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Could different direct restoration techniques affect interfacial gap
and fracture resistance of endodontically treated anterior teeth?
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Abstract
Objectives To evaluate different direct restoration techniques on various cavity designs in anterior endodontically treated teeth
(ETT).
Materials and methods Ninety upper central incisors (n = 90) were selected, endodontically treated, and divided into three
groups (n = 30) accordingly to the cavity design: minimal endodontic cavity access (group A), endodontic access + mesial class
III cavity (group B), and endodontic access + two class III cavities (group C). Three subgroups (n = 10) were then created
accordingly to the restoration technique: nano hybrid composite restoration (subgroup a), glass fiber post + dual-cure luting
cement (subgroup b), and bundled glass fiber + dual-cure luting cement (subgroup c). Samples underwent micro-CT scan,
chewing simulation, and a second micro-CT scan. 3D quantification (mm3) of interfacial gap progression was performed; then,
samples underwent fracture resistance test. Data were statistically analyzed setting significance at p < 0.05.
Results Groups A and B showed significantly lower interfacial gap progression compared with group C. Subgroup b performed
significantly better compared with subgroups a and c. Improved fracture strength was reported for group C compared with group
A, while both subgroups b and c performed better than subgroup a.
Conclusions Cavity design significantly influenced interfacial gap progression and fracture resistance. Fiber posts significantly
lowered gap progression and improved fracture resistance while bundled fibers only increased fracture resistance. A significant
reduction of non-repairable fractures was recorded when fibers were applied.
Clinical relevance A minimally invasive approach, conserving marginal crests, should be applied whenever possible. Inserting a
fiber post is indicated when restoring anterior ETT, in order to reduce gap progression, improve fracture resistance, and avoid
catastrophic failures.
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Introduction

Restoration of endodontically treated teeth (ETT) remains a
challenge for dental clinicians, as the endodontic treatment
weakens the tooth structure in terms of biomechanical behav-
ior compared with the vital counterpart. In fact, ETT are more
brittle due to structural changes in dentin, loss of water, and
weakened collagen cross-linking [1]. These changes lead to
increased cuspal deflection during function, with consequent
higher occurrence of fractures [2, 3]. For this reason, post-
endodontic restoration challenge is to recover the biomechan-
ical behavior of the tooth and prevent catastrophic fractures.

Several types of restorations have been proposed in
literature to restore and reinforce ETT. In the past, tradi-
tional full coverage crowns in combination to metal post
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showed enhanced longevity, in the expense of an invasive
procedure [4–6]. Thanks to the introduction of adhesive
techniques, less invasive procedures are nowadays avail-
able to restore compromised teeth. Recent studies reported
that the mechanical resistance and the longevity of ETT
directly depend on the amount of residual tooth structure,
meaning that a minimally invasive approach should be
applied whenever possible. Direct resin composite resto-
rations represent the least invasive approach in order to
preserve the much sound structure possible. For this rea-
son, they have been frequently studied to evaluate their
efficacy when restoring an ETT, showing a significant
increase in fracture resistance when the direct restoration
was reinforced by fiber posts [7–10]. This trend was also
confirmed by the in vivo evidence that highlighted a pos-
itive correlation between post-insertion and restoration
longevity [11–13]. However, despite a great evidence re-
garding posterior teeth, few information concerning the
direct restoration efficacy in endodontically treated ante-
rior teeth is available.

In addition to the previously introduced concepts, it has to
be considered that anterior restorations are subjected to high
masticatory loads and parafunctional forces. Thus, fracture is
a relatively common clinical failure that occur over time [14,
15]. A recent review by Heintze et al. reported that the lack of
mechanical retention in class IV restoration must be consid-
ered an adhesive challenge and seems to lead to twice as high
failure rate than class III restorations. A higher prevalence of
failure in class IV restorations in bruxers was also reported by
van Dijken et al. [16], showing that overloading and increased
mechanical stresses in the restorations are making them more
prone to fracture and secondary caries.

