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Celastrus orbiculatus Thunb has been known as an ethnopharmacological medicinal plant for antitumor, anti-inflammatory, and
analgesic effects. Although various pharmacological studies of C. orbiculatus extract has been reported, an anti-inflammatory
mechanism study of their phytochemical constituents has not been fully elucidated. In this study, compounds 1–17, including
undescribed podocarpane-type trinorditerpenoid (3), were purified from C. orbiculatus and their chemical structure were
determined by high-resolution electrospray ionization mass (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopic
data. To investigate the anti-inflammatory activity of compounds 1–17, nitric oxide (NO) secretion was evaluated in LPS-
treated murine macrophages, RAW264.7 cells. Among compounds 1–17, deoxynimbidiol (1) and new trinorditerpenoid (3)
showed the most potent inhibitory effects (IC50: 4.9 and 12.6μM, respectively) on lipopolysaccharide- (LPS-) stimulated NO
releases as well as proinflammatory mediators, such as inducible nitric oxide (iNOS), cyclooxygenase- (COX-) 2, interleukin-
(IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α. Its inhibitory activity of proinflammatory mediators is contributed by
suppressing the activation of nuclear transcription factor- (NF-) κB and mitogen-activated protein kinase (MAPK) signaling
cascades including p65, inhibition of NF-κB (IκB), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase
(JNK), and p38. Therefore, these results demonstrated that diterpenoids 1 and 3 obtained from C. orbiculatus may be
considered a potential candidate for the treatment of inflammatory diseases.

1. Introduction

Celastrus orbiculatus Thunb. (Oriental bittersweet) is a
perennial woody vine belonging to the family Celastraceae,
which is native to East Asia including China, Japan, and
Korea [1, 2]. C. orbiculatus has been traditionally prescribed
as a herbal remedy for bacterial infection, insecticidal, and
rheumatoid arthritis [3, 4]. Previous pharmacological studies
has shown that these extracts containing diverse phytochem-
ical components such as sesquiterpenoids, diterpenoids, tri-

terpenoids, alkaloids, flavonoids, and phenolic compounds
[5–10] exhibit various biological activity such as antitumor
[11–14], antioxidant [9], antinociceptive [15], antiathero-
sclerosis [16], neuroprotective [17], and anti-inflammatory
[18] effects. Although a variety of biological activities of C.
orbiculatus extracts reported in the literatures, whether any
phytochemical component contributes to their biological
mechanisms other than celastrol, which is the main triterpe-
noid compound of C. orbiculatus [19, 20], has been discussed
limitedly so far.
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The major function of the inflammation is to defend the
host from infectious pathogens and repair tissue injury
through the action of leukocytes including macrophages,
neutrophils, and lymphocytes [21, 22]. However, immoderate
or prolonged inflammation contribute to the development of
chronic inflammation diseases such as arthritis, asthma,
Crohn’s, and inflammatory bowel disease (IBD), resulting in
swelling, pain, and eventually damage of tissue or organ
dysfunction [23, 24]. Macrophage activated by antigen, patho-
gens, and endogenous inflammatory stimuli is associated with
functional and physiological changes in the cells and generates
proinflammatory and cytotoxic mediators such as nitric oxide
(NO), tumor necrosis factor α (TNF-α), interleukin-1β (IL-
1β), IL-6, reactive oxygen mediators, and hydrolytic enzymes
[25, 26]. Excessive NO and inflammatory cytokines released
from macrophages are implicated in cytotoxicity by initiating
both apoptosis and necrosis of normal tissues as well as
destruction of tumor cells and exogenous pathogens [27, 28].
Thus, blocking these inflammatory mediators is considered
to be effective for prevention of inflammation diseases.

Binding of these inflammatory mediators or bacterial
lipopolysaccharide (LPS) to specific receptors including Toll-
like receptors (TLRs) lead to the inflammatory responses,
through the transmembrane signal transduction and intracel-
lular responses such as nuclear transcription factor-κB (NF-
κB) and mitogen-activated protein kinases (MAPKs) [29,
30]. The activation of NF-κB is involved in the phosphoryla-
tion of IκB, resulting in the release of NF-κB into the nucleus,
which functions as a transcription factor for expressing proin-
flammatory target genes including inducible nitric oxide syn-
thesis (iNOS), cyclooxygenase 2 (COX-2), TNF-α, IL-1β,
and IL-6 [31]. Extracellular signal-regulated kinase (ERK), c-
Jun NH2-terminal kinase (JNK), and p38 kinase are generally
known as subfamilies of MAPKs, and this phosphorylation
involved in NF-κB activation modulates proinflammation
mediators, such as iNOS and COX-2 in activated macro-
phages [23, 32, 33]. Therefore, the development of natural
sources targeting the NF-κB and MAPK cascades can be a
potential therapeutic for inflammatory diseases.

