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Healthcare technologies have seen a surge in utilization during the COVID 19 pandemic.
Remote patient care, virtual follow-up and other forms of futurism will likely see further
adaptation both as a preparational strategy for future pandemics and due to the inevitable
evolution of artificial intelligence. This manuscript theorizes the healthcare applications of
digital twin technology. Digital twin is a triune concept that involves a physical model, a
virtual counterpart, and the interplay between the two constructs. This interface between
computer science and medicine is a new frontier with broad potential applications. We
propose that digital twin technology can exhaustively and methodologically analyze the
associations between a physical cancer patient and a corresponding digital counterpart
with the goal of isolating predictors of neurological sequalae of disease. This proposition
stems from the premise that data science can complement clinical acumen to scientifically
inform the diagnostics, treatment planning and prognostication of cancer care.
Specifically, digital twin could predict neurological complications through its utilization in
precision medicine, modelling cancer care and treatment, predictive analytics and
machine learning, and in consolidating various spectra of clinician opinions.

Keywords: digital twin (DT), prediction, neurologic sequelae, children and adolescents, cancer treatment,
emerging technologies
INTRODUCTION

Digital twin is a concept that links a physical construct to its identical virtual counterpart via
operations connecting the two entities. Ideally, the virtual domain replicates the behavior of the
physical construct providing real-time data feedback and resulting in opportunities for timely
resolution of errors. Ultimately, the dynamic entity should thrive sustainably through incorporating
the digital intel and iteratively improving the physical model. The novelty of digital twins is
evidenced by the less than 100 published manuscripts in the last decade, however, its versatile
applications make it a frontier technology with widespread potential impact. Digital twin
technology is the evolutionary outcome of Artificial Intelligence (AI), introduced in 1956 (1).
NASA’s Apollo program pioneered the use of twin rovers by executing a similar concept of ‘mirror
worlds’ described in 1991 (2–4). Co-opting the term ‘digital twin’ in healthcare would instinctively
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mean categorizing patients with a specific disease as the physical
construct and data from diagnostics as a virtual domain. Today,
digital twin technology has a myriad of applications in the
manufacturing, healthcare and engineering industries (5). As
the lexicon diversifies, from AI to ‘mirror worlds’ to ‘digital twin’,
so do the applications. Currently, AI spans both the computer
science and the physical engineering spaces. It is therefore not
unimaginable to extrapolate digital twin solutions in surgical
simulation, precision medicine and disease prediction
modelling (6).

Actualizing digital twins for cancer treatment could be
executed through seamless integration with already existing
health infrastructure such as electronic health record (EHR)
systems. Existing clinical data would be harnessed, and output
maximized through additional plug-in software similar to how one
would update applications or a new security feature on a
computer. Further, innovative data collection strategies include
continuous monitoring through health bracelets and watches,
which simultaneously measure certain aspects of human
physiology. The early adaptation of digital twin technology for
specific uses in healthcare has stemmed from the incorporation of
data from wearable sensors and tracking bracelets in a bid to
augment spot-check clinical data points (7). Data have been
compared to ‘currency’ in modern day research, consequently
readily available data points are invaluable in developing
predictive models and prognostic tools that would maximize
desirable patient outcomes (8). More healthcare institutions
globally will likely expand their adaptation of digital tools and
technologies in order to minimize the risk of exposure to patients
and clinicians without compromising patient care as exemplified
by lessons from the COVID 19 pandemic (9). By citing specific
examples of digital twin application in medicine, this manuscript
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discusses five clinically relevant themes for the pediatric cancer
patient (summarized in Figure 1). Shortcomings associated with
digital twin technology are mentioned in the concluding segment.
PRECISION MEDICINE

