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Abstract: Obesity represents a substantial risk factor for a multitude of metabolic disorders, which seriously threatens human life and 
health. As the global obesity epidemic intensifies, obesity-related nephropathy (ORN) has attracted great attention. ORN arises from 
both physical/mechanical and non-physical insults to the glomerular and tubular structures precipitated by obesity, culminating in 
structural impairments and functional aberrations within the kidneys. Physical injury factors include changes in renal hemodynamics, 
renal compression, and mechanical stretching of podocytes. Non-physical injury factors include overactivation of the RAAS system, 
insulin resistance, lipotoxicity, inflammation, and dysregulation of bile acid metabolism. Exploring molecules that target modulation of 
physical or nonphysical injury factors is a potential approach to ORN treatment. ORN is characterized clinically by microproteinuria 
and pathologically by glomerulomegaly, which is atypical and makes early diagnosis difficult. Investigating early diagnostic markers 
for ORN thus emerges as a critical direction for future research. Additionally, there is no specific drug for ORN in clinical treatment, 
which mainly focuses on weight reduction, mitigating proteinuria, and preserving renal function. In our review, we delineate 
a progressive therapeutic approach involving enhancements in lifestyle, pharmacotherapy, and bariatric surgery. Our emphasis 
underscores glucagon-like peptide-1 receptor agonists (GLP-1 RAs) as poised to emerge as pivotal therapeutic modalities for ORN 
in forthcoming clinical avenues. 
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Introduction
Obesity presents a pervasive challenge to global public health. The combination of unhealthy lifestyles, such as excessive 
consumption of non-vegetable foods and alcohol abuse, and genetically induced expression of obesity-related genes, such 
as leptin and melanocortin 4 receptor, may lead to obesity-related diseases.1,2 From 2005 to 2015, obesity rates in the 
United States hovered between 30% and 34%, while in the United Kingdom, prevalence ranged from 23% to 24%.3 The 
rate of overweight adults in China nearly tripled between 1991 and 2009, increasing from 11.7% to 29.2%.4 Obesity 
precipitates the onset of metabolic syndrome and associated comorbidities such as type 2 diabetes (T2DM), nonalcoholic 
fatty liver disease, hypertension, hyperlipidemia, cardiovascular disorders, obstructive sleep apnea, osteoarthritis, and 
malignancies, collectively contributing to elevated mortality rates among affected individuals.5–7

Chronic kidney disease (CKD) is escalating into a global crisis. In China alone, estimates suggest a staggering 
119.5 million individuals affected (ranging from 11.29 to 125 million), translating to an overall prevalence of approxi
mately 10.8% (ranging from 10.2 to 11.3%).8 Meanwhile, projections indicate that the incidence of end-stage renal 
disease (ESRD) in the United States could surge from 11% to 18% by 2030. This trajectory, coupled with declining 
ESRD mortality rates, anticipates a rise in ESRD cases by 29% to 68% over the same period.9 The rise in CKD incidence 
appears intertwined with demographic aging and escalating rates of obesity, hypertension, and diabetes. A substantial 
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study involving 320,000 participants illuminated the connection between CKD and obesity, demonstrating a progressive 
elevation in the risk of ESRD with increasing BMI. This relationship persisted even after meticulous adjustments for 
hypertension, diabetes, smoking history, and cardiovascular conditions among the study cohort.10 Furthermore, causative 
links between obesity and CKD were substantiated through a two-sample Mendelian randomization study in European 
populations.11 Accumulating evidence underscores the pivotal role of obesity in fostering the progression of CKD.

Kidney involvement caused by obesity alone is known as an obesity-related glomerular disease (ORG), and 
glomerular enlargement is considered the pathological marker of the disease.7 However, recent research has revealed 
that kidney impairment due to obesity extends beyond glomerular damage to include tubular injury as well.12–15 The 
disease concept of “obesity-associated proximal tubulopathy (ORT)” was also proposed by Nakamura et al16. Therefore, 
more and more researchers have used the term obesity-related nephropathy (ORN) to describe obesity-induced kidney 
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injury.17–19 Kambham et al study showed that the incidence of obesity-related kidney disease diagnosed by kidney biopsy 
in the United States gradually increased from 0.2% in 1986–1990 to 2.0% in 1996–2000, a 10-fold increase in 15 years.20 

Hu et al analyzed 34,630 biopsy cases of primary kidney disease at Zhengzhou University in China and found that the 
annual incidence of obesity-related kidney disease increased from 0.86% in 2009 to 1.65% in 2018.21 However, the 
actual incidence of ORN is often underestimated due to obesity-related kidney disease, which is often coexisting with 
metabolic syndromes such as hypertension and diabetes. Moreover, consensus on criteria for diagnosis and treatment 
with ORN remains elusive. Therefore, a comprehensive grasp of the pathophysiological mechanisms and the latest 
breakthroughs in diagnosis and treatment of ORN is imperative.