In current study, the chemical structures of phytochemi-
cal constituents (1–17) isolated from C. orbiculatus were
determined by spectroscopic data including NMR and ESI-
MS. Among components obtained from C. orbiculatus, com-
pounds 1 and 3, both of which are podocarpane trinorditer-
penoids, exhibited most potent inhibitory activity against
LPS-treated NO release, and their anti-inflammatory activity
was explored through underlying molecular mechanisms
including NF-κB and MAPK signaling pathway.

2. Materials and Methods

2.1. General Experimental Procedures. Column chromatogra-
phy was performed with silica gel (Kieselgel 60, 230-400
mesh, Merck, Darmstadt, Germany), and silica gel 60 F254
and RP-18 F254s (Merck) were used for TLC analysis.
Medium-pressure liquid chromatography (MPLC) was
performed using a Combiflash RF (Teledyne Isco, Lincoln,
NE, USA), and semipreparative HPLC was performed on a
Shimadzu LC-6AD (Shimadzu Co., Tokyo, Japan) instru-

ment equipped with a SPD-20A detector using Phenomenex
Luna C18 (250 × 21:2mm, 5μm, Phenomenex, Torrance,
CA, USA), Phenomenex Kinetex C18 (150 × 21:2mm,
5μm), Phenomenex Luna C8 (150 × 21:2mm, 5μm), and
YMC C18 J’sphere ODS H80 (250 × 20mm, 4μm, YMC
Co., Kyoto, Japan) columns. 1H-, 13C-, and 2DNMR spectro-
scopic data were measured on a JEOL JNM-ECA600 or JEOL
JNM-EX400 instrument (JEOL, Tokyo, Japan) using TMS as
a reference. Optical rotation was recorded on a JASCO P-
2000 polarimeter (Jasco Co., Tokyo, Japan). UV spectrum
was obtained using SpectraMax M2

e spectrophotometer
(Molecular Devices, Sunnyvale, CA, USA). IR data were
acquired using a Spectrum Jas.co FT/IR-4600 spectrometers
(Jasco Corp., Tokyo, Japan). HRESIMS data were obtained
using a Waters SYNAPT G2-Si HDMS spectrometer
(Waters, Milford, MA, USA).

2.2. Plant Material. Celastrus orbiculatus (60 kg) was pur-
chased from the Kyung-dong market in Seoul, Korea. One
of the authors (M.C. Rho) performed botanical identification,
and a voucher specimen (KRIB-KR2016-052) was deposited
at the laboratory of the Immunoregulatory Materials
Research Center, Jeonbuk Branch of the KRIBB.

2.3. Isolation of Compounds 1 and 3. Pulverized stem of
Celastrus orbiculatus (60 kg) was extracted at room tempera-
ture with 95% EtOH (200 L × 2), and the filtrate was concen-
trated in vacuo to afford the EtOH extract (1.5 kg). The EtOH
extract (1.0 kg) was suspended in H2O (2.0 L) and subse-
quently partitioned with n-hexane (COH, 225.3 g), EtOAc
(COE, 164.9 g), and BuOH (114.4 g) fractions. The EtOAc-
soluble extract (130 g) was chromatographed on a silica gel
(silica gel, Fuji Silysia Chemical-Chromatorex, 130–200
mesh) column using a step gradient solvent system com-
posed of CHCl3 and MeOH (1 : 0⟶ 0 : 1, v/v) to give 17
fractions (COE1–COE17).

COE3 (2.6 g) was subjected to MPLC C18 column chro-
matography (130 g, H2O : MeOH = 95 : 5⟶ 0 : 1, v/v) to
generate 26 subfractions (COE3A–COE3Z). COE3Q (24mg)
was purified by semipreparative HPLC (Phenomenex Luna
C18, 250 × 21:2mm, 5μm, 65% MeCN, 6mL/min) to obtain
compound 1 (12.7mg, tR = 33:5min).