Learning the specifics of an individual child’s neurologic
complications currently entails the creation of single point data
sets built on separate clinic visits, radiologic imaging, or other
diagnostic occurrences over time. Digital twins developed around
individual pediatric patients could personalize cancer care through
modelling patient-specific risk predictors helpful in formulating
prevention strategies or cures (10, 11). Wickramasinghe et al.
illustrate from literature how three categories of digital twin
technology: grey box, surrogate box and black box twins, can
cohesively inform the diagnosis, data generation and treatment
planning of uterine cancer patients (11). The principles,
nevertheless, can be applied in other fields of such as in the
context of pediatric cancer. Grey box twin models, that rely on
existing knowledge of a patient, would likely be the easiest to
incorporate as hospital EHR infrastructure is rife with clinical,
laboratory and imaging data. Surrogate box twin models would, in
addition, incorporate patient data from expanded clinical
networks (11). Expanded networks encompass subspecialties in
different wings or buildings of a hospital, different provinces, or
even different countries involved in a consultative, diagnostic or
treatment capacity of a single patient. The success of surrogate
digital twin networks of a child with medulloblastoma, for
example, whose surgery is performed in his/her home country
and proton beam therapy delivered in a different country would
depend on the digital connectivity and data exchange protocols
FIGURE 1 | An illustration of the digital twin concept and it’s proposed applications in pediatric cancer care.
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between the two hospitals in two different countries. Black box
digital twins, unlike grey and surrogate box models, do not rely on
prior knowledge of physicians or patients. These cryptic models
involve an element of deep learning (machine learning methods
based on supervised, semi-supervised or unsupervised
computational modelling) to generate patterns unique to a
patient entity. The newly generated data, if applied in pediatric
cancer care, would be predictive in nature and prognostic of
neurologic complications.
MODELLING CANCER CARE

Disease modelling through pooling cumulative data is one way
that digital twins could predict the neurologic complications of
pediatric cancers. Cumulative effects of novel treatments would
be observed from small numbers of different patients globally.
Justifiable geo-political or ethical constraints limit the number of
pediatric patients enrolled into drug trials (12). Digital twinning
could be the bridging platform for real-time analysis of the
earliest pediatric cancer patient cohorts in leading research
hospitals across the globe. Just as NASA gathers intel from its
twin rovers, one on earth and the other on planet Mars,
physicians and researchers could simultaneously analyze the
physical patients recruited in trials and their corresponding
digitized twin models for neurological sequelae. The resulting
close and continuous monitoring would confer scientific rigor
and yield early adverse effect reports. In this way digital twin
modelling can augment limited clinical trial data and make it
more robust (13). Robust virtual replicas of a clinical entity
include a virtual liver description by Subramanian et al. (6) In
this publication digital twin modelling investigated the complex
interactions between liver functions, liver disease and the effect of
drugs. Promising insights were gained that could be extrapolated
to drug discovery and development research involving other
pediatric cancer biologic systems.

Modelling Cancer Research
Typically, research advances in drug discovery are achieved
through well conducted clinical trials often with strict
eligibility protocols. This stringency precludes from analysis
data obtained through the compassionate use of the same
drugs. Compassionate use of novel treatments, for reasons
such as the neurological sequalae of pediatric cancers, coupled
with digital twinning could arguably increase data points for
research analysis and reporting (13). In fact, when applied on a
large scale basis, Dov Greenbaum proposes that digital twins
could supplement randomized control trials (13). This
supplementation could happen by tapping into ‘Big Data’ (data
from multiple sources) through twinning models which in a few
studies have shown promise, over traditional man-made models,
in identifying novel predictors of disease (14, 15).

Perhaps, in a distant future, levels of scientific evidence would
have to be redefined to reflect the robustness that digital twin
data would inject into well designed randomized control trials. In
the meantime, a more direct application of digital twins for the
pediatric cancer population would be their utilization in bench
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side research. Individual mouse models for a myriad of pediatric
disease currently exist for the advancement of research,
understanding the natural history as well as testing out new
treatments. Digital twin by extrapolation could amplify
observations made from mouse models. For example, a digital
twin of the traditional medulloblastoma mouse model could
uncover new predictors resulting from real-time observations of
the physical mouse’s physiology in response to a certain
intervention. Specific rare molecular subtypes of cancers could
be studied iteratively between in vivo cancer models and their
concomitant predictive algorithms resulting in deeper and faster
comprehension of the natural history of disease.
PREDICTIVE ANALYTICS AND
MACHINE LEARNING