This review consolidates recent strides in elucidating the pathophysiology, diagnosis, and therapeutic strategies for 
ORN, offering novel perspectives that guide forthcoming research and clinical interventions.

Pathophysiology of ORN
The intrinsic mechanisms of ORN still incompletely articulated, mainly due to the physical/mechanical and nonphysical damage 
to glomeruli and tubules caused by obesity, which ultimately leads to abnormalities in kidney structure and function (Figure 1).

Physical Injury
Renal Hemodynamic Changes
Glomerular hyperfiltration is an important feature in the early stages of renal impairment in ORG. Renal hemodynamic 
alterations play a critical role in driving this phenomenon. Recent investigations have identified distinct morphological 
changes in renal arterioles among ORG patients, notably telangiectasia surrounding glomerular arterioles and vascular 

Figure 1 Pathologic mechanisms of ORN. 
Abbreviations: ORN, Obesity-related nephropathy; RAAS, Renin-angiotensin-aldosterone system. Created with BioRender.com.
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poles, indicative of heightened intravascular flow, local plasma perfusion, and increased pressure.15 Additionally, Rebelos 
et al conducted a study comparing renal cortical and medullary hemodynamics in 23 morbidly obese women to 15 age- 
and sex-matched nonobese controls, revealing significantly elevated total renal blood flow in the obese group compared 
to controls.22 Alterations in renal hemodynamics among obese individuals correlate with factors such as heightened 
cardiac output, activation of the renin-angiotensin-aldosterone system (RAAS), and renal compression, with cardiac 
output typically increased by approximately 25% in the obese population.22

Renal Compression
Renal compression correlates with heightened adipose tissue accumulation and intra-abdominal pressure. Renal com
pression may result in successive increases in renal blood flow and estimated glomerular filtration rate (eGFR) by 
decreasing tubular flow velocity, activating the RAAS, decreasing partial excretion of NaCl, and inhibiting tubulo- 
glomerular feedback mechanisms.23

Mechanical Stretching of Podocyte
Glomerulomegaly is the mainly histopathologic feature of ORN. Podocytes, as terminally differentiated cells, lack the 
capacity for self-renewal or differentiation. Therefore, to ameliorate the imbalance between increased glomerular surface 
area and podocyte proliferation, podocytes are mechanically stretched.23 In severe lesions, separation of the podocytes 
from the glomerular basement membrane may occur, leading to focal and segmental glomerulosclerosis.23

Non-Physical Injury
Overactivation of the RAAS System
RAAS is a major hormonal cascade response, comprising different angiotensin peptides mediated by different receptors, 
with several biological functions.24 In pathophysiological conditions, RAAS is activated to cause vasoconstriction and 
inflammation, which contributes to hypertension and kidney damage.25 Overactivation of RAAS in obesity may be 
related to mechanical hemodynamic changes caused by visceral fat pressing on the renal hilum.7 Additionally, visceral fat 
directly syntheses various components of RAAS and neurohormonal stimulation mediated by the sympathetic nervous 
system, which is affected by hyperleptinemia and insulin resistance, also contributes significantly to the hyperactivation 
of the RAAS in obesity.7 Li et al observed a marked elevation in serum Ang II levels in mice subjected to a high-fat diet 
compared to those in the control group, indicating an association between high-fat diet intake and activation of the renal 
RAAS system.26 Elevated Ang II levels disrupt renal hemodynamics by inducing dilation of afferent arterioles, 
constriction of efferent arterioles, and engaging in both endocrine and paracrine interactions within the renal and 
systemic RAAS. This cascade, compounded by adipose tissue dysfunction, insulin resistance, and hypertension, 
culminates in hyperfiltration, glomerular enlargement, and eventual focal glomerulosclerosis.27 Furthermore, aldosterone 
has been implicated in promoting kidney inflammation, fibrosis, podocyte injury, and proliferation of mesangial cells.28