COE5 (4.1 g) was chromatographed on a MPLC silica gel
column (120 g, n-hexane : EtOAc, 1 : 0→ 0 : 1, v/v) to yield 15
sub-fractions (COE5A–COE5O), and COE5K (40mg) was
purified by semi-preparative HPLC (YMC, J’sphere ODS
H80, 250×20mm, 4μm, 20% MeOH, 6mL/min) to give
compound 3 (3.4mg, tR=54.2min). Compounds 2 and
4–17 were obtained from the hexane-soluble fraction using
repeated column chromatography along with EtOAc-
soluble fraction (Fig. S1).

Guaiacylglycerol-α, γ-O-nimbidiol diether (3) is a white
amorphous powder with ½α�25D –7 (c 0.1, CH3OH); UV
(CH3OH) λmax (log ε); 221 (4.26), 281 (2.90); IR (ATR)
νmax 3245, 2963, 2936, 2870, 1652, 1615, 1577, 1511, 1422,
1322, 1251, 1148, 1036, 947, 825 cm-1; HRESIMS m/z
451.2116 [M–H]– (calcd. for C27H31O6

-, 451.2126). For 1H
and 13C NMR spectroscopic data, see Table 1 (Figs. S2–S16).
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2.4. Cell Culture. RAW264.7 (ATCC TIB-71) cells was
cultured in Dulbecco’s modified Eagle medium (DMEM)
and RPMI 1640 medium supplemented with 10% fetal
bovine serum, 2mM glutamine, 100U/mL penicillin, and
100mg/mL streptomycin sulfate. Cells were maintained at
37°C in humidified air with 5% CO2.

2.5. Measurement of NO Contents and Cell Cytotoxicity. NO
assay was carried out for measurements of NO release using
a previously reported method [34]. Briefly, RAW264.7 cells
were plated at 1 × 105 cell density in 96-well microplate and
cultured for 24 h. Compounds (1–17) were pretreated with
increasing dose concentrations (0.5, 1, 5, 10, 25, 50, and
100μM) and then stimulated with LPS (1μg/mL, Sigma–
Aldrich, St. Louis, MO, USA) for 18h. The mixture of cell

supernatant (100μL) and Griess reagent (1% sulfanilamide
+0.1% N-(1-naphthyl)ethylenediamine (Sigma–Aldrich, St.
Louis, MO, USA)) in 5% phosphoric acid was recorded at
550 nm using a microplate reader (Varioskan LUX, Thermo
Fisher Scientific Inc., Waltham, MA, USA). The percentage
inhibition and logarithmic concentrations were presented
as a graph using GraphPad Prism 5 (Fig. S16). IC50 values
were calculated by nonlinear regression analysis as described
previously [35]. RAW264.7 cell cytotoxicity was evaluated
using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay [34].

2.6. Immunoblot Analysis. The whole cell lysate were extracted
using a Cell Lysis Buffer (Cell Signaling Technology, Beverly,
MA, USA). Immunoblot analysis was performed using a previ-
ously described method [34]. After transfer to nitrocellulose
(NC) membrane, the blocking membrane with 5% skimmed
milk powder was incubated overnight at 4°C with primary
antibody, including anti-phospho-JNK (1 : 1000), anti-JNK
(1 : 1000), anti-phospho-p38 (1 : 1000), anti-p38 (1 : 1000),
anti-phospho-ERK (1 : 1000), anti-ERK (1 : 1000), anti-
phospho-p65 (1 : 1000), anti-p65 (1 : 1000), anti-phospho-IκBα
(1 : 1000), anti- IκBα (1 : 1000), anti-COX-2 (1 : 1000), anti-
iNOS (1 : 1000), and anti-β-actin antibodies (Cell Signaling,
Beverly, MA, USA). The membranes were then incubated with
a horseradish peroxide-conjugated anti-rabbit secondary anti-
body (1 : 5000) at room temperature. The band densities were
calculated with Quantity One software (Bio-Rad Laborato-
ries, Hercules, CA, USA).