The evaluation of a direct restoration efficacy should not be
focused on the tooth structure reinforcement effect only.
Indeed, occlusal stresses generated during mastication and,
especially, during parafunctional activities, such as bruxism,
were shown to have a deleterious effect on the marginal ad-
aptation of composites [17]. These mechanical stresses repeat-
ed over time lead to fatigue weakening of the adhesive inter-
face, ultimately generating a gap that may further lead to
microleakage [18]. Even if a direct correlation between
microleakage and clinical parameters has not been proved
[19], gaps that exceed a width of 60 μm could possibly lead
to bacteria accumulation, ultimately leading to sensitivity and
increased chance of secondary caries [20–22].

The aim of the present in vitro study was to evaluate
the effect of different direct restoration techniques on end-
odontically treated anterior teeth with different cavity de-
signs, analyzing interfacial gap and fracture resistance.
The null hypothesis tested was that the cavity design (1)
and the restoration technique (2) do not affect the interfa-
cial gap and the fracture resistance of endodontically
treated central incisors.

Materials and methods

Sample preparation

Ninety upper central incisors (n = 90) with similar crown and
root size (length > 14 ± 2 mm), extracted within 4 months for
periodontal reasons, were selected. Manual scaling was per-
formed for surface debridement, followed by cleaning with a
rubber cup and pumice. Specimens were disinfected in 0.5%
chloramine for 48 h and then stored in 4% thymol solution at
room temperature until use. Samples were double-checked
with optical 4.5× magnification to exclude teeth with caries,
previous restorations and visible cracks.

Selected teeth were endodontically treated using Pathfiles
and ProTaper Next (Dentsply Maillefer, Ballaigues,
Switzerland) to the working length, set at 1 mm short of the
visible apical foramen. Irrigation was performed with 5%
NaOCl (Niclor 5, Ogna, Muggiò, Italy) alternated with 10%
EDTA (Tubuliclean, Ogna, Muggiò, Italy). The root canals
were filled with gutta-percha cones trough a warm vertical
condensation technique.

Specimens were then divided into three groups (n = 30
each) accordingly to the cavity design, which were performed
by the same experienced operator.

– Group A: specimens exclusively presented a minimal
endodontic cavity access at the cingulum level. Gutta-
percha was removed up to 3 mm below the cemento-
enamel junction (CEJ).

– Group B: additionally to the cavity access, a single class
III cavity was prepared on the mesial side using an egg-
shaped diamond bur. To ensure reproducible cavity di-
mensions as much as possible, the mesio-distal, linguo-
buccal, and cervical-incisal extents of the tooth crown
were measured with a caliper. Class III cavities included
one third of the mesio-distal and linguo-buccal lengths
and one quarter of the cervical-incisal extent. The cervical
margin of the cavity was performed in enamel, ensuring a
distance to the CEJ of 1 mm. Due to the selected mesio-
distal dimension, the median part of the cavity was al-
ways connected to the endodontic cavity access.

– Group C: same as group B, but two class III cavities were
prepared on mesial and distal side of each sample.

After cavity preparation, specimens were divided into three
subgroups accordingly to the employed restoration technique
(n = 10 each):

– Subgroup a: Cavity was etched with phosphoric acid
(Conditioner 36, Dentsply, Konstanz, Germany) for 15
s, rinsed with water, and air-dried. A universal adhesive
(Futurabond U, Voco, Cuxhaven, Germany) was applied
uniformly at all cavity surfaces for 20 s using a micro
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brush, air-dried for 5 s, and light-cured for 20 s with a
multiLED lamp (1400 mW/cm2; Bluephase Style,
Ivoclar, Schaan, Luxembourg). A direct restoration with
nano hybrid composite (Filtek Supreme XTE, 3M) was
performed applying 2-mm-thick layers with horizontal
layering technique.

– Subgroup b: Post-space was prepared with dedicated
drills for a total of 8 mm depth (Rebilda Post Drill, diam-
eter 1.2 mm). A dedicated fiber post (Rebilda Post, Voco)
was luted with a dual-cure luting cement (Rebilda GT,
Voco) following manufacturer instruction. After light-
curing for 40 s with a multiLED lamp (1400 mW/cm2;
Bluephase Style, Ivoclar), a direct composite restoration
was performed as described for subgroup a.