Insulin Resistance
Insulin resistance represents a crucial hallmark of obesity, with several studies highlighting its potential pathogenic 
impact on kidney function. Magen et al assessed the relationship between systemic insulin sensitivity and eGFR in 
a cohort of 1080 overweight and obese children and adolescents. Their findings revealed a significant inverse correlation 
between insulin sensitivity and eGFR (B = −2.72, p < 0.001), even following adjustments for confounding variables.29 

Yang et al conducted a longitudinal study spanning 12 years on a prospective cohort of individuals from the general 
population without CKD, categorizing them into two distinct HOMA-IR trajectories: stable and increased. Their analysis 
revealed that 8.4% of participants experienced adverse renal outcomes over the study period, with a notably elevated risk 
observed in the increased HOMA-IR trajectory group compared to the stable group.30 Insulin resistance exerts 
a profound impact on renal hemodynamics, triggering glomerular hyperfiltration, endothelial dysfunction, and heightened 
vascular permeability.31 During insulin resistance, unbalanced activation of insulin signaling leads to decreased Akt- 
dependent synthesis of the primary vasodilator nitric oxide and enhanced MAPK-dependent vascular reactivity. These 
dysfunctions are implicated in fostering both microvascular and macrovascular abnormalities.32–34 Abnormal salt 
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sensitivity likely contributes, at least partially, to the detrimental impact of insulin resistance on glomerular 
hyperfiltration.35,36 Additionally, insulin resistance also promotes chronic inflammation of the kidney, apoptosis of 
renal podocytes and hypertrophy of remaining podocytes.37,38

Lipotoxicity
Lipotoxicity refers to a persistent metabolic dysregulation of lipids, resulting in the abnormal accumulation of fat in 
peripheral organs such as the kidneys, heart, and skeletal muscles. Over time, this process leads to cellular damage and 
impaired organ function.39 Several studies have shown renal lipid accumulation in obese individuals.40,41 The impact of 
lipid overload in precipitating kidney injury has been extensively documented. Growing evidence suggests that the 
mechanisms underlying renal cell injury due to lipid overload are intricate and multifaceted, involving inflammation, 
oxidative stress, endoplasmic reticulum stress, autophagy disorder, and mitochondrial dysfunction.13,41–43 However, the 
relationship between lipid accumulation and kidney injury is not unilateral; they may be mutually causal. The heightened 
activity of the CD36 pathway, pivotal in the uptake of free fatty acids and oxidized low-density lipoproteins, exacerbates 
lipid-induced toxicity, leading to injury in proximal tubules and podocytes. Conversely, inhibition of CD36 protein 
expression has shown promise in mitigating renal damage.44 Consistent with these findings, knockout of CD36 reversed 
ectopic renal lipid deposition and prevented kidney damage in obese mice.45 Thus, dysregulation in lipid metabolism 
emerges as pivotal in kidney injury. Kang et al observed reduced protein levels of pivotal enzymes governing fatty acid 
oxidation (FAO) and increased intracellular lipid accumulation in human and murine models exhibiting renal tubuloin
terstitial fibrosis.46 In vitro studies have demonstrated that inhibiting FAO in renal tubular epithelial cells results in ATP 
depletion, cell death, dedifferentiation, and intracellular lipid buildup.46 These results imply that mitochondrial dysfunc
tion during kidney injury could exacerbate lipid accumulation within renal tissues.

Inflammation
Obesity is distinguished by a state of chronic low-grade systemic inflammation linked to adipose tissue.47 In physiolo
gical states, adipose tissue accumulates around the kidneys and releases adipokines, crucial for regulating immune 
responses and maintaining vascular homeostasis.12 However, in obesity, adipose tissue may liberate surplus pro- 
inflammatory adipokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), while diminishing beneficial 
adipokines like adiponectin.12,48,49 Obesity can contribute to renal damage by enhancing the production of pro- 
inflammatory factors and suppressing the expression of anti-inflammatory factors. A previous study has shown that 
the synthesis and release of TNF-α and IL-6 may induce programmed inflammation response and exacerbate kidney 
damage.50 Increased expression of TNF-α is associated with increased urinary albumin level, renal fibrosis, and 
glomerulosclerosis in high-fat-fed mice. Conversely, the absence of TNF-α reduced glomerular and tubular damage, 
and alleviates renal fibrosis.51 Similarly, blocking IL-6 receptors reduces inflammation levels, immune cell infiltration, 
and pro-fibrotic cytokine expression in kidney tissue, further reducing kidney damage.52 In contrast, adiponectin levels 
are low in obese subjects.53 Adiponectin is an anti-inflammatory, anti-atherosclerotic, and insulin-sensitizing 
adipokine.54,55 Adiponectin stimulates the expression of the anti-inflammatory cytokine, interleukin-10 (IL-10), and 
reverses the damaging effect of TNF-α, IL-6 and other pro-inflammatory cytokines on the kidneys.56 Furthermore, 
adiponectin plays a protective role in podocytes and down-regulates inflammatory and prefibrotic pathways in ORG by 
stimulating the AMP-activated protein kinase.7