2.7. Real-Time PCR Using TaqMan Probe. Total RNA was
extracted from RAW264.7 cells using the TaKaRa MiniBEST
Universal RNA Extraction Kit following the manufacturer’s
instructions (Takara Bio Inc., Japan). The complementary
DNA (cDNA) was synthesized from 1μg of the total RNA
using a PrimeScript 1st strand cDNA synthesis kit (Takara
Bio Inc. Japan). Quantitative real-time PCR (qPCR) of IL-
1bβ (Mm00434228_m1), IL-6 (Mm00446190_m1), and
TNF (Mm00443258_m1) was performed with a TaqMan
Gene Expression Assay Kit (Thermo Fisher Scientific, San
Jose, CA, USA). To normalize the gene expression, an 18S
rRNA endogenous control (Applied Biosystems, Foster City,
CA, USA) was used. The qPCR was employed to verify the
mRNA expression using a StepOnePlus Real-Time PCR Sys-
tem. To quantify mRNA expression, TaqMan mRNA assay
was performed according to the manufacturer’s protocol
(Applied Biosystems). PCR amplification was analyzed using
the comparative ΔΔCT method.

2.8. Statistical Analysis. Half-maximal inhibitory concentra-
tion (IC50) values expressed as 95% confidence intervals were
calculated by nonlinear regression analysis using GraphPad
Prism 5 software (GraphPad software, San Diego, CA,
USA). Each experiment, including immunoblot and real-
time PCR, was performed independently three times, and
these data represent the mean ± SEM. The statistical signifi-
cance of each value was measured by the unpaired Student
t-test. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 were consid-
ered significant.

Table 1: 1H and 13C NMR spectroscopic data (δ ppm) for
compound 3.

Position
3

δC
a

δH
b (J in Hz)

1 39.2 CH2 2.29, d (12.6)

1.50, m

2 20.1 CH2 1.83a, m

1.67, br d (13.8)

3 42.7 CH2 1.55, d (13.2)

1.32, td (13.2, 2.4)

4 34.3 C —

5 51.4/51.3 CH 1.84a, m

6 37.1/37.0 CH2 2.64, m

7 200.5 C —

8 126.2/126.1 C —

9 153.0/152.9 C —

10 39.4/39.3 C —

11 113.4/113.3 CH 6.94a, s/6.93a, s

12 151.2/151.1 C —

13 143.6/143.5 C —

14 116.4 CH 7.54, s/7.52, s

15 33.2 CH3 0.96a, s/0.95ª, s

16 21.9 CH3 1.03, s

17 23.9/23.8 CH3 1.25a, s/1.24a, s

1’ 129.0/128.9 C —

2’ 112.2/112.1 CH 7.00, d (1.8)

3’ 149.4 C —

4’ 148.7 C —

5’ 116.5 CH 6.84, d (8.4)

6’ 121.9 CH 6.90, dd (8.4, 1.8)

7’ 78.7/78.6 CH 4.99, d (8.4)/4.97, d (8.4)

8’ 80.0/79.9 CH 4.06, tdd (8.4, 4.2, 2.4)

9’ 62.1 CH2 3.71, ddd (12.6, 2.4, 1.2)

3.47, ddd (12.6, 4.2, 1.8)

OCH3-3’ 56.6 CH3 3.88, s/3.87, s

Assignments were done by HSQC, HMBC, and COSY experiments. Spectra
were measured in methanol-d4 at 600 and 150MHz. aOverlapped signals.
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3. Results and Discussion

Although C. orbiculatus is regarded as a medicinal plant
including several terpenoids in East Asia and is treated with
clinical prescription for health management [11, 36, 37],
the biological activity and its composition against the inflam-
matory action of C. orbiculatus have hardly been found. In
our search for novel anti-inflammatory agents from C. orbi-
culatus, the n-hexane and ethyl acetate-soluble fractions of
C. orbiculatus were isolated to yield six diterpenoids (1–6),
nine triterpenoids (7–15), and two steroids (16 and 17) using
various column chromatography. Their chemical structures
were elucidated as (+)-7-deoxynimbidiol (1) [38], nimbidiol
(2) [39], celaphanol A (4) [39], (+)-ferruginol (5) [40], dehy-
droabietic acid (6) [41], lupenone (7) [42], lupeol (8) [42],
betulin (9) [43], 2β,3β-dihydroxylup-20(29)-ene (10) [44],
3β-caffeoyloxylup-20(29)-en-6α-ol (11) [45], lup-20(29)-
en-28-ol-3β-yl caffeate (12) [43], dammarenediol II 3-
caffeate (13) [46], β-amyrin (14) [47], α-amyrin (15) [47],
sitostenon (16) [48], and ergone (17) [49], compared to pre-
vious reported spectroscopic data, NMR, MS, and optical
rotation values. Among these, 13 compounds (3, 5–13, and
15–17) containing compound 3 determined as novel podo-

carpane trinorditerpenoid based on HRESIMS and NMR
data were first reported from C. orbiculatus (Figs. S2–S16).
The scheme for the isolation of compounds from Celastrus
orbiculatus was exhibited (Fig. S1).

