tag at the C terminus end of each of the scFv clones and
the mouse-anti-human Fc-HRP was used to detect the Fc tag of
the scFv-Fcs in most of the ELISA unless indicated otherwise. The
HRP substrate ABTS (Roche, Mannheim, Germany) was then added
to each well and OD 405 was taken 5–10 min afterward.

Results

High divergence of HIV-1-neutralizing hmAbs from germline
antibodies

We have identified and characterized a number of hmAbs
against HIV-1 some of which exhibit cross-reactive neutralizing
activity against primary isolates from different clades [21,22,25–
32] as well as a number of hmAbs against the SARS CoV [33,34],
Hendra and Nipah viruses [35–37]. One of the antibodies (m396)
potently neutralizes SARS CoV isolates from humans and animals
[34] and others (m102 and m102.4) both henipaviruses, Nipah
and Hendra [35,36]. The identification of many hmAbs against var-
ious infectious agents has provided an opportunity to analyze and
compare their antibody sequences.

We identified the closest germline Ig genes and calculated the
antibody gene divergence as the number of amino acid changes
from the corresponding germline antibodies (using mostly the
VH gene for comparison). We found that all of our HIV-1-specific
antibodies and three bnAbs with publicly available DNA sequences,
b12, 2G12 and 2F5, were hypermutated more than normal donor
memory B cells which average 13 mutations per VH sequence
[38] (Table 1 and data not shown). In contrast, the antibodies
against the SARS CoV and henipaviruses including m396, m102,
and m102.4 had only several mutations from the closest germline
(on average < 5%, data not shown). Potent antibody against a bac-
terial pathogen (Yersinia pestis) also had relatively low (3%) num-
ber of mutations (Xiao et al., unpublished). These results indicate
that bnAbs against HIV-1 are significantly more divergent from
the closest germline antibodies than hmAbs against SARS CoV
and henipaviruses with potent and broad neutralizing activity.

Design of germline-like X5, m44, m46, b12, 2G12, and 2F5

To test whether the closest germline-like antibodies that pre-
sumably initiated the hypermutation process can bind the Env, we
designed corresponding germline-like antibodies (Table 1). Because
of the diversity of the D segment in the heavy chain CDR3 (H3) of
m44, m46, b12, and 2G12 the germline sequence could not be deter-
mined with 95% confidence and the original D segment amino acid
sequence was used for synthesizing the germline-like Ab.



Table 1
Germline-like V(D)J gene usage, CDR3 sequence, and variable gene mutation.

Ab chain V D J CDR3 sequence V NT gene nucleotide
mutations

X5 HC IGHV1-69*01 IGHD3-22*01 IGHJ4*02 GCG AGA GAT TTT GGC CCC GAC TGG GAA GAC GGT GAT TAC TAT GAT AGT
AGT GGC CGG GGG TTC TTT GAC TAC

27

X5 LC IGKV3-20*01 — IGKJ2*01 CAG CAG TAT GGT AGC TCA CCG TAC ACT 13
m44 HC IGHV4-61*01 IGHD3-10*02a IGHJ4*02 GCG CGA GGA ACT CGG GGC GGT TCA ACC CTT GAC TAC 42
m 44 LC IGKV3-20*01 — IGJK3*01 CAG CAG TAT GGT AGC TCA CCT CGT TTC CTT 24
m46 HC IGHV4-34*01 IGHD5-12*01Ra,b IGHJ4*02 GTG ACC ACT CGT CGT GGT AGC CAC TAC AAG GAT GAC TAC 52
m46 LC IGKV1-9*01 — IGJK1*01 CAA CAG CTT AAT AGT TAC CCT CGG ACG 20
b12 HC IGHV1-03*01 IGHD3-10*02a IGHJ6*03 GCG AGA GTG GGG CCA TAT AGT TGG GAT GAT TCT CCC CAG TAC AAT TAT