Abnormalities of Bile Acid Metabolism
Bile acids perform important signaling functions.57 In the kidney, bile acids serve as signaling molecules that activate 
endogenous receptors: the nuclear receptor farnesoid X receptor (FXR) and the membrane-bound G protein-coupled bile 
acid receptor 1 (GPBAR1, also known as TGR5).57 Prior research underscores the critical role of bile acids in renal 
pathophysiology through their activation of FXR, TGR5, and transcription factors pertinent to lipid, cholesterol, and 
carbohydrate metabolism. Furthermore, bile acids also influence genes involved in inflammation and the development of 
renal fibrosis.58 Abnormalities in renal bile acid metabolism in the context of obesity include changes in the bile acid 
profile and abnormalities in bile acid receptors. Targeted metabolomics analyses by Song et al showed significantly lower 
levels of chenodeoxycholic acid (CDCA), cholic acid (CA), and lithocholic acid (LCA) in the kidneys of high-fat-fed 
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rats, suggesting changes in renal bile acid-acid composition in the model of obesity.59 Reduced FXR expression has also 
been observed in renal biopsy tissues from patients with ORN.60 In contrast, altered bile acid metabolic profiles, 
decreased FXR receptor expression and renal lipid accumulation were reversed after Wen-Shen-Jian-Pi-Hua-Tan decoc
tion treatment.59 Thus, specific changes in bile acid composition and subsequent activation of FXR in the context of 
obesity may be key regulatory pathways mediating renal lipid accumulation.

Diagnostics
ORN is characterized by proteinuric nephropathy in individuals with obesity, diagnosed through exclusion of other 
known renal conditions, utilizing clinical parameters and histopathological assessment.20,61–64 Glomerular enlargement 
with or without focal segmental glomerulosclerosis (FSGS) lesions has been detected in kidney biopsy specimens from 
obesity-related patients. However, these findings lack specificity. Therefore, in the diagnosis of ORN, it is crucial to 
differentiate from other kidney diseases closely linked with obesity, such as hypertensive nephropathy and diabetic 
nephropathy (DN). Biopsy specimens from hypertensive obese patients have exhibited moderate to severe vascular 
lesions, often alongside diffuse collapsed glomeruli. The presence of these histological features typically leads to 
a diagnosis of hypertensive nephrosclerosis rather than ORN. In obese patients with T2DM, discerning the primary 
contributor to albuminuria—diabetes or obesity—can pose challenges, particularly during the initial phases of nephro
pathy. Unlike advanced DN, ORN typically lacks characteristic features such as glomerular nodular degeneration or 
glomerular microaneurysm formation.15 Therefore, ongoing pathological investigation into the progression of ORN may 
offer valuable insights for distinguishing it from DN. Additionally, FSGS is another important histopathological feature 
of ORG and needs to be distinguished from primary FSGS. Characteristic clinical manifestations of ORG encompass 
moderate to severe albuminuria, yet without a decline in serum albumin levels.65 This clinical feature is highly valuable 
in differentiating these patients from those diagnosed with idiopathic FSGS, with less pronounced foot process efface
ment observed in ORG patients compared to those with idiopathic FSGS.20,61

While albuminuria testing remains widely employed for noninvasive assessment in ORN, it does not always serve as an 
early indicator of kidney injury.7 A previous study involving obese individuals undergoing bariatric surgery revealed 
histological changes consistent with ORG in some patients despite normal renal function and absence of albuminuria.66 

Consequently, recent efforts have focused on identifying new biomarkers for ORN diagnosis. Biomarkers such as urinary 
kidney injury molecule-1 (KIM-1), urinary cystatin C, urinary N-acetyl-beta-D-glucosaminidase (NAG), and urinary 
neutrophil gelatinase-associated lipocalin (NGAL) have shown promise in detecting early renal tubular injury in 
ORG.67,68 Additionally, ectopic lipid accumulation stands out as a promising new biomarker for assessing kidney injury 
in ORN patients.69,70 Renal ultrasound and ultrasound elastography, along with computed tomography (CT) and magnetic 
resonance imaging (MRI), currently serve as the predominant imaging modalities for evaluating fatty kidneys.71–77

In conclusion, kidney tissue biopsy and existing markers of early kidney injury are not specific for the diagnosis of 
ORN. In the future, it is expected that high-throughput sequencing techniques, such as transcriptomics, metabolomics and 
proteomics, may facilitate the screening of specific markers of ORN for its early diagnosis and treatment.