Compound 3 was obtained as white amorphous powder,
and its molecular weight of C27H32O6 was determined by
HRESIMS deprotonated molecular ion [M–H]– at m/z
451.2116 (calcd. 451.2126) (Fig. S2). The IR spectrum
showed a hydroxy, carbonyl group, and aromatic ring
absorption bands (3245, 1652, 1615, 1577, 1511, and
1422 cm–1) (Fig. S3). The 1H NMR spectrum displayed three
methyl protons (δH 0.96/0.95 (s, H3-15), 1.03 (s, H3-16), and
1.25/1.24 (s, H3-17)), two aromatic protons (δH 7.54/7.52 (s,
H-14), 6.94/6.93 (s, H-11)), 1,3,4-trisubstituted aromatic ring
protons (δH 7.00 (d, J = 1:8Hz, H-2′), 6.84 (d, J = 8:4Hz, H-
5′), 6.90 (dd, J = 8:4, 1.8Hz, H-6′)), two oxymethine protons
(δH 4.99/4.97 (d, J = 8:4Hz, H-7′), 4.06, (m, H-8′)), one oxy-
methylene proton (δH 3.71 (dq, J = 12:6, 1.2Hz, H-9′a), 3.47
(dq, J = 12:6, 1.8Hz, H-9′b)), and one methoxy proton (δH
3.88/3.87 (s, OCH3-3′)) (Fig. S4). The 13C and DEPT NMR
spectroscopic data were indicated as the resonance for 27
carbons, including 12 aromatic ring carbons (δC 126.2/126.1
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Figure 1: Chemical structure of compounds 1–17.
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(C-8), 153.0/152.9 (C-9), 113.4/113.3 (C-11), 151.2/151.1 (C-
12), 143.6/143.5 (C-13), 116.4 (C-14), 129.0/128.9 (C-1′),
112.2/112.1 (C-2′), 149.4 (C-3′), 148.7 (C-4′), 116.5 (C-5′),
and 121.9 (C-6′)), three methyl carbons (δC 33.2 (C-15),
21.9 (C-16), and 23.9/23.8 (C-17)), four methylene carbons
(δC 39.2 (C-1), 20.1 (C-2), 42.7 (C-3), 37.1/37.0 (C-6)), one
oxymethylene carbon (δC 62.1 (C-9′)), one methine carbon
(δC 51.4/51.3 (C-5)), two oxymethine carbons (δC 78.7/78.6
(C-7′), 80.0/79.9 (C-8′)), two quaternary carbons (δC 34.3
(C-4), 39.4/39.3 (C-10)), methoxy carbon (δC 56.6 (OCH3-
3′)), and carbonyl carbon (δC 200.5 (C-7)) (Fig. S4 and S5).
Its 1D NMR data closely resembled that of nimbidiol (2),
which is previously isolated from Celastrus genus [39], except
for the additional guaiacylglycerol group based on key COSY
(H-7′/H-8′/H2-9′) and HMBC (H-7′/C-1′, -2′, -3′ and
OCH3-3/C-3′) correlations (Figs. S8 and S10). The positions
of α and γ in the guaiacylglycerol group were determined to
be located at OH-12 and OH-13 of nimbidiol moiety, respec-
tively, which involved a diether moiety, on the basis of the
long range correlations (HMBC) between H-11 and C-7′
(α) and between H2-9 (γ) and C-14 (Figure 1 and Fig. S10).
The relative configuration of 3 was elucidated to be the same
as that of nimbidiol by NOESY correlation between H-5 and
H3-15 and between H3-16/H3-17. Furthermore, the large cou-
pling constant for J7′/8′ (8.4Hz) in the guaiacylglycerol
group and no observation of NOE correlation between H-7′
and H-8′ indicated relative threo configuration (Fig. S11).
Therefore, a pair of 1D NMR spectra of the same pattern
showed that ′ is a 1 : 1 mixture of threo isomers between C-7′
and -8′. The structure of 3 was elucidated as shown in
Figure 2, named guaiacylglycerol-α, γ-O-nimbidiol diether.