– Subgroup c: Same as subgroup b, but using a bundled
glass-fiber-reinforced composite post (Rebilda Post GT,
Voco).

All the restored specimens were finished and polished with
fine-grit diamond burs and silicon points in order to obtain a
smooth surface without over or under contouring, and then
stored in distilled water. Figure 1 schematically reports the
study design.

Micro-CT analysis and cyclic fatigue test

Each sample underwent a micro-computed tomography
(micro-CT) scan (SkyScan 1172; Bruker, Billerica, MA,
USA) to evaluate interfacial gap. High-resolution scans were
performed using the following parameters: voltage = 100 kV,
current = 100 μA, aluminum and copper (Al + Cu) filter, pixel
size = 15 μm, averaging = 5, rotation step = 0.5°. Images were
reconstructed though NRecon software (Bruker, Billerica,

MA, USA) in order to obtain DICOM files, with standardized
parameters: beam hardening correction = 20%, smoothing =
3, ring artifact reduction = 9.

A CS-4.4 chewing simulator (SD Mechatronik;
Feldkirchen- Westerham, Germany) was used for mechanical
aging of the specimens. A 4-mm diameter metal cone was
employed, using the following parameters: occlusal load =
50 N, frequency = 1 Hz, downward speed = 16 mm/s, and
2 mm sliding movement. The movement pattern was set from
the palatal cingulum towards the incisal edge. The test was
performed for 500,000 cycles in water at room temperature.

To reveal interfacial gap progression between the res-
toration and the tooth structure after cyclic fatigue, sam-
ples were subjected to a second scan with same baseline
parameters to ensure consistency in the grayscale values.
Initial scans were then reconstructed with NRecon using
the same protocol and aligned with post-chewing scans
using DataViewer TM software (Bruker, Billerica, MA,
USA). Thresholding was performed automatically with
Mimics Medical 20.0 software (Materialise, Ann Arbor,
MI, USA), in order to obtain a void mask representing
gaps and voids inside the tooth-restoration complex, with
external boundaries set at 1 mm from the direct restora-
tion. A Hounsfield unit (HU) range of 1024 to 950 was
selected to maximize void visualization. The volume of
the mask was automatically calculated by the software
and recorded in mm3. In order to specifically analyze
gap progression and exclude composite internal bubble
volume, the result obtained from the baseline scan was
subtracted from the volume of the second scan. Figure 2
reports the 3D rendering of a random sample (restoration
and voids), seen from the inner surface (in contact with
the tooth), before and after chewing simulation.

Fig. 1 Schematic representation
of the present study sample
preparation protocol
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Fracture resistance test and failure mode analysis

Samples were then submitted to a static fracture resistance test
using a universal testing machine (Instron 10-S; Canton, MA,
USA) with a 4-mm diameter metal cone crosshead welded to a
tapered shaft and applied to the sample at a constant speed of
0.5 mm/min and an angle of 30° to the long axis of the tooth.
Load was applied on the palatal cingulum until fracture and
the maximum breaking loads were recorded in Newton (N).

Broken specimens were analyzed under a stereomicro-
scope (SZX9; Olympus Optical Co., Ltd., Tokyo, Japan).
The types of failure were determined and compared,
distinguishing between catastrophic fractures (non-reparable,
below the CEJ) and non-catastrophic fractures (reparable,
above the CEJ). Figure 3 reports two different fractures, as
well as a schematic representation for clarification.

Statistical analysis

To examine the effects of the factors “cavity design” and
“restoration technique” on interfacial gap progression and
the fracture resistance, a two-way analysis of variance test

(ANOVA) was conducted. Post hoc pairwise comparison
was performed using Tukey test. All statistical analyses were
performed using STATA software (ver. 12.0; StataCorp,
College Station, TX, USA).