Therapeutics
The Role of Lifestyle Modifications in ORN Treatment
The clinical evidence for ORN lifestyle changes comes mainly from observational studies. In a recent randomized 
controlled trial (RCT) conducted by Straznicky et al, 38 overweight or obese individuals with initially normal kidney 
function were randomly allocated to groups undergoing dietary restriction, dietary modification combined with aerobic 
exercise, or receiving no intervention. After a 12-week follow-up, participants in the intervention groups exhibited 
noteworthy weight reduction, significant decreases in serum creatinine levels, improvements in eGFR, and reductions in 
albuminuria compared to those in the control group receiving no intervention.78,79 In a previous study, 63 patients with 
BMI≥28 kg/m2 who underwent kidney biopsies and had confirmed ORG were subjected to diet and exercise intervention 
for 6 months. Among them, 27 patients achieved a substantial reduction in body weight by an average of 8.29 ± 4.00%, 
accompanied by a 35.3% average decrease in proteinuria. Over the subsequent 24 months, the BMI of these 27 patients 
decreased further by 9.20 ± 3.78%, with urinary protein excretion showing a marked reduction of 51.33%.80 This 
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evidence shows the importance of lifestyle changes in the management of ORN. However, it is important to note that not 
all dietary interventions are safe and effective for patients with ORN. For example, a very low-calorie ketogenic diet, 
which mimics fasting, is only safe and effective in obese patients with normal kidney function and mild kidney failure. 
Because protein is relatively abundant compared to carbohydrates and fats and is generally considered to potentially 
impair kidney function, it is generally not recommended for subjects with moderate or severe CKD.81

ORN Drug Intervention
Anti-Obesity Drugs 

The American Gastroenterological Association (AGA) Clinical Practice Guidelines and the Canadian Clinical Practice 
Guideline strongly advocate for the incorporation of pharmacotherapy alongside lifestyle interventions in adults with 
obesity (BMI ≥ 30 kg/m², or ≥ 27 kg/m² with obesity-related complications) who exhibit insufficient response to lifestyle 
measures.82,83 Therefore, weight loss drug intervention may be the first choice for ORN but not all are suitable for ORN 
patients owing to be the specific kidney structure and function. The review summarizes the effects of long-term anti- 
obesity drugs currently approved by the Food and Drug Administration (FDA) on kidney function (Table 1). Glucagon- 
like peptide-1 receptor agonists (GLP-1 RAs), semaglutide and liraglutide, are highly recommended weight loss agents 
with renal protective effects.84 GLP-1 RAs is also a second-line drug recommended by KDIGO 2022 Clinical Practice 
Guideline for Diabetes Management in Chronic Kidney Disease to reduce blood glucose in T2DM and CKD.85,86 

Therefore, semaglutide and liraglutide may be the drugs of choice for the treatment of ORN. Moreover, GLP-1 RAs side 
effects are relatively small, the most common gastrointestinal reactions such as nausea and vomiting, and the vast 
majority of patients with symptoms can be alleviated over time.87,88 Additional research is warranted to ascertain the 

Table 1 Effects of Anti-Obesity Drugs on the Kidney

Anti-obesity 
drug

Study Subjects Renal outcome

Semaglutide Mann JFE et al94 Adults with 

T2DM

Reduce albuminuria; Improve the initial eGFR and then plateau; In patients with 

moderate to severe renal impairment, the improvement in eGFR was less 
pronounced compared to those with normal or mildly impaired renal function.

Shaman AM et al84 Adults with 

T2DM

Lowered albuminuria by 24%; The decline in eGFR slope was notably attenuated by 

0.87 mL/min/1.73 m² per year.
Liraglutide Shaman AM et al84 Adults with 

T2DM

Lowered albuminuria by 24%; The rate of eGFR decline was markedly decelerated 

by 0.26 mL/min/1.73 m² per year.

Mann JFE et al95 Adults with 
T2DM

Fewer participants in the liraglutide group experienced renal outcomes.

Phentermine- 

topiramate ER

Jefferson HJ et al89 A case report Long-term treatment with phentermine resulted in kidney damage.

Markowitz GS et al96 A case report Treatment with phentermine resulted in acute interstitial nephritis.
Barnett SM et al97 Forty children 

with epilepsies

80% (4/5) of children had kidney complications due to topiramate.

Parthvi R et al90 A case report The topiramate-associated renal tubular acidosis was reported.
Salek T et al98 A case report Metabolic acidosis and kidney stones caused by topiramate.

Naltrexone- 

bupropion ER

Sauriyal DS et al99 Animal 

experiment

Pretreatment with naltrexone significantly attenuated glycerol-induced rise in 

plasma creatinine levels.
Deroee AF et al100 Animal 

experiment

Naltrexone inverts renal function and morphology in cholestatic rats.

Mutoh J et al91 Animal 
experiment

Naloxone improves kidney function.

Kinalp C et al92 A case report Kidney damage caused by bupropion.

Orlistat Erken E et al93 A case report A case with acute kidney injury 
caused by orlistat.

Buysschaert B et al101 A case report A case with tubulointerstitial nephritis caused by orlistat.
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potential utility of other FDA-approved weight-loss medications in the management of ORN. Evidence on the effects of 
phentermine-topiramate extended-release (ER) on the kidney is insufficient, but the use of phentermine or topiramate 
alone reportedly induces kidney disease.89,90 Similarly, observational evidence on the effects of Naltrexone-Bupropion 
ER on the kidney remains insufficient. Naltrexone might improve acute kidney injury. Bupropion-induced kidney injury 
has also been reported.91,92 Orlistat is a weight loss agent that is not recommended in the AGA clinical practice 
guidelines for the intervention of obesity in adults.82 Furthermore, it can cause tubulointerstitial nephritis.93

Non-Anti-Obesity Drugs 

Drugs for Which There is Sufficient Clinical Evidence.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i)

SGLT2i is a new class of therapeutic hypoglycemic drugs. Although it is not approved as an anti-obesity drug, it plays 
a role in obesity treatment.102 SGLT2i can reduce the progression of CKD in patients with obesity and T2DM.103–108 To 
assess the effect of canagliflozin on renal outcomes, Perkovic et al enrolled 4401 patients in CKD stages G2 and G3 with 
T2DM in a randomized double-blind trial. The findings revealed a 34% decrease in the relative risk of renal-specific 
complications—such as ESRD, doubling of creatinine levels, or death from renal causes—in the canagliflozin group 
compared to the placebo group.103 Additionally, in the DAP-CKD trial, the inaugural study of SGLT2 inhibitors to 
disclose clinical outcomes in non-diabetic chronic kidney disease (CKD) patients, significant reductions in albuminuria 
were observed across CKD stages G2 to G4, regardless of the presence of type 2 diabetes mellitus (T2DM), and a greater 
relative reduction in patients with T2DM.104,108 Consistent with the effect observed in the DAP-CKD trial, Chertow et al 
also found no evidence of an increased risk of renal outcome in CKD stage G4 patients with dapagliflozin.109 Moreover, 
the KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease recommends that 
SGLT2i is the first-line therapy in both T2DM and CKD patients, regardless of glycemic control.85,86 SGLT2i has not 
been specifically studied in patients with ORN. SGLT2i could be beneficial in ORN owing to the following factors: 
Firstly, SGLT2i reduces the reabsorption of sodium and glucose and increases the transport of sodium to the dense 
macula, induces shrinkage of the afferent arterioles, counteracts glomerular hyperfiltration. Secondly, the weight- 
reducing effects of SGLT2 inhibitors contribute to the reduction of ectopic renal fat. Lastly, SGLT2 inhibitors mitigate 
the release of pro-inflammatory cytokines and oxidative stress, thereby ameliorating kidney injury.110–114

RAAS Inhibitors.
Given that overactivation of the RAAS system plays a central role in the pathophysiology of ORN, blocking RAAS with 
angiotensin-converting enzyme inhibitors (ACEI) or angiotensin type II receptor blockers (ARBs) is an effective 
treatment.7 Previous Renal Studies showed that losartan reduced the incidence of doubling of serum creatinine levels, 
albuminuria and ESRD.115,116 Conversely, Yang et al observed a higher risk of ESRD upon discontinuation of ACEI/ 
ARBs compared with continued use in a prospective population-based cohort study.117 These observational results 
suggest that ACEI and ARB therapy can block the progression of CKD and is a potential treatment option for patients 
with ORN. In addition to ACEI and ARBs, aldosterone secretion has a direct effect on promoting kidney disease. 
Aldosterone increases TGF-β and PAI-1 levels independently or during interaction with Ang II in the vasculature, which 
promotes renal vasculature, stiffness and mesangial proliferation, podocyte loss, and development of glomerular 
fibrosis.118–122 Morales et al demonstrated that integrating the mineralocorticoid receptor antagonist spironolactone 
may confer renal advantages in obese patients with albuminuria undergoing ACEI or ARB therapy.123 However, recent 
PRIORITY studies have indicated that spironolactone does not halt the progression to microalbuminuria in high-risk 
patients with T2DM and existing albuminuria.124 Therefore, additional clinical studies are warranted to elucidate the 
renal effects of spironolactone in patients with ORN.
Animal Research on Effective Drugs.
TGR5 Agonists. Several drugs have been proven effective in animal experiments for the treatment ORN, but more 
clinical evidence is needed to prove their effectiveness. G protein-coupled bile acid receptor TGR5 activators are 
considered promising targets in the treatment of ORN. Previous studies have shown that the selective TGR5 agonist, 
INT-777, might prevent renal oxidative stress and lipid accumulation by inducing mitochondrial biogenesis.125 Wang 
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et al additionally demonstrated that administration of INT-767, a dual agonist of FXR and TGR5, to mice fed a high-fat 
diet resulted in reduced albuminuria. Moreover, treatment with INT-767 effectively mitigated podocyte injury, mesangial 
expansion, and tubulointerstitial fibrosis in comparison to untreated control animals.60

Melatonin. Melatonin has been reported as a treatment option for ORN.12 A wealth of studies has elucidated melatonin’s 
antioxidative and anti-inflammatory attributes. Melatonin enhances renal antioxidant enzymatic activities, such as those 
of glutathione peroxidase (GPX), renal superoxide dismutase (SOD) level, and catalase (CAT), in obese rats with T2DM 
and Zucker diabetes.126 Melatonin may prevent and treat systemic inflammatory responses caused by obesity by 
inhibiting NLRP3 inflammasome activation.127 Additionally, melatonin may also alleviate obesity.128 Evidence suggests 
that supplementation with exogenous melatonin following pinealectomy decreases food consumption, enhances energy 
dissipation in brown adipose tissue, and diminishes body mass.129 Thus, melatonin shows promise as a potential 
treatment for ORN, yet further clinical studies are required to substantiate these findings.
Traditional Chinese Medicine. As a research hotspot in recent years, traditional Chinese medicine may hold promise in 
the management of ORN. Presently, the efficacy of traditional Chinese medicine in treating ORN is predominantly 
supported by in vivo and in vitro experiments. Future clinical studies are essential to validate these findings (Table 2).

Effects of Bariatric Surgery on the Kidneys
Surgical intervention may also be an option for patients with ORN. The Canadian Clinical Practice Guidelines for 
Obesity recommend that bariatric surgery be considered for individuals with BMI ≥ 40 kg/m2 or BMI ≥35 kg/m2 with at 
least one obesity-related disease.83 Several observational studies have indicated that bariatric surgery-induced weight loss 
yields favorable effects on renal function within one year post-operatively.136–140 A meta-analysis revealed that surgical 
intervention normalized eGFR, lowered blood pressure, and mitigated microalbuminuria in obese patients exhibiting 
glomerular hyperfiltration.141 Additionally, to investigate the long-term influence of bariatric surgery on renal function, 
Iaconelli et al conducted a follow-up study on obese diabetic patients a decade after undergoing biliopancreatic diversion 
surgery.142 The research revealed a notable rise in eGFR among surgical recipients (13.6±24.5%) contrasted with 
a decline in eGFR among those receiving conventional care (−45.7±18.8%). In all patients with baseline microalbumi
nuria who underwent surgical intervention, microalbuminuria resolved and did not recur, whereas microalbuminuria 
appeared or progressed to macroalbuminuria in control subjects.142 These findings suggest that bariatric surgery confers 
a favorable impact on renal function over both short and extended periods. However, prolonged utilization of bariatric 

Table 2 Traditional Chinese Medicines Effective in the Treatment of ORN and Mechanism of Action

Chinese medicine Study Mechanism Renal outcome

Irisin Han et al40 Regulating perirenal adipose 

tissue function

Reduced urinary albumin excretion, alongside mitigation of renal 

fibrosis and lipid deposition.
Astragaloside formic acid Li et al130 Alleviating the inflammatory 

response of perirenal adipose 
tissue

Improved kidney function

Wen-Shen-Jian-Pi-Hua-Tan Song et al59 Improving renal bile acid 

composition

Suppressing renal lipogenesis, inflammation, and fibrosis

Curcumin analogue C66 Ye et al131 Targeting NF-κB and JNK 

signaling pathway

Suppressing renal chronic inflammation;

Tabersonine Qian et al132 Inhibited the activation of NF-κB 
signaling pathway

Enhancement of renal tissue fibrosis mitigation, reduction in 
renal cell apoptosis, and alleviation of renal tissue inflammation

Sulforaphane Lu et al133 Enhancing autophagy via Nrf2 Reduced body weight, organ-associated fat weight, and urinary 

albumin/creatinine ratio
Coptidis Rhizoma Ren et al134 inhibited NLRP3 inflammasome 

complex

Reduced levels of pro-inflammatory cytokines; 

Reduced glomerular hypertrophy, tethered membrane 

hyperplasia and loss of podocytes
Magnolia extract Cui et al135 Inhibited inflammation and 

oxidative stress

Improved kidney damage
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procedures may precipitate additional systemic adversities, notably nutritional deficiency disorders such as metabolic 
bone disease, secondary hyperparathyroidism, and iron deficiency anemia.143 Therefore, the indications of bariatric 
surgery should be fully considered, the advantages and disadvantages should be weighed, and clinicians should pay 
attention to the postoperative management of patients.

Currently, there is no standardized treatment for ORN. Based on the research evidence described above, we propose 
a stepwise approach to treatment (Figure 2). Lifestyle changes are the cornerstone. On the basis of lifestyle changes, 
pharmacologic therapy is given when necessary. GLP-1 RAs such as semaglutide and liraglutide, which are anti-obesity 
drugs approved by the FDA, are the drug of choice for treatment. The bariatric surgery may be considered if medication 
is ineffective or for those with severe obesity.

Conclusions
In tandem with the obesity epidemic, the prevalence of ORN is escalating. The intricate pathways driving ORN 
pathogenesis remain elusive and multifaceted. Mechanisms such as mechanical stress, overactivation of RAAS, insulin 
resistance, inflammation, lipotoxicity, and dysregulated bile acid metabolism converge to foster renal structural impair
ment and functional perturbations. The clinical presentations and histopathological features of ORN lack specificity, thus 
emphasizing the need to exclude alternative renal pathologies. Future advancements aim to discern biological markers of 
ORN through high-throughput sequencing and comprehensive imaging of high-risk individuals, facilitating early 
diagnosis. Additionally, there is no standardized method for the treatment of ORN. Lifestyle changes are the foundation 

Figure 2 Treatment of ORN. 
Abbreviations: ORN, Obesity-related nephropathy; GLP-1RAs, Glucagon-like peptide-1 receptor agonists; Phentermine-topiramate ER, phentermine-topiramate 
extended-release; Naltrexone-bupropion ER, Naltrexone-bupropion extended-release; TGR5, Takeda G protein-coupled receptor 5; SGLT2i, Sodium-glucose cotransporter 
2 inhibitors; RAAS, Renin-angiotensin-aldosterone system. BMI, Body mass index. Created with BioRender.com.
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of ORN treatment. GLP-1 RAs such as semaglutide and liraglutide, which are anti-obesity drugs approved by the FDA, 
may be the drug of choice for treatment.

Abbreviations
ACEI, converting enzyme inhibitors; ARBs, angiotensin type II receptor blockers; DN, diabetic nephropathy; CKD, 
Chronic kidney disease; ESRD, end-stage renal disease; eGFR, estimated glomerular filtration rate; FAO, Fatty acid 
oxidation; FSGS, Focal segmental glomerulosclerosis; FXR, Nuclear receptor farnesol X receptor; GLP-1 RAs, 
Glucagon-like peptide-1 receptor agonists; IL-6, interleukin-6; ORN, Obesity-related nephropathy; ORG, obesity- 
related glomerular disease; RAAS, Renin-angiotensin-aldosterone system; SGLT2i, Sodium-glucose cotransporter 2 
inhibitors; T2DM, Type 2 diabetes; TNF-α, Tumor necrosis factor-α; TGR5, The membrane-bound G protein-coupled 
bile acid receptor 1.
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