In maintenance of homeostasis from various organs
systems, NO has been recognized as one of the important
biological mediator involved in the various pathophysiologi-
cal and physiological mechanisms, such as neurotransmit-
ters, host defense against pathogenic microorganism, and
regulation of immune systems [50]. However, the overpro-
duction of NO in intracellular levels is associated to inflam-
matory diseases and carcinogenesis, and measurement of

NO content has been employed by various literatures on
the anti-inflammatory properties of phytochemicals derived
from natural products [51]. To investigate whether NO pro-
duction stimulated by LPS was inhibited by phytochemicals
isolated from C. orbiculatus, compounds 1–17 were tested
by NO assay in the RAW264.7 cells. As shown in Table 2, 1–
4, 11, and 12 showed potent inhibitory activity against LPS-
treated NO secretion based on 50% inhibitory effect at
50μM concentration compared to only LPS-treated control
group (IC50: 4.9–40.0μM) (Fig. S17), and all isolates did not
affect cytotoxicity at IC50 concentration, respectively (Fig.
S18). Among isolates showing NO inhibitory effect, 1 and
3, which are podocarpane-type trinorditerpenoid class, were
selected to evaluate further anti-inflammatory activity at 5
or 10μM concentrations, respectively, which are approxi-
mately IC50values without cytotoxicity effect by compounds.

iNOS is a major downstream mediator of inflammation
in several cell types including macrophage cells [52]. During
the course of an inflammatory response, large amount of NO
formed by the action of iNOS surpass the physiological
amounts of NO [53], and consequentially, iNOS overproduc-
tion reflects the degree of inflammation [54, 55]. COX-2 is an
inducible enzyme that has a role in the development of epi-
thelial cell dysplasia, carcinoma, wound edge of tissue, and
inflammatory diseases such as arthritis, allergic asthma, and
atopic dermatitis [56–58]. The expression of COX-2 is a
key mediator of inflammatory pathway, which is representa-
tively the NF-κB signaling pathway [59, 60].

In order to examine the biological evidence of effectively
reduced NO production after treatment with 1 and 3, we
performed the immunoblot analysis to investigate whether
1 and 3 suppressed the upregulation of iNOS and COX-2
protein expression after LPS-activated inflammation condi-
tion. As shown in Figure 3, 1 and 3 dose dependently inhib-
ited iNOS and COX-2 protein expression on LPS-induced
inflammation in RAW264.7 cells. In addition, a comparison
of nitric oxide production between compound 1, 3, and
celastrol was exhibited (Fig. S19).

Each protein expression level was represented as relative
ratio values of iNOS/β-actin and COX-2/β-actin (Figures 3(c)

O
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O
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53

Figure 2: Key COSY and HBMC correlations for compound 3.
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and 3(d)). The fold-change values in iNOS and COX-2
expression in the presence of 1 and 3 was as follows: control
(1 ± 0), LPS (8:51 ± 0:51/15:82 ± 0:15), 1 (5μM: 5:84 ± 1:02
/6:08 ± 1:61 and 10μM: 3:13 ± 0:05/1:65 ± 0:34), 3 (5μM:
8:55 ± 0:44/7:53 ± 1:88 and 10μM: 4:91 ± 0:86/4:66 ± 1:84),
and dexamethasone (10μM: 2:1 ± 0:06/6:38 ± 0:59). These
results suggested that 1 and 3 prevented NO production via

inhibition iNOS and COX-2 expression under LPS-induced
inflammation condition in macrophages.

Dexamethasone or nonsteroidal anti-inflammatory drugs
(NSAIDs) [61] are well known for blocking the MAPKs and
NF-κB signaling cascades and results in potent anti-
inflammatory activity through the reduction of proinflamma-
tory mediators such as iNOS and COX-2. MAPK (JNK, ERK,
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Figure 3: Compounds 1 and 3 showed anti-inflammatory effects through inhibiting iNOS and COX-2. (a) Chemical structure of compounds
1 and 3. (b) Compounds 1 and 3 decreased iNOS and COX-2 protein expression levels in LPS-induced RAW264.7 cells. (c, d) Relative ratio of
iNOS and COX-2 versus β-actin was measured using densitometry, and dexamethasone was used as positive control. These graphs
represented that compounds 1 and 3 dose dependently inhibited iNOS and COX-2 levels in immunoblot analysis. Cells were pretreated
with each compound for 2 h and stimulated with LPS (1 μg/mL) for 16 h. Immunoblot analysis performed a triplicate test, and results are
expressed asmeans ± SEM. An unpaired Student t-test was used for statistical analysis. ###p < 0:001, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus LPS.