TAT ATG GAC GTC
36

b12 LC IGKV3-20*01 — IGKJ2*01 CAG CAG TAT GGT GCC TCC TCG TAC ACT 35
2G12 HC IGHV3-21*01 IGHD4 familya,b,c IGHJ3*01 GCG AGA AAG GGA TCT GAC AGA CTA AGC GAC AAC GAT CCT TTT GAT GTC 60
2G12 LC IGKV1-5*03 — IGKJ1*01 CAA CAG TAT AAT AGT TAT TCT TAC ACT 34
2F5 HC IGHV2-05*10 IGHD3-03*01 IGHJ6*02 GCA CAC CGA CGG GGG CCA ACC ACA CTC TTT GGA GTG GTT ATT GCC CGG

GGA CCA GTG AAC GGT ATG GAC GTC
40

2F5 LC IGKV1-13*02 or
1D-13*01

— IGKJ4*01 CAA CAG TTT AAT AGT TAC CCT CAC ACT 34

a The best D alignment has >5% probability that the D match is a random match.
b The best D segment alignment for m44 is to the inverted (R) IGHD5-12*01 germline gene.
c An individual D4 gene could not be identified.
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Germline-like scFvs X5, m44, and m46 bind but b12, 2G12, and 2F5
lack measurable binding to Envs

To explore the hypothesis that some germline antibodies
against conserved epitopes may not bind structures containing epi-
topes of their corresponding mature antibodies we synthesized the
genes for six germline-like antibodies in a scFv format. The purified
scFvs were tested for binding in an ELISA assay where recombinant
Envs (gp140s) were used as target antigens. We observed high
affinity binding of germline-like X5 and lower affinity binding for
the germline-like antibodies m44 and m46 (Fig. 1). In contrast,
there was no measurable binding for the germline-like antibodies
b12, 2G12, and 2F5 even at very high (lM range) concentrations
(ELISA signal at or below negative control with irrelevant antigens)
(Fig. 2). These results demonstrate that the germline-like antibod-
ies corresponding to these three antibodies do not bind to recom-
binant gp140 in our ELISA assay even at high concentrations.
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Fig. 1. Detectable bindings of germline-like X5, m44, and m46 antibodies in scFv
format to Env. Bal gp120-CD4 fusion protein was coated on a 96 well ELISA plate for
detection of scFv X5 binding, whereas 89.6 gp140 was coated for detection of scFv
m44 and m46 bindings at indicated concentrations. Mature and germline-like
antibodies were compared.
Bivalent Fc fusion proteins of germline-like b12, 2G12, and 2F5 lack
measurable binding to Envs

To test whether avidity effects could lead to measurable bind-
ing of the germline-like b12, 2G12, and 2F5 we constructed, ex-
pressed and purified bivalent scFv-Fc fusion proteins. These
antibodies did not exhibit measurable binding in the same ELISA
assay even at very high (lM range) concentrations (Fig. 3). As ex-
pected, due to avidity effects the binding of the germline-like
m44 and m46 Fc fusion proteins was enhanced (Fig. 4). These re-
sults indicate that bivalent avidity effects do not lead to measur-
able binding of germline-like b12, 2G12, and 2F5 in our ELISA
assay.

Discussion

We and others [19] have found that a number of HIV-1-specific
neutralizing antibodies have unusually high frequencies of somatic
hypermutation. The increase in somatic hypermutation was associ-
ated with an increase in nonsynonymous amino acid substitutions.
In contrast, the neutralizing hmAbs against several viruses causing
acute infections contain fewer amino acid substitutions. Notably,
the potent bnAbs against SARS CoV and henipaviruses were se-
lected by screening a large non-immune antibody library derived
from ten healthy volunteers against the respective Envs, as a meth-
od for resembling to a certain extent in vivo immunization [39]).
To mimic better the B cells that respond to primary immunization,
the heavy chains of the antibodies in this library from normal do-
nors were of l type corresponding to IgM+ B cells. When the same
library and screening methodology was used against HIV-1 Envs,
only weakly neutralizing non-cross-reactive antibodies resulted
(data not shown). Panning with another IgM library from large
number of healthy individuals resulted in non-neutralizing or even
infection-enhancing antibodies [40]. Previous attempts to select
HIV-specific antibodies from non-immune libraries have also re-
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Fig. 2. Lack of binding of germline-like b12, 2G12, and 2F5 antibodies in scFv
format. Bal gp120 was coated for detection of b12 binding and 89.6 gp140 was
coated for detection of binding by both scFv 2G12 and 2F5. Mature and germline-
like formats were compared.
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Fig. 3. Lack of binding of germline-like b12, 2G12, and 2F5 antibodies in Fc fusion
protein format to Env. Bal gp120 was coated for detection of mature and germline-
like scFv-Fc b12 binding and 89.6 gp140 was coated for detection of binding by
mature scFv and germline-like scFv-Fc 2G12 and 2F5.
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Fig. 4. Detectable bindings of germline-like m44 and m46 antibodies in Fc fusion
protein format to Env. Env 89.6 gp140 was coated for detection of binding by scFv-
Fc m44 and m46 fusion proteins.
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sulted in antibodies with modest neutralizing activity and limited
breadth of neutralization [41,42]. These results indicate that HIV-1
has developed a strategy to protect its highly conserved epitopes
against initial immune responses. In contrast, SARS CoV and henip-
aviruses appear to lack such a mechanism and their Envs contain
exposed, conserved receptor binding sites that can bind IgM + B
cells with sufficient affinity to induce class switch and affinity mat-
uration. Therefore, unlike HIV-1, Env-based vaccine immunogens
and in particular the receptor binding domains of SARS CoV and
henipaviruses can be highly effective in eliciting bnAbs.

Further support for this line of reasoning is our finding that
germline-like b12, 2G12, and 2F5 lack measurable binding to Envs.
We have not detected binding at relatively high (up to 10 lM) anti-
body concentrations. Although in general the threshold for B cell
activation is believed to be on the order of lM equilibrium disso-
ciation constants, it was demonstrated that even lower affinity/
avidity interactions can trigger B cell activation in mice [43,44].
However, even if binding occurs with very low avidity activated
B cells expressing such BCRs are likely to be outcompeted by B cells
expressing BCRs that bind to other epitopes with higher affinity/
avidity. Such epitopes include those of X5 as a representative of
a CD4i epitope and m44 and m46 as representatives of gp41 epi-
topes. X5 and other CD4i antibodies target a highly conserved
and immunogenic structure overlapping with the coreceptor bind-
ing site; such antibodies are abundant in patients with HIV-1 infec-
tion [45]. It has been demonstrated that the differences in
responses of high and low affinity B cells can be relatively small
but in competition experiments only the high-affinity B cells re-
spond to antigen [46,47]. One can hypothesize that during lengthy
chronic infections, HIV has evolved mechanisms to protect its most
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vulnerable but functionally important conserved structures includ-
ing the CD4 binding site, conserved carbohydrates and gp41 mem-
brane proximal external region (MPER) by using ‘‘holes” in the
human germline BCR repertoire, i.e., these structure do not bind
or bind very weakly to germline antibodies. At the same time
HIV has evolved other structures which are either not accessible
for full-size antibodies (e.g. some CD4i epitopes including the X5
one) or are not functionally important but can bind with relatively
high affinity to B cells expressing germline antibodies that can out-
compete those B cells expressing BCRs against conserved epitopes,
if any.

In conclusion, the results indicate another possible mechanism
used by HIV-1 to evade neutralizing immune responses. HIV-1 may
be able to protect its vulnerable exposed conserved epitopes by
using ‘‘holes” in the human germline repertoire. Germline BCRs
that can recognize these epitopes and initiate and/or maintain im-
mune responses by competing with BCRs that bind to other non-
essential or non-accessible epitopes with high affinity may be
missing from the naïve repertoire. We would like to emphasize
that this study is only an initial attempt to explore this possible
mechanism and much more work is needed to prove it and to
use the knowledge gained for the design of effective vaccine immu-
nogens capable of eliciting potent bnAbs against HIV-1.
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