Results

Interfacial gap progression data, expressed as means ± stan-
dard deviation inmm3, and fracture resistance, expressed in N,
are summarized, respectively, in Table 1 and Table 2. Two-
way ANOVA showed that interfacial gap was significantly
related to the cavity design (p < 0.001) as well as to the res-
toration technique (p < 0.001), as well as the interaction be-
tween the two factors (p < 0.001). Tukey post hoc test re-
vealed that groups A and B showed significantly lower inter-
facial gap increase after cyclic fatigue compared with group C
and subgroup b showed significantly reduced gap formation
compared with subgroups a and c.

Concerning fracture resistance, two-way ANOVA showed
a significance difference both for the factor “cavity design” (p

Fig. 2 Random sample before (left) and after (right) chewing simulation.
Light blue volume represents the restoration, seen from the inner surface.
Yellow volume represents baseline void volume, while blue volume rep-
resents final void volume after cyclic fatigue. It is noticeable that many

areas underwent degradation due to mechanical stresses and crack lines
appeared. To specifically analyze interfacial gap progression, final data
recorded consisted in blue volume minus yellow volume

Fig. 3 Random fractures
recorded among samples. Notice
how CEJ was taken as a reference
point to distinguish reparable and
non-reparable fractures

5970 Clin Oral Invest (2021) 25:5967–5975



= 0.023) and for the factor “restoration technique” (p < 0.001).
The Tukey post hoc test highlighted statistical improved frac-
ture strength for subgroup b (p < 0.001) and c (p = 0.005)
compared with the subgroup a. Concerning the cavity design
factor, Tukey test showed statistical significance when group
C was compared with group A (p = 0.005), with group C
performing significantly worse (lower fracture resistance).
Recorded fracture patterns, classified between repairable and
non-repairable, are reported in Table 3.

After an accurate analysis of the reconstructed images, it
was also observed, from a qualitative point of view, that some
of the samples randomly presented pre-existent micro-cracks,
not visible at 4.5× magnification, which propagated as a con-
sequence of chewing simulation. Micro-cracks showed a ten-
dency to continue inside the composite buildup when no fibers
were applied (subgroup a) compared with samples reinforced
with fibers (subgroups b and c). Figure 4 illustrates an exam-
ple of this trend, showing the propagation of initial micro-
cracks in two random samples from subgroups a and c, before
and after chewing simulation.

Discussion

Clinical studies already demonstrated that incisors and canines
have an overall higher failure rate compared with posterior
teeth, as the occlusal forces are more transverse [23, 24].
The cyclic fatigue derived from chewing, especially transver-
sal forces, causes a progressive degradation and therefore
“opening” of the adhesive interface [17, 18]. The consequent
marginal leakage is of critical concern when referring to com-
posite restorations since it might lead to secondary caries and
cracks, letting the tooth more prone to fracture [20, 21].
Moreover, in ETT, marginal leakage led to a potential bacte-
rial recolonization of the root canal system, ultimately causing
endodontic failure [25].

Basaran et al. showed that a percentage of dye leakage at
the interface between the post and the root canal was always
present, regardless of the fiber post or the adhesive technique
employed [26]. However, to date, two-dimensional tech-
niques for the analysis of the interfaces are to be considered
obsolete and limited compared with three-dimensional inves-
tigation methods. A recent technique to detect interfacial gaps
is represented by μCT, which allows, without destroying the
specimen, to generate 3D images. The number of studies
using μCT in restorative dentistry is increasing, as this tech-
nique has proved effective for the evaluation of internal adap-
tation of composite resin restoration [27–32]. In the present
study, cyclic intermittent loading induced an interfacial gap
opening in all specimens, corroborating in vivo and in vitro
previous findings that showed functional and parafunctional
stresses, especially transversal forces, are able to cause mar-
ginal gap opening on adhesive interfaces [17, 18].

Based on the present study results, the cavity extension as
well as the use of fiber post were crucial in reducing the inter-
facial gap progression after cyclic fatigue; thus, the first null
hypothesis was rejected. Interfacial gap openings occur during
fatigue when cyclic forces induce a tooth flexion which is
higher in non-vital teeth due to their reduced stiffness [33].
Loss of tooth structure is a key factor for stress resistance of
endodontically treated teeth, in anterior as well as in posterior
teeth. As demonstrated by Reeh et al. referring to premolars,
the loss of marginal ridges can lead to a diminished fracture
resistance going from 44 to 66% [33]. Obviously, if more
tooth structure is preserved, cyclic forces find a higher resis-
tance to flexion, thus leading to less interfacial gap formation.
The present study showed that the loss of one or two marginal
ridges is immediately correlated to increased interfacial gap,
because they represent the anatomical portion in anterior teeth
that provides resistance to traversal loads. The use of a fiber
post is indeed crucial when extended cavities are present as
their mechanical properties are close to the dentin [34, 35].
Consequently, they can reproduce the natural load

Table 1 Mean interfacial gap
variations ± standard deviation,
expressed as mm3, for each group
and subgroup

Subgroup a
(no post)

Subgroup b
(fiber post)

Subgroup c
(bundled fibers)

Group A (endodontical access) 0.12 ± 0.06 0.29 ± 0.09 0.27 ± 0.08

Group B (mesial class III cavity) 0.27 ± 0.09 0.19 ± 0.08 0.22 ± 0.07

Group C (mesial and distal class III cavities) 0.67 ± 0.19 0.35 ± 0.10 0.48 ± 0.15

Table 2 Mean fracture resistance
± standard deviation, expressed in
Newton (N), for each group and
subgroup

Subgroup a
(no post)

Subgroup b
(fiber post)

Subgroup c
(bundled fibers)

Group A (endodontical access) 542.6 ± 207.2 667.2 ± 243.3 660.4 ± 231.7

Group B (mesial class III cavity) 507.7 ± 143.1 718.7 ± 149.7 643.6 ± 208.8

Group C (mesial and distal class III cavities) 335.8 ± 86.5 663.1 ± 166.3 537.8 ± 108.2
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transmission mechanisms to the tooth structure reducing the
risk and entity of gap formation. Moreover, an increased flex-
ural strength when using a fiber post compared with
composite-only build-up has already been demonstrated by
several authors [36]. The higher flexural strength of fiber post
might mediate loads between dentin and restoration materials,
therefore resulting in a more homogenous stress distribution
[37]. On the other hand, the placement of vertical bundled
glass fibers within the root canal did not significantly reduce
the gap increase during cyclic fatigue, probably due to the
lower flexural strength of this restorative solution if compared
with the traditional glass fiber post.

Possible ways to restore compromised ETT were studied
and analyzed in the past by many authors [4, 38, 39], who
demonstrated an important reduction in tooth fracture when a
full coverage crown was performed. However, this option is
very demanding in terms of economical and biological costs
for the patient. This concept is particularly true when referring
to anterior teeth, whose fracture resistance is similarly corre-
lated to the presence of residual tooth structure [40, 41], but it
is subjected to different biomechanical stresses during func-
tion and parafunction.

The present study results clearly showed that the cavity con-
figuration in anterior teeth is directly correlated to the fracture

resistance, which could be partially recovered by using a fiber-
supported composite restoration. Thus, the second null hypothe-
sis was rejected. It has been recently suggested, in order to im-
prove fracture resistance in ETT, to insert fibers within direct
resin composite restorations [42, 43]. Thanks to their elasticmod-
ulus similar to dentin and stress bearing capabilities, fibers might
reinforce the structure and lead to fewer root fractures. Literature,
however, is not unanimous about the usage of fibers, with studies
affirming that there is no significant difference in the use of a
classic composite build-up and its corresponding post system
[44]. On the other hand, other authors affirm that for anterior
ETT, fiber post-placement seems advisable to improve static load
resistance, especially in cases with extensive loss of coronal tis-
sues [45]. This is in accordance with the present study results,
which reported ETT performing significantly better in fracture
resistance test when a post or vertical bundled fibers were used.
This reinforcement effect wasmainly advisable in groupC, prob-
ably because buccal enamel, incisal margin, and oral cingulum
are less involved in the tooth structure reinforcement compared
with proximal ridges. This could also explain the different results
obtained by Lausnitz et al.: a less invasive cavity design surely
helps the specimen in resisting both fatigue cycles and fracture
loads [46]. This is also accordancewith the results of Vadini et al.
that reported a significant benefit in resistance to static loads

Table 3 Fracture patterns for
each group and subgroup, divided
between repairable (rep) and non-
repairable (non-rep)

Subgroup a (no
post)

Subgroup b (fiber
post)

Subgroup c
(bundled fibers)

Rep Non-rep Rep Non-rep Rep Non-rep

Group A (endodontical access) 2 8 8 2 7 3

Group B (mesial class III cavity) 2 8 8 2 8 2

Group C (mesial and distal class III cavities) 0 10 7 3 5 5

Fig. 4 The first row shows a
random sample (Ca) before and
after chewing simulation. It is
noticeable that cracks propagated
from the tooth structure to the
buildup itself. The second row
shows another sample reinforced
with fibers (Cc), where the crack
propagation is clearly limited to
the tooth structure
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when a post was placed, particularly in cavity designs with ex-
tensive loss of coronal tissues (two class II cavities) [45].
Anyway, further studies should focus and evaluate the contribu-
tion to the resistance to occlusal loads of the anatomical compo-
nents of the anterior teeth in order to better understand the impact
of cavity configuration and extension on their resistance to fa-
tigue phenomena.

As demonstrated byNewman et al. [47], fiber-supported com-
posite appears to dissipate forces along the root canal system,
reducing peak stresses on the root and therefore moving the
critical fracture point coronally, ultimately leading to repairable
fractures [48, 49]. On the other hand, rigid posts such as carbon
fiber or cast posts and core seem to be more prone to cause non-
repairable root fractures due to their elastic modulus [50].
Hayashi et al. studied the fracture mode when teeth restored with
different post systemwere subjected to oblique and vertical load,
concluding that vertical loadings caused crack propagation in the
middle and apical portion of the roots, while with oblique loads,
most of the fractures occurred in the cervical part of the root
when fiber posts were used, and in the middle part, when
prefabricated metallic or cast metallic post-core were used [51].
Chieruzzi et al. showed that when a fiber-post is used, the stress
generated through dentin, cement, and post is well-distributed
and without any relevant peak. Therefore, it can be concluded
that the use of glass fiber allows to simulate the mechanical
behavior of natural tooth [52]. The fracture pattern analysis per-
formed in the present study confirmed previous findings, as all
samples restoredwith fiber posts showedmore favorable fracture
patterns. In this context, vertical bundled fibers showed better
performance compared with a direct composite restoration, but
inferior performances compared with fiber post-supported com-
posite restoration, especially where an extensive loss of structure
was simulated.

Lastly, in some sample, it has been noted that fiber seems to
limit or avoid the propagation of micro-cracks, as previously
shown in Fig. 4, ultimately acting as force-breakers. In most of
the samples of subgroup a (no post), the propagation of dentinal
cracks, which were randomly present before cyclic fatigue test,
continued in the composite restoration, while in subgroups b and
c, fibers were able to block or reduce this trend. This data could
be important to understand the resistance to cyclic loads, even
considering that the majority of dental restorations fail under
subcritical, cyclic occlusal loads over an extended period of time,
during which the interfacial bond degrades progressively.

Conclusions

Based on the obtained results, it can be concluded that:

– Cavity design significantly influences interfacial gap pro-
gression, fracture resistance, and fracture pattern.

– Fiber post-supported composite significantly reduced gap
progression and improved fracture resistance of ETT an-
terior teeth. Thus, the insertion of a fiber post is indicated,
even to improve the probability of a favorable fracture
pattern.

– Vertical bundled fibers were not able to reduce interfacial
gap progression significantly, but they increased fracture
resistance and slightly improved fracture pattern, even if
not as much as conventional fiber post.

Further in vitro studies are necessary to evaluate the crack
propagation during fatigue.
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