Table 2: Inhibitory effects of compounds (1–17) on LPS-induced NO production.

Compound IC50 (μM) Compound IC50 (μM)

1 4.89 (4.77–5.01) 10 >50
2 38.72 (17.50–85.66) 11 18.07 (10.74–30.42)

3 12.60 (10.65–14.89) 12 39.99 (30.42–52.58)

4 13.13 (9.15–18.84) 13 >50
5 >50 14 >50
6 >50 15 >50
7 >50 16 >50
8 >50 17 >50
9 >50 Dexamethasonea 0.016 (0.011– 0.023)

The IC50 values are showed with 95% confidence intervals (95% CIs). aCytotoxicity was not observed at the IC50 concentration.
bDexamethasone used as the

positive control.
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and p38) and NF-κB are crucial intracellular signaling path-
ways leading to the inflammatory response. These biological
response are mediated by their transcription factors, such as
activator protein- (AP-) 1, cAMP response element-binding
protein (CREB), and NF-κB, which are phosphorylated and
activated in the cytoplasmic or nuclear, resulting in an inflam-
matory action via the expression of target genes including pro-
inflammatory cytokines IL-1β, IL-6, and TNF-α as well as
iNOS and COX-2 proteins [62–64].

To further investigate anti-inflammatory effects associ-
ated with inhibition of NO production, iNOS, and COX-2,

major inflammatory signaling cascades, MAPKs (JNK,
ERK, and p38), and NF-κB, were evaluated with treatment
of 1 or 3 in LPS-induced murine macrophages. As shown
in Figures 4(a)–4(d), 1 remarkably inhibited phosphorylation
of JNK (p-JNK), ERK (p-ERK), and p38 (p-p38) MAPK sig-
naling molecules on LPS-activated inflammatory condition
in RAW264.7 cells. Each protein expression level was
presented as relative ratio values of p-JNK/JNK, p-ERK/ERK,
and p-p38/p38. The fold-change values in p-JNK, p-ERK,
and p-p38 expression in the presence of 1 were as follows:
control (1 ± 0), LPS (2:06 ± 0:07/2:18 ± 0:24/3:15 ± 0:27), 1
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Figure 4: Compounds 1 and 3 suppressedMAPK signaling pathway. (a, e) Immunoblot analysis showed that phosphorylated protein levels of
MAPK signaling cascades, JNK, ERK1/2, and p38 are inhibited by compounds 1 (a) and 3 (e) in RAW264.7 macrophages. (b–d, f–h) Total-
JNK, ERK1/2, and p38 MAPK proteins were used as loading controls. (b, f) Cells were preincubated for 2 h with each compound 1 and 3 at
concentrations of 5 and 10 μM, respectively, and stimulated with LPS (1 μg/mL) for 1 h. Dexamethasone served as the positive control.
Immunoblot analysis performed triplicate experiments, and data represented means ± SEM. Significant difference was considered at the
levels of ##p < 0:01, ###p < 0:001, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 versus LPS.
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(5μM: 0:58 ± 0:05/0:76 ± 0:12/1:14 ± 0:05), and dexametha-
sone (10μM: 1:04 ± 0:44/0:55 ± 0:15/0:79 ± 0:02). As shown
in Figures 4(e)–4(h), 3 markedly suppressed p-JNK and
p-ERK, but not p-p38. The fold-change values in p-JNK,
ERK, and p-p38 expression in the presence of 3were as follows:
control (1 ± 0), LPS (2:21 ± 0:09/2:14 ± 0:11/2:04 ± 0:11), 3
(10μM: 0:56 ± 0:13/0:77 ± 0:15/1:63 ± 0:28), and dexametha-
sone (10μM: 0:54 ± 0:05/0:44 ± 0:08/1:32 ± 0:05). Subse-
quently, immunoblot analysis was used to examine whether
1 and 3 affect the activation of NF-κB transcription factor
through a decrease of phosphorylation of IκBα (p-IκBα)
and p65 (p-p65). 1 and 3 significantly inhibited p-IκBα and
p-p65, similar to the positive control, dexamethasone
(Figure 5). Each protein expression level was expressed as
relative ratio values of p-IκBα/β-actin and p-p65/β-actin as
described in Figures 5(b), 5(c), 5(e), and 5(f). The fold-
change values in p-IκBα and p-p65 expression in the pres-
ence of 1 were as follows: control (1 ± 0), LPS (2:17 ± 0:07
/2:13 ± 0:63), 1 (5μM: 0:69 ± 0:02/0:51 ± 0:14), and dexa-
methasone (10μM: 0:41 ± 0:42/0:45 ± 0:12) (Figures 5(b)

and 5(c)). The fold-change values in p-IκBα and p-p65
expression in the presence of 3 were as follows: control
(1 ± 0), LPS (2:21 ± 0:09/2:34 ± 0:15), 3 (10μM: 0:56 ± 0:13
/1:62 ± 0:18), and dexamethasone (10μM: 0:54 ± 0:05
/0:45 ± 0:09) (Figure 5(e) and 5(f)). These results suggested
that the anti-inflammatory activity of 1 and 3 is responsible
for suppressing the MAPK and NF-κB signaling pathways.

The continuous overexpression of proinflammatory
cytokines, IL-1β, IL-6, and TNF-α, is characterized as
chronic inflammatory pathogenesis, which results in cell
and tissue degeneration [63, 65], such as rheumatoid
arthritis and inflammatory bowel diseases. Thus, following
the hypothesis that these proinflammatory cytokines may
be inhibited by 1 and 3, we performed real-time PCR
experiments to evaluate the inhibitory effect of IL-1β, IL-
6, and TNF-α levels. In accordance with our hypothesis,
1 and 3 revealed a reduction in LPS-induced IL-1β, IL-6,
and TNF-α gene expression at mRNA transcription levels
(Figure 6). All taken together, these results indicated that
the anti-inflammation activity of 1 and 3 was attributed
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Figure 5: Compounds 1 and 3 attenuated the NF-κB signaling pathway. (a, d) Immunoblot analysis displayed that activation of the NF-κB
signaling pathway was suppressed by compounds 1 (a) and 3 (d) in RAW264.7 cells. (b, c, e, f) The graph was expressed as the values of the
relative ratio IκBα or p65 to β-actin protein expression level using densitometry. Cells were pretreated for 2 h with compounds 1 and 3 at
concentrations of 5 and 10μM, respectively, and stimulated with LPS (1 μg/mL) for 1 h. Dexamethasone was used as the positive control,
and immunoblots analysis performed triplicate experiments. Values are means ± SEM, and an unpaired Student t-test was used for
statistical analysis. #p < 0:05, ##p < 0:01, ###p < 0:001, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 represented significant differences from the
LPS-treated group.
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to blockade of the MAPK and NF-κB signaling pathways
via the suppression of p-ERK, p-JNK, p-p38, p-IκB, and
p-p65 (Figure 6(d)).

4. Conclusion

In the present study, compounds 1–17 separated from C.
orbiculatus using normal or reverse phase column chroma-

tography were identified as six diterpenoids (1–6), nine
triterpenoids (7–15), and two steroids (16 and 17) com-
pared to previous reported spectroscopic data including
NMR and MS. Of all isolates, 7-deoxynimbidiol (1) and
novel podocarpane-type trinorditerpenoid (3) significantly
exhibited the most significant inhibitory effects on LPS-
activated proinflammatory mediator secretion, such as iNOS,
COX-2, NO, IL-1β, IL-6, and TNF-α, and its anti-
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Figure 6: Compounds 1 and 3 downregulated proinflammatory mediators. (a–c) The mRNA expression levels of IL-1β, IL-6, and TNF-α
were measured using quantitative real-time PCR experiment, and these proinflammatory cytokines were significantly diminished by
compounds 1 and 3. Cells were preincubated for 2 h with compounds 1 and 3 at concentration of 5 and 10μM, respectively, and activated
by LPS (1 μg/mL) for 2 h. Results represent as mean ± SEM, and dexamethasone was used as a positive control. #p < 0:05, ###p < 0:001, ∗p
< 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 indicated significant differences from the LPS-treated group. (d) Graphical depiction of the potent
anti-inflammatory activity of compounds 1 and 3 in LPS-activated RAW264.7 cells by suppressing the MAPK and NF-κB signaling pathway.
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inflammatory actions were exerted via downregulation of
MAPK and NF-κB signaling cascade molecules including
p-ERK, p-JNK, p-p38, p-IκB, and p-p65. Therefore, C. orbi-
culatus extract and its components 1 and 3 may be useful
and safe treatments for inflammatory diseases such as rheu-
matoid arthritis, asthma, and atopic dermatitis, which can
be applied to an alternative medical food in place of the
conventional drugs, such as NSAIDs and dexamethasone.
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