Pediatric cancers are a diverse field encompassing three spheres:
diagnostics, a repertoire of treatment options and lengthy patient
follow-up. The multiple data points thus generated across time
and space make this field the ideal case study for the convergence
of digital twin and machine learning technologies. The
intersection between statistics and computer science is known
as predictive analytics. Frequently, machine learning algorithms
are applied to the analysis of the complex interactions within big
data in order to extract useful patterns therein (16). In healthcare
research this technology could be used to extract clinically
relevant predictive patterns of disease. Vast amounts of data
currently exist and continue to accumulate owing to a global
commitment to cancer research. Predictive analytics and
machine learning are well suited to encompass the multiple
point data embedded within clinical practice and research (15).
Literature has described machine learning’s greater success in
cardiovascular risk prediction over expert clinicians
prognostication (14). Similar success could likely be replicated
in risk prediction and stratification of pediatric cancer neurologic
complications. Owing to the readily available cumulative health
data coupling digital twin technology with data mining through
machine learning algorithms could well be the much needed
avenue to discover specific predictors of disease (17).
CONSOLIDATING DIVERSE
CLINICIAN OPINIONS

Judicious patient assessment and clinical judgement cannot be
replaced by artificial intelligence. Clinicians form, perhaps, the
most integral part of pediatric cancer care treatment. Various
specialists are trained to practice standard of care and make
recommendations based on astute clinical judgement. Standard
of care often entails clear-cut decisions nevertheless; it is not
unusual for differences to sometimes arise and for clinical
opinions to differ among doctors. This spectrum of clinician
treatment recommendations is exemplified by a study examining
the differences between Japanese and Western pathologists in
their diagnostic criteria of gastric cancers (18). The study
January 2022 | Volume 11 | Article 781499
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concluded that not only did pathologist grading interpretation
prevail among the cohort, but that the differences between
pathologists was also of prognostic significance. Self-learning
digital twin models, over time, can assess the limits of assessment
among different clinicians’ differences and hence contribute
reducing the margin of error. Rao et al. has used digital twin
technology to demonstrate how these differences in opinion can
be mitigated in what the authors describe as ‘collating the
subjective risk’ (19). In this example, the applied digital twin
model isolated new patterns based on the interactions between
specified knowledge constraints and diverse datasets including
physician input. Patterns learned through data science can thus
consolidate diverse clinician opinions and offer a consensus
if needed.
CONCLUSION

In spite of the unequivocal contribution that artificial intelligence
has,so far, made in healthcare and the potential applications that
digital twin can have for the advancement of disease prediction it
is prudent to mention the associated shortcomings (14). To begin
with, the ethics of artificial intelligence revolving around privacy
and access to the continuously generated patient health
information should be carefully considered. Although digital
twin is a relatively new concept, privacy and internet security
are ongoing conversations across all fields. Nevertheless, the
widespread installation of EHR systems in hospitals has already
set precedence by placing access protocols for primary care
physicians and verified patient circles of care. Secondly, the
incorporation of electronic health recording or its expanded use
Frontiers in Oncology | www.frontiersin.org 4
would be an added cost to the overall healthcare of a cancer
patient, as would the cost of new wearable technologies and the
networking needed to complete the digital twin triad. Finally,
some digital twin models, such as black box algorithms, are heavily
reliant on deep learning computations and have been met with
some criticism over the specifics of their inner workings (20).
Perhaps, encouraging more clinicians to be involved in the
formation of the background algorithms, in a consultative
capacity with data engineers, could give more credence to
the process.

In summary, in this manuscript proposes an emerging concept,
digital twin technology, as a frontier strategy for the identificationof
predictors of neurological complications of pediatric cancers and
their treatment. By exploring the interface between the physical
cancer patient and artificial intelligence, healthcare researchers can
begin to broach an inevitable future where the lines between man
and machine will no doubt get blurry.
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