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Simple Summary: Infusions of T-cells genetically modified to recognize the protein CD19 (CD19
CAR-T cells) have proven a potent form of cancer therapy for certain cancers arising from B-cells.
These treatments, while revolutionary, remain expensive to manufacture using a patients’ own cells
and can have considerable side effects. There is great interest in improving upon and expanding
the reach of these new treatments to other cancer types. Natural killer (NK) cells are an alternative
cell population with unique properties which can also be modified to recognize specific proteins
(CAR-NK cells). The properties of CAR-NK cells should allow manufacturing from healthy donor
cells with rapid availability and potentially fewer side effects. NK cells have an innate ability to
target acute myeloid leukemia (AML). In this review article, we consider the potential that CAR-NK
cells possess to enhance this effect and offer a new type of immunotherapy for AML.

Abstract: Next-generation cellular immunotherapies seek to improve the safety and efficacy of
approved CD19 chimeric antigen receptor (CAR) T-cell products or apply their principles across a
growing list of targets and diseases. Supported by promising early clinical experiences, CAR modified
natural killer (CAR-NK) cell therapies represent a complementary and potentially off-the-shelf,
allogeneic solution. While acute myeloid leukemia (AML) represents an intuitive disease in which
to investigate CAR based immunotherapies, key biological differences to B-cell malignancies have
complicated progress to date. As CAR-T cell trials treating AML are growing in number, several CAR-
NK cell approaches are also in development. In this review we explore why CAR-NK cell therapies
may be particularly suited to the treatment of AML. First, we examine the established role NK cells
play in AML biology and the existing anti-leukemic activity of NK cell adoptive transfer. Next, we
appraise potential AML target antigens and consider common and unique challenges posed relative
to treating B-cell malignancies. We summarize the current landscape of CAR-NK development
in AML, and potential targets to augment CAR-NK cell therapies pharmacologically and through
genetic engineering. Finally, we consider the broader landscape of competing immunotherapeutic
approaches to AML treatment. In doing so we evaluate the innate potential, status and remaining
barriers for CAR-NK based AML immunotherapy.

Keywords: CAR-NK; acute myeloid leukemia; immunotherapy

1. Introduction

Acute myeloid leukemia (AML), the most common acute leukemia in adults, is a
biologically heterogenous disease [1]. Genetic alterations driving proliferation or disrupting
differentiation lead to the accumulation of immature blast cells, resulting in impaired
bone marrow function [2]. Standard anthracycline and cytarabine based chemotherapy is
curative for a minority of patients, generally with low-risk disease identified by genetic,
clinical and treatment response factors. Sensitive measurable residual disease (MRD)
techniques often detect blast cells after treatment despite morphological remission and are
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increasingly applied to prognostication and treatment planning [3]. Consolidation therapy
with allogeneic stem cell transplant (ASCT) may be pursued to reduce the risk of disease
relapse balancing patient fitness, donor availability and transplant associated toxicity [4].
Immune mediated graft versus leukemia (GVL) activity, fundamental to the benefit of
ASCT, comes at the expense of graft-versus-host disease (GVHD) risk. Relapse, due to
the persistence of distinct self-renewing leukemia stem cell (LSC) populations carries a
poor prognosis [5]. Several molecularly targeted therapies for specific disease subtypes are
now available, providing welcome yet incremental gains [6–9]. For patients diagnosed in
older age, where the disease incidence is highest, available treatments are frequently either
unsuitable or unsuccessful. Building upon the GVL activity of ASCT and recent progress
in restoring or redirecting immune responses to successfully treat other malignancies,
effective and tolerable immunotherapy could revolutionize AML treatment.

CD19 chimeric antigen receptor (CAR) T-cell therapies are effective treatments for
a subset of B-cell malignancies [10–12]. The regulatory approval of tisagenleleucel and
axicabtagene ciloleucel was the culmination of decades of research, built upon foundational
approaches to adoptive cell transfer (ACT) immunotherapy and was enabled by safe and
effective genetic engineering techniques [13]. The CAR-T cell field is evolving rapidly with
common themes of improving the efficacy and safety of existing therapies and applying
their principles to other diseases [14]. While CD19 is an almost ideal tumor associated
antigen (TAA), the approval of B-cell maturation antigen (BCMA) CAR-T cell therapies for
multiple myeloma confirms that these principles can be transferable [15]. Licensed CAR
T-cell products have well defined limitations; adverse effects including cytokine release
syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), a
complex and expensive manufacturing process from autologous T-cells (to avoid GVHD)
and incomplete efficacy [13]. AML is an intuitive, albeit challenging disease to treat with
CAR-T cell approaches [16]. Several solutions are under investigation, although in the
absence of an ideal target antigen it remains unclear if a viable and widely applicable AML
CAR-T cell therapy will emerge.

Natural killer (NK) cells, a lymphocyte population primarily involved in viral and
cancer immunity, can also be engineered to express CARs, creating a product with similar
principles but distinct characteristics to CAR-T cells (Table 1) [17,18]. NK cells do not
mediate GVHD, supporting allogeneic and potentially off-the-shelf application. Innate,
human leukocyte antigen (HLA) and antigen independent, target cell recognition provides
a separate mechanism of tumor targeting, while early clinical evidence suggests a lower
incidence of CRS and ICANS [17]. These factors would combine to reduce the cost of both
manufacturing and associated clinical monitoring. NK cells also have a well characterized
role in AML biology, contribute to the GVL effect of ASCT and display substantial anti-
leukaemic potential deployed as ACT in AML [19–21]. The attributes of the CAR-NK
platform are especially suited to AML treatment potentially overcoming specific barriers
encountered with CAR-T and existing NK ACT. In this article we explore further the
potential for CAR-NK based AML immunotherapy.

Table 1. Comparing the characteristics of CAR-NK to autologous and allogeneic CAR-T therapies.
iPSC = induced pluripotent stem cell, CRS = cytokine release syndrome, ICANS = immune effector
cell-associated neurotoxicity syndrome.

Autologous CAR-T Allogeneic CAR-T CAR-NK

Efficacy Established [11,12,15] Investigational [22,23] Investigational [17]
Allogeneic Sources NA Yes Yes

Mechanism of Activation CAR CAR CAR and Innate
CRS/ICANS Established Anticipated Likely Reduced [17]

Cost of Product $370,000–475,000 Likely Reduced Likely Reduced
Cost of Care Variable Likely Equivalent Potentially Reduced

Cryopreservation Established Established Investigational
Viral Gene Delivery Established, Feasible Established, Feasible Lower Efficiency

Non-Viral (Stable) Gene
Delivery Clinical Trials [24,25] Described in iPSCs [26]
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2. CAR-T Cell Therapy and AML
2.1. The Contrast to CD19 CAR-T

The principles of CAR therapies have been extensively reviewed [13,27]. CARs are
designed to combine an antigen recognition domain with hinge, transmembrane, and
intracellular stimulatory and co-stimulatory domains conferring antigen specific reactivity
to an immune cell. ‘2nd generation’ CAR designs combine a T-cell receptor like signaling
domain (usually CD3ζ) and a co-stimulatory domain (typically CD28 or 4-1BB) within
the same construct, enabling in vivo expansion and persistence, determinants of clinical
efficacy [28]. Two CAR-T cell therapies targeting CD19 in pediatric B-cell acute lymphoblas-
tic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) were approved in the
United States in 2017, and the European Union in 2018. Manufacturing of patient-specific
products begins when treatment is indicated, using autologous T-cells modified by retro- or
lenti- viral transduction during ex vivo expansion at centralized facilities. The products are
cryopreserved for transport and administered after lymphodepleting (LD) chemotherapy
which creates a niche and supports in vivo expansion. CD19 CAR-T cells achieve durable
remissions for some patients, often in clinical scenarios without effective alternatives. Re-
lapse is encountered in both B-ALL and DLBCL broadly due to antigen escape or loss of
CAR-T persistence [29]. Investigational CAR-T therapies may solve some of the limitations
of established products. Targeted genome editing may allow for safe allogeneic CAR-T cells
simplifying the chain of manufacture, while dual targeting and modifications to CAR-T
composition could improve efficacy while reducing CRS and ICANs [23,30–32]. Non-viral,
transposon based CAR-T engineering is feasible and potentially cost-saving relative to
viral approaches [25,33]. A vast array of CAR therapies across diseases and target antigens
are under investigation [14].

Fundamental to the success of CD19 CAR-T is homogenous CD19 expression on
malignant B-cells with restricted expression on normal cells, making CD19 an almost
ideal TAA [34]. On-target off-tumor effects of CD19 CAR-T cell therapy are limited to
normal B-cells and the resulting hypogammaglobulinemia is manageable. The foremost
reason that CAR T-cell therapies have not been readily adapted to AML is the absence
of a similarly suitable target antigen [35,36]. Many candidate AML antigens are widely
expressed among myeloid cells and off-tumor effects on normal myelopoiesis can be
profound. Targeting antigens present on committed myeloid precursors and mature
myeloid cells leads to myelosuppression with inherent risks of infection and a requirement
for advanced supportive care. If antigens expressed on hematopoietic stem cells (HSC)
are targeted, marrow aplasia may result, requiring stem cell transplantation for marrow
recovery [37]. A requirement for ASCT rescue will exclude many patients and carries
inherent risks for those who are eligible. In addition, a large sink of off-tumor antigen
expression could both reduce efficacy and exaggerate adverse effects- disease burden
is associated with CRS incidence when targeting CD19 [38]. Beyond off-tumor effects,
the heterogeneity of AML within and between patients presents a barrier to the success
of CAR-T approaches targeting a single antigen. Furthermore, LSCs are rare within the
diseased marrow, have distinct and varying surface immunophenotypes and their targeting
is a separate but highly desirable component of AML immunotherapy [39]. While the
landscape of LSC heterogeneity has been recently reviewed, prominent therapeutically
relevant LSC associated antigens are summarized in Figure 1 [40].
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Figure 1. Schematic representing LSC antigen heterogeneity and overlapping expression of thera-
peutically relevant LSC antigens with HSCs. LSC = leukemia stem cell; HSC = hematopoietic stem
cell; IL-1RAP = IL-1 receptor accessory protein, TIM-3 = T-cell immunoglobulin and mucin-domain
containing-3; CLL-1 = C-type lectin-like molecule-1.

2.2. Target Antigens in AML

Despite the absence of an ideal target, pre-clinical and several clinical reports exist
of AML CAR-T therapies. CD33 is a well-established target, expressed in almost all AML
cases, but exemplifies the challenges discussed above. Antigen negative sub-populations
are ubiquitous and expression on myeloid precursors (and possibly HSCs) is challeng-
ing [41,42]. Myelosuppression is encountered with the CD33 antibody drug conjugates
(ADC) gemtuzumab ozogomycin and vadastuximab talirine and also with CD33 CAR-T
cells [43–45]. Transient partial response was documented in a clinical case report, although
indications of intact hematopoiesis may reflect a low CAR binding affinity [46]. CD123
is also widely expressed in AML and considered a more consistent LSC marker than
CD33. Differing CAR designs interacting with low CD123 expression on HSCs may ex-
plain the varying myeloablative potential of CD123 CAR-T cells reported [47,48]. Budde
et al. described promising findings from 6 patients treated with CD123 CAR-T, including
one complete response (CR). Although all participants were required to have an ASCT
donor, myelosuppression without myeloablation was documented [49]. Notably, half of
the enrolled patients did not receive the planned treatment due to fatal infection, dis-
ease progression or failures in leukapheresis and manufacturing [50]. C-type lectin-like
molecule-1 (CLL-1, CLEC12A) has similar expression characteristics to CD123, but with
less concern for myeloablation reflecting its absence on HSCs. CLL-1 CAR-T has been
proposed as a consolidation strategy for AML in remission, as CLL-1 positive blast cells
are relatively chemotherapy resistant and this approach reduced relapse in a xenograft
model [51]. The difucosylated carbohydrate antigen Lewis-Y was the target of the first
clinical AML CAR-T trial conducted, where persistence of CAR-T cells without definite
responses was documented and attributed to the low surface density of the antigen [52].
Aberrantly expressed in AML, CD7 CAR-T is also in development, trading myelotoxicity
for T-cell depletion and relevant for 30% of AML cases [53].

Other approaches aim to adapt CAR-T to the antigenic landscape of AML. Targeting
multiple antigens simultaneously may be fundamental to avoiding relapses from pre-
existing antigen negative sub-clones. Perna et al. compared proteomic and transcriptomic
data from AML and normal tissues identifying antigen pairs to increase blast targeting
without increasing toxicity to normal tissues [36]. Additionally, immunophenotyping of
a large cohort of AML cases identified antigen combinations of T-cell immunoglobulin
and mucin-domain containing-3 (TIM-3) with either CLL-1 or CD33 as warranting further
study [35]. CAR technologies which restrict activation to cells expressing both antigens
would restrict off tumor targeting to monocytes yet identify up to 75% of LSCs. A split,
universal and programmable (SUPRA) CAR system with vast flexibility, enhanced precision
and controllable dosing has been described in which the CAR scFv is replaced by an adaptor
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protein which then interacts with separate scFv containing constructs [54]. The ability of
this system to sequentially target multiple antigens without re-engineering T-cells cells ex
vivo, and readily apply complex logic-based approaches to antigen combinations could be
especially useful in the setting of AML. Indeed, the pre-clinical development and potential
of a modular synthetic agonistic receptor T-cell platform using a similar principle and
targeting CD33 and CD123 in AML has recently been described [55]. This versatility will
likely come at the cost of a requirement for repeated infusions reflecting the shorter half-life
of a separately delivered scFv construct.

While the prospectively identified combinations and novel split CAR approaches
described above remain to be tested clinically there have been dual targeting approaches re-
ported. Updated trial results of a dual CD33/CLL-1 CAR-T product which recognizes cells
positive for either antigen were recently presented [56]. CAR-T expansion and complete
MRD negative remissions were achieved in 7/9 treated patients, with expected marrow
suppression, permitting six patients to proceed to reduced intensity conditioning ASCT.
An alternative approach to targeting multiple antigens uses the NKG2D receptor as a CAR
binding domain. This activating receptor, present on T-cells and NK cells, recognizes 8
NKG2D ligands commonly expressed on AML blasts but not normal cell populations.
NKG2D CAR-T cells have now entered clinical trials. Short term responses and poor
persistence occur without LD chemotherapy, although successful bridging to ASCT was
reported [57,58]. Ongoing trials have been modified to include LD chemotherapy and a
modified manufacturing technique supporting an early memory T-cell phenotype [59].

A further alternative to eliminating off-target effects is to target neoantigen peptides
presented at the cell surface in an HLA dependent fashion. This is the principle behind a
promising HLA-A2 dependent, mutated nucleophosmin 1 (NPM1c) targeted CAR, appli-
cable to 35% of AML cases [60]. Others have sought to reduce expected off-tumor effects
associated with target antigens. CRISPR/Cas9 editing has been deployed to knockout
CD33 in HSCs, allowing CD33 negative (and CAR-T resistant) hematopoiesis post SCT in
animal models [61]. Transient CAR expression through mRNA delivery was evaluated in a
phase I clinical trial reflecting concern for persistent off target effects using a CD123 CAR
but also appeared to limit efficacy [62]. Finally, modulation of CAR binding affinity allows
for tumor specific targeting of antigens with overlapping but increased expression relative
to normal tissues. This principle has recently been applied to CD38, an established target
in multiple myeloma but also relevant for a proportion of AML cases [63,64]. Despite these
innovative and varied approaches, CAR-T therapies for AML remain investigational. For a
detailed review of CAR-T in AML readers are referred to reference [16].

3. Natural Killer Cells and AML
3.1. NK Cell Functions

Natural killer cells are innate lymphocytes which express a collection of germline
encoded activating and inhibitory receptors [65]. The balance of signaling through these
receptors determines the response of the cell, varying from tolerance (desired for most self-
cell interactions), to triggering of a degranulation (perforin and granzyme) response [66].
Target cell death can also be triggered through death receptors via NK cell expression of
TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand [67]. NK cells modulate
broader immune responses through release of TNF-α and IFN-γ, the latter of which pro-
vides an important stimulus of dendritic cell maturation and thus adaptive immunity [68].
NK cell TRAIL expression also contributes to immunomodulation through death recep-
tor mediated elimination of specific T-cell and dendritic cell subsets [69,70]. Important
inhibitory signals to NK cells are delivered by inhibitory killer immunoglobulin-like re-
ceptors (KIR) and NKG2A, interacting with their ligands: epitopes present on specific
subsets of MHC class I molecules. This system provides for self-tolerance and loss of HLA
class I expression on virally infected and transformed cells is the basis of ‘missing self’ NK
cell recognition. Although inhibiting mature NK cell responses, intact signaling through
inhibitory KIRs and NKG2A during maturation is integral to the process by which NK



Cancers 2021, 13, 1568 6 of 26

cells ultimately acquire and calibrate their functional capacity, termed NK cell “licensing”
or “education” [71]. Individuals frequently possess a population of hypofunctional NK
cells expressing an inhibitory KIR for which the respective ligand is not present in their
complement of self HLA molecules. Recruitment of this hypofunctional population by a
strong activating stimulus has been recognized [72].

In practice, loss of inhibitory stimuli alone is generally insufficient to trigger NK
cell cytolytic activity [66]. Activating receptors, such as natural cytotoxicity receptors
(NCRs) NKp30, NKp44, NKp46 and the NKG2D receptor, contribute to NK cell activation
in response to ligands induced with cellular stress on infected, damaged, or transformed
cells. The strong activation signal provided by the FCγRIII (CD16) receptor binding to Fc
portions of IgG antibodies on target cells overcomes intact inhibitory signals [73]. This NK
cell mediated antibody dependent cellular cytotoxicity (ADCC) contributes an important
component of the clinical responses observed to anti-tumor monoclonal antibody therapies.
NK cells are phenotypically and functionally heterogenous in vivo. A subset of thera-
peutic interest are adaptive NK cells which exhibit memory-like properties—enhanced
responsiveness after an initial time-limited stimulus—a property which can be induced by
combination cytokine exposure ex vivo to create ‘cytokine induced memory-like’ (CIML)
NK cells [74]. The unique characteristics of NK cells underly a role in a variety of home-
ostatic and disease processes including cancer immune surveillance and their growing
application to cancer immunotherapy [75].

3.2. NK Cells in AML Immunoediting

NK cells are activated by contact to AML blasts in vitro to varying degrees. If NK
cell recognition and lysis toward AML in vivo were complete, the disease would not
develop. It is evident that intact NK cell activity during disease development not only
selects for AML blasts relatively resistant to NK cell targeting, but also processes capable
of suppressing NK cell function. As a result NK cells isolated from patients with AML are
functionally deficient relative to healthy persons and this is partially rectified for patients
achieving complete remission with standard therapy [76]. The quality of subsequent NK
cell immune surveillance, reflecting both restoration of NK cell function and relative blast
cell expression of ligands for activating and inhibitory NK cell receptors, is implicated
in remission maintenance [21,77]. Varied mechanisms underlying escape from NK cell
activity in AML have been described, are summarized in Figure 2 and have recently been
reviewed in detail [78]. Adoptively transferred NK and CAR-NK cells are expected to
rapidly encounter and potentially be inhibited by these same processes [79].

The balance of signaling via traditional NK cell activating and inhibitory pathways
is skewed in AML. MHC class I expression is generally maintained providing a baseline
inhibitory stimulus to NK cells [80]. NKG2D ligands are frequently down regulated in-
cluding on LSC populations by a variety of mechanisms including proteolytic cleavage
producing soluble NKG2D ligands [77,81,82]. Upregulation of the immunosuppressive
cell surface glycoprotein CD200 on AML blasts including LSCs is associated with reduced
NK cell function through its receptor CD200R [83,84]. The phenotype of NK cells is also
modified. Expression of NCRs is reduced relative to healthy controls in an effect reliant
on NK and blast cell contact [85]. NKG2D downregulation occurs secondary to chronic
exposure to hypoxia, cell surface and soluble NKG2D ligands and via blast and stroma
derived TGF-β [86–88]. NKG2A expression is often increased, at least partially driven by
blast cell production of IL-10, while IFN-γ induces expression of the ligand for NKG2A
(HLA-E), on blast cells [89,90]. The DNAM1/TIGIT/CD96 axis is also impacted in AML.
DNAM1 and TIGIT represent activating and inhibitory NK cell receptors, respectively for
the antigen CD155 which can be expressed on AML blasts and MDSCs. The relative expres-
sion of the ligands and receptors of this family vary, but alterations have been implicated
in suppressing NK cell responsiveness [91,92]. Recently, sialic acid-based ligands for the
NK cell inhibitory receptor siglec-7 have been recognized on CD43 (a sialoglycoprotein
frequently expressed on AML blasts) [93,94].
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Figure 2. NK cell, blast cell and soluble factors in NK cell-AML immunoediting. ROS = reactive
oxygen species; NCR = natural cytotoxicity receptor; LFA-1 = lymphocyte function-associated
antigen 1; RANK = receptor activator of nuclear factor kappa-B; TIGIT = T-cell immunoglobulin
and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain; DNAM-1 = DNAX accessory
molecule-1; PD-1 = programmed cell death protein 1; iKIR = inhibitory killer immunoglobulin
receptor; MDSC = myeloid derived suppressor cell; Treg = regulatory T-cell; mbTGF-β = membrane
bound transforming growth factor beta; PD-L1 = programmed death-ligand 1; IDO = indoleamine
2,3-dioxygenase; GSK3β = Glycogen synthase kinase-3β.

Additional processes have been identified which suppress NK cell function in AML.
Glycogen synthase kinase-3β (GSK3β) is upregulated in NK cells relative to healthy con-
trols, and inhibits function through reduced expression of LFA-1 and impaired immune
conjugate formation [95]. Receptor activator of nuclear factor kappa-B ligand (RANKL,
a TNF family protein) expression on blasts confers bidirectional immunosuppressive ef-
fects. Reverse signaling into blast cells leads to secretion of immunosuppressive cytokines
including IL-6, while forward signaling via receptor activator of nuclear factor kappa-B
(RANK) on NK cells directly inhibits NK responses [96]. Persistent elevations in IL-6
during induction chemotherapy negatively impact prognosis in AML, which may reflect
reduced expression of NK cell activating receptors and stabilization of malignant cell PD-L1
expression previously attributed to this cytokine [97–99]. Blast cell production of soluble
agonists activates the aryl hydrocarbon receptor (AHR) transcription factor in NK cells,
driving microRNA29b expression, interfering with NK maturation and function [100,101].
Reactive oxygen species (ROS) formation, driven by monocytic and myelomonocytic AML
subtype expression of the NADPH oxidase component gp91phox causes apoptosis of sur-
rounding immune cells [102]. Immune suppressive cell subsets are recruited and restrict
NK cell activity. Myeloid derived suppressor cell (MDSC) expansion is facilitated by
soluble NKG2D ligands, while regulatory T cell (Treg) expansion is supported by blast
cell production of indoleamine 2,3-dioxygenase (IDO) [103,104]. These subsets inhibit
NK cell activity through varied mechanisms including expression of membrane bound
transforming growth factor beta (TGFβ) and limiting IL-2 bioavailability [105]. MDSC
populations upregulate CD155 in response to ROS, impairing traditional NK cell but not
adaptive NK cell function reflecting differing TIGIT expression [106]. Finally, hypoxia has
been associated with varied inhibitory NK cell effects including reduced activating receptor
expression and impaired production of IFN-γ [88,107]. The transcription factor HIF1α is
a clinically relevant mediator of hypoxia related NK cell inhibition in cancer [108]. Thus,
endogenous NK cells and those introduced by adoptive transfer face a complex network of
inhibitory factors which need to be overcome to mediate anti-leukemic efficacy in AML.
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The relative importance of these mechanisms may vary between patients, between AML
sub-clones, and from diagnosis to remission and relapse [77].

3.3. NK Cells in ASCT

The decision to pursue ASCT as consolidation therapy in AML considers relapse
risk predicted from clinical, genetic and response related factors, versus procedural risks
impacted by patient fitness and the degree of HLA matching of available donors [4].
A multifaceted, immune mediated GVL effect confers partial protection against disease re-
lapse after ASCT [109]. T-cell reactivity occurs against minor HLA antigens or mismatched
major HLA antigens, if present. This reactivity has traditionally been considered the major
component of the GVL response and is closely allied with a risk of GVHD [110]. NK cells
also contribute to GVL responses in AML in a manner that is independent of GVHD, and
to a greater extent than in other diseases treated with ASCT [19]. NK cell GVL effects may
reflect their ‘natural cytotoxicity’ or alloreactive recognition.

The quantity of NK cells in HLA matched stem cell grafts has been correlated with
relapse risk in AML, at least partially mediated by mature NK cells with high DNAM-1
expression with a potential to directly lyse CD112 and CD155 positive blast cells irrespective
of alloreactivity [111]. Alloreactive recognition of AML blasts by NK cells is most prominent
after haploidentical stem cell transplant. In this setting, donor-recipient iKIR-KIR ligand
mismatch occurs frequently, NK cells rapidly recover post-transplant and T-cell depletion
of stem cell grafts is often performed to reduce GVHD risk. Thus, it is frequent to have
‘licensed’ donor derived NK cells expressing an iKIR for which the respective KIR ligand
is missing in the recipient, supporting NK cell activation through ‘missing self’ reactivity.
The presence of alloreactive NK cells in haploidentical grafts has been shown to robustly
correlate with reduced disease relapse risk [19,112]. However, haploidentical donors
are not favored in general due to increased rates of GVHD and graft failure. For HLA
matched donors, where iKIR-KIR ligand mismatch is less likely to occur, the presence
of activating KIR2DS1 in donors has been implicated in a clinically relevant graft versus
leukemia effect, modulated by the HLA-C phenotype of the donor [113,114]. The presence
of KIR2DS1 (which recognizes the HLA-C2 KIR ligand) predicts a reduced rate of relapse
in matched, or one locus mismatch ASCT, if the donor is not homozygous for HLA-C2. This
correlates with in vitro observations of tolerance induced by chronic HLA-C2 exposure,
which is not observed with C1/C1 and C1/C2 haplotypes. Recruitment of the population
of hypofunctional ‘uneducated’ NK cells expressing iKIRs for ligands found in neither
donor nor recipient has also been proposed in the inflammatory milieu post ASCT and was
also shown to impact the efficacy of histamine dichloride with IL-2 used as consolidation
therapy [72,115]. These observations have established the clinical relevance of NK cell
alloreactivity in AML and provide an evidence base for donor choice in NK ACT and
CAR-NK settings.

3.4. NK Cell Adoptive Cell Transfer for AML

Rare but notable successes with early attempts at ACT immunotherapy, and growing
recognition of the alloreactive potential of NK cells in ASCT led to the investigation of
purified haploidentical NK cell ACT in AML [116]. The development of LD chemotherapy
regimens and exogenous cytokine support have been viewed as important components
of this therapy [117,118]. These elements were combined in the seminal description of
haploidentical, short term activated NK ACT with systemic IL-2 support by Miller et al.
in 2005 [20]. Subsequently a variety of approaches have been reported using short term
activated or longer term expanded NK cells, from sources including apheresis product,
HSC differentiated NK and irradiated NK cell lines. NK ACT has been investigated in two
main scenarios outside the setting of ASCT across a range of single arm early phase clinical
trials: in relapsed or refractory AML or as consolidation therapy for patients in remission.
These accumulated reports of NK ACT offer insight into the factors associated with clinical
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responses and define the baseline activity on which CAR modified NK cell approaches
seek to build.

In their initial description, Miller et al. reported complete responses (CR) in 5/19 patients
with relapsed/refractory AML, associated iKIR-KIR ligand mismatch with positive out-
comes, and documented NK cell expansion in vivo (supported by intense LD chemotherapy
and an associated rise in IL-15) [20]. Emphasizing the importance of the tumor microenvi-
ronment (TME) and reflecting concerns that systemic IL-2 can expand Treg populations,
the group went on to demonstrate improved persistence and response rates of >50% with
prior depletion of Treg cells using a recombinant IL-2-diptheria toxin protein [119]. These
impressive responses likely occurred rapidly as the earliest measures of chimerism and
Treg depletion were correlative, and the window of IL-15 increase was brief. Improving
NK cell persistence was identified as a priority. As an alternative approach to avoiding
Treg stimulation the group utilized exogenous rhIL-15 in place of IL-2, demonstrating a
32–40% CR/CRi rate [120]. In this study the relationship between responses and NK cell
expansion in vivo was not observed, and CRS/ICANS was noted with subcutaneous, but
not intravenous IL-15. Exogenous IL-15 however stimulates CD8+ T-cells introducing
a concern for rejection of donor NK cells. Applying a similar LD and IL-2 supported
approach in a group of AML patients in morphologic remission not considered eligible for
ASCT, Curti et al. demonstrated an association between the percentage of alloreactive NK
cells infused and subsequent relapse rates [121]. Bjorklund et al. applied a lower intensity
LD regimen and administered haploidentical NK cells without IL-2 support successfully
documenting responses in de novo AML and MDS/AML [122]. Rubnitz et al. reported
application of a similar approach using systemic IL-2, and a lower intensity LD regimen
in a pediatric setting, for intermediate risk AML in remission. The treatment was well
tolerated and NK cell expansion occurred, although no benefit in preventing relapse was
demonstrated in a small phase II trial [123,124]. CIML NK cells administered after LD
chemotherapy and with systemic IL-2 support robustly expand in vivo and also induce
remissions in a proportion of patients with relapsed/refractory AML [74]. Pre-clinical
in vitro and xenograft models show enhanced anti-leukemic activity of CIML NK versus
control NK cells. Irradiated NK-92 cells appear safe when applied as an off the shelf
product, although lacked persistence and were of limited efficacy in a phase I trial [125].
As an alternative cell source, Dolstra et al. described the use of NK cells differentiated
from cord blood derived CD34 progenitor cells, as a remission maintenance strategy. The
approach appears safe but low level chimerism of short duration was observed in the
absence of cytokine support [126].

These reports, and others, provide an insight into the factors which influence clinical
responses to NK ACT in AML. Haploidentical NK cell ACT achieves complete responses for
a subset of patients. Responses are generally short in duration but have provided bridging
to potentially curative ASCT in some cases. In contrast to ASCT where alloreactive NK
cell populations are replenished from donor derived hematopoiesis, available measures
suggest haploidentical NK ACT leads to a limited window of expansion and persistence
despite exogenous cytokine support. Notably, LD chemotherapy of varying intensity has
been relied upon to support NK cell expansion, one parameter that has been associated
with clinical responses. While immune mediated adverse effects have been few, those
relating to marrow suppression post LD chemotherapy have been encountered. In certain
cases, iKIR-KIR ligand mismatch is associated with responses and modulation of TME
elements also appears to influence success. Evidence for immunoediting of residual blast
populations has been documented [122].

4. CAR-NK: A Compelling Platform for AML Immunotherapy?

CAR-NK cells combine the antigen specific targeting of CAR-T cells with the innate
activity of NK cell ACT creating a platform which overcomes many of the limitations of
each of these therapies applied to AML. In the absence of an ideal CAR target antigen,
the well-defined innate and alloreactive potential of NK cells against AML provides for
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activity against antigen negative subclones. NK cell ADCC in the presence of monoclonal
antibodies could provide a simple and time limited dual targeting solution, with mech-
anistic similarities to the modular CAR designs in development. Several approaches to
engineering NK cell persistence have emerged coupled with CAR-NK cell development,
which could overcome a consistent limitation of NK ACT. These factors, along with a
potential for ‘off-the-shelf’ application, and a safer adverse effect profile define an attrac-
tive approach to AML immunotherapy. CAR-NK cell application is also adaptable to
both clinical scenarios discussed previously, with overlapping but distinct challenges. In
relapsed/refractory disease, activity against bulk AML blasts is required, and maximal
TME effects can be anticipated. Alternative therapies, where existing, are also generally
myelosuppressive, and bridging to ASCT in this setting is often the established goal—
supporting the use of myeloablative antigens. Rapid availability of CAR-NK products
would be a distinct benefit here. For AML in remission, CAR-NK would be applied as
a consolidation therapy initially for patients not considered candidates for ASCT. In this
setting, there is a greater emphasis on LSC targeting, a diminished TME, but also a lower
tolerance for persistent myelosuppressive effects beyond LD, as the alternative therapy
may be observation or well-defined chemotherapy-based consolidation. Rapid availability
is less essential, but tailoring therapy to a detected LSC immunophenotype may be feasible
and could be combined with MRD based techniques to further select patients based on
relapse risk. The versatility of CAR-NK therapies could provide solutions for each of these
clinical scenarios. In this section we will consider the status of CAR-NK cell development
for AML and remaining barriers to be overcome.

4.1. Principles of CAR-NK Therapies

CAR-NK continues to represent a small segment of a landscape of CAR therapies
dominated by T-cells [14]. Active and completed clinical trials investigating CAR-NK
cell therapies are summarized in Table 2, and have also been compiled in detail in recent
articles [127,128]. The pioneering phase I clinical trial at MD Anderson Cancer Center
of cord blood derived CD19 CAR-NK cells represents the most advanced clinical data
available and provides important insights for AML CAR-NK development [17]. Using
HLA-mismatched NK cells transduced with a transgene including a CD19 CAR, IL-15 and
inducible caspase 9, Liu et al. demonstrated responses (including CR in 7/11 patients)
in chronic lymphocytic leukemia and B-cell lymphomas without GVHD, CRS or ICANS.
Notably, CAR-NK cells expanded and persisted for at least one year post infusion, perhaps
reflecting autocrine IL-15 stimulation. Despite this persistence, CD19 positive relapses
occurred without repeat expansion of CAR-NK cells. The authors report that this platform
is capable of scaling to produce 100 doses from a single cord unit, which if successfully
combined with cryopreservation would create a truly off-the-shelf product, and plan to
expand the project across other diseases, including AML [129]. Clinical reports of other
CAR-NK therapy formats exist. Transient mRNA based NKG2D CAR expression was
applied in primary NK cells for a clinical trial using local delivery to treat metastatic
colorectal cancer with tumor responses reported [130]. CAR NK-92 cell data has been
reported in a small phase I trial (discussed below), and several other CAR NK-92 trials
are ongoing.

Human induced pluripotent stem cells (iPSCs) can be stably gene modified and
subsequently differentiated into CAR-NK cells, creating a platform with several advan-
tages [131]. A master iPSC cell bank can be cryopreserved, harbor multiple gene edits
and produce a homogenous final product. The iPSC platform is also compatible with
non-viral transposon-based gene delivery systems, which to date have not been readily
applied in primary NK cells [26]. While current manufacturing protocols are longer than
for other cell therapy products, the development of an ongoing manufacturing pipeline
would allow for off-the-shelf application. Similarly to cord blood derived NK cells, iPSC
NK cells display an immature phenotype when compared with peripheral blood NK cells,
although this does not appear to diminish their functional capacity [132]. A clinical trial
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using multiplex gene engineered iPSC derived CD19 CAR-NK cells, also expressing an
IL-15/IL-15 receptor fusion protein supporting persistence, and a high affinity CD16 re-
ceptor to support enhanced ADCC (FT596) in combination with an anti-CD20 monoclonal
antibody is underway. Given the versatility of this approach, early indicators of efficacy
and safety are eagerly awaited [133].

The effect of T-cell composition on CAR-T products is now well recognized [134,135].
NK cells also display phenotypic and functional diversity with recognizable maturation
stages potentially modulating the characteristics of CAR-NK products [136]. While CAR
expression has been shown to activate hypofunctional, uneducated and less mature NK cell
subsets in vitro, relatively greater CAR-NK functional potential was observed for mature,
adaptive and educated populations [137]. Leveraging this effect, CIML NK cells modified
to express a CD19 CAR showed synergism of CAR activation and CIML NK features in
a model of relapsed lymphoma [138]. Inhibitory NKG2A signaling, most relevant for
immature NK cell subsets, does appear to be overcome by CAR mediated activation,
however inhibitory KIR interactions were capable of dampening CAR-NK activation [137].
Thus, the exact NK cell subset composition and KIR/HLA interactions warrant careful
consideration in the development of CAR-NK products. CARs which are designed to
signal with NK rather than T-cell based signaling domains may further tune the activation
of CAR-NK cells, and this topic has been recently thoroughly reviewed [18].

Table 2. Active and completed clinical trials of CAR-NK cell therapies. B-ALL = B-cell acute lymphoblastic leukemia,
CLL = chronic lymphocytic leukemia, NHL = non-hodgkin lymphoma, AML = acute myeloid leukemia, MDS = myelodys-
plastic syndrome, iPSC = induced pluripotent stem cells.

Cell Source Target Disease NCT Identifier Status [Reports] Location

Cord Blood CD19 B-ALL/CLL/NHL NCT03056339 Active [17] MD Anderson Cancer
Center

Cord Blood CD19 B-ALL/CLL/NHL NCT04796675 Active Huazhong University of
Science and Technology

Haplo NK CD19 Pediatric B-ALL NCT00995137 Completed St Jude Children’s Research
Hospital

Haplo NK CD19 B-ALL NCT01974479 Suspended National University
Hospital Singapore

Haplo NK NKG2DL AML/MDS NCT04623944 Active Multiple Sites (USA)

PBNK NKG2DL Solid Tumors NCT03415100 Active [130] Guangzhou Medical
University

iPSC-NK CD19 CLL/NHL NCT04245722 Active [133] University of Minnesota
Masonic Cancer Center

NK-92 ROBO1 Solid Tumors NCT03940820 Active Suzhou Cancer Center
NK-92 ROBO1 Pancreatic Cancer NCT03941457 Active [139] Shanghai Ruijin Hospital
NK-92 BCMA Multiple Myeloma NCT03940833 Active Nanjing Medical University

NK-92 HER2 Glioblastoma NCT03383978 Active Johann Wolfgang Goethe
University Hospital

NK-92 CD33 AML NCT02944162 Completed [140] Jiangsu Institute of
Hematology

4.2. AML Target Antigens and CAR-NK

Despite the potential benefits of an NK cell approach, the pool of AML relevant CAR
target antigens remains unchanged. It is also important to consider NK cell expression of
potential targets to account for possible fratricide which could limit efficacy. Furthermore,
differential sensitivity to NK cell innate and alloreactivity between the antigen negative
populations for each target, could influence target choice using a CAR-NK approach. Most
reports of CAR-NK cell activity at present describe pre-clinical findings. The status of
CAR-NK therapies in development for prominent AML antigens is summarized in Table 3.
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Table 3. Expression patterns and CAR-NK development status for prominent AML target antigens. CRC = colorectal cancer.

Target Cases * HSC * LSC * NK CAR-NK Development

CD33 88% [141] Yes Yes Yes Clinical: CAR NK92 (NCT02944162) [140]
Preclinical: Primary CD33 CAR-NK [142]

CD123 78% [141] Yes Yes No Preclinical: Primary CAR-NK and CAR NK-92 [143–145]
CLL-1 77% [146] No Yes No

NKG2DL 70% [87] No No No Clinical: AML (NCT04623944), CRC (NCT03415100) [130]
Preclinical: Activity in Multiple Myeloma [147]

CD38 70% [64] No No Yes Preclinical: PB CAR-NK and CAR-KHYG-1 [148]
NPM1c 35% [60] No Yes No Preclinical development of CIML-NK CAR [149]

CD7 30% [150] No Yes Yes Preclinical: CD7 CAR-NK92 in T-ALL [151]
TIM-3 87% [35] No Yes Yes
CD96 51% [39] No Yes Yes

* Varying reports likely reflect heterogeneity and a spectrum of positivity. A simplified interpretation is provided.

CD33 expression has been documented in subsets of activated NK cells (acting as an
inhibitory receptor) but sufficient to impair NK viability using a tri-specific immune-ligand
molecule [152,153]. NK cell CD33 knockout could thus serve a dual purpose of reducing
fratricide and enhancing NK cell activation in a CD33 CAR-NK design. CD33 CAR NK-92
cells have been evaluated in a small phase I clinical trial by Tang et al. [140]. While multiple
infusions of CD33 CAR-NK-92 appeared safe following salvage chemotherapy in relapsed
disease, it is not possible to infer anti-leukaemic effect in this study and the focus remains
overcoming the limitation of irradiation. Recently, targeted gene insertion into a safe-
harbor locus via homologous repair using CRISPR/Cas9 gene editing in combination with
adeno-associated virus (AAV)-mediated gene delivery was used to generate primary CD33
CAR-NK cells with confirmation of in vitro CD33 positive AML targeting [142]. Several
reports covering peripheral blood, cord blood and NK-92 cells expressing a CD123 CAR
confirm in vitro activity, although Christodoulou et al. failed to see leukaemic control in a
xenograft model [129,143–145,154]. The latter observation was associated with poor CAR-
NK persistence, highlighting a need for separate measures to enhance persistence beyond
CAR expression. Our group and collaborators have recently reported the in vitro activity
of affinity optimized CD38 CAR-NK cells in AML [148]. CD38 is expressed on primary
expanded NK cells, introducing a risk of NK cell fratricide, which can be overcome by
CRISPR/Cas9 CD38 knockdown during manufacturing. Interestingly, CD38 knockdown
in NK cells is associated with augmented rather than impaired activity, and resistance to
oxidative stress relative to wild type NK cells [155,156].

Although NK cells express the NKG2D receptor, expression of an NKG2D CAR
enhances NK cell activity and should not be subject to downregulation encountered with
endogenous NKG2D in AML [157]. NKG2D CAR NK-92 and primary CAR-NK cells
have been evaluated pre-clinically against multiple myeloma, and activated CAR-NK cells
appeared to outperform CAR-T cells in one animal model [147,158]. A phase I clinical
trial of a haploidentical donor derived CAR-NK product targeting NKG2DL in MDS and
AML has recently opened (NCT04623944). An existing clinical report of transient NKG2D
CAR expression and local delivery leading to responses in colorectal cancer is notable as
other examples which purposefully limit the duration of CAR expression have not proven
successful [130]. Local delivery is not feasible in AML but modifying the cells further to
enhance homing may optimize the early activity of transiently expressed CARs. Dong et al.
recently presented pre-clinical activity of CAR CIML-NK cells targeting NPM1c/HLA-
A2 [149]. Relative to NPM1c CAR-T cells, it could be assumed that antigen escape via loss
of HLA class I expression would be mitigated due to a concurrent enhancement of innate
CIML-NK activity [60]. Interestingly, not all off tumor activity can be considered negative
when evaluating target antigens. CD33 and CD38 are expressed on MDSC populations,
and NKGD2L may also mark Treg cells for elimination supporting a more NK cell favorable
TME [159–161].
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4.3. Engineering Persistence: A Balance of Efficacy and Off-Tumor Effects

The question of persistence applied to AML for CAR-T and CAR-NK cell therapies
is more complex than for CD19 positive malignancies. The limitations in persistence of
some CAR-NK cell designs, could be viewed as beneficial in limiting the duration of
myelosuppressive effects for certain antigens. Accumulated experience in NK ACT and
CAR-T cell therapies, suggests that this limitation in persistence may also compromise
efficacy. The ideal balance remains to be defined, and may vary across target antigens, NK
cell sources, and clinical scenarios. This concern does not apply to some targets already
discussed (e.g., NKG2D and NPM1c CARs), which do not entail the same risk of off-
target effects, where long term CAR-NK persistence can be viewed as being a desirable
characteristic. In other cases, and relevant for CAR-NK but not CAR-T applications,
uncoupling the persistence of CAR signaling from haploidentical NK cell persistence
could provide an ideal balance, given the established role of alloreactive NK cells in AML
remission maintenance post ASCT. Optimized application of transient CAR expression, or
inducible CAR/co-stimulatory signaling could realize this concept.

Several means of supporting NK cell persistence have been reported which aim
to avoid the need for exogenous non-targeted cytokine support. The MD Anderson
cord blood CAR-NK process includes an IL-15 domain which provides for secretion and
autocrine stimulation of NK cells without increasing circulating IL-15 levels when applied
clinically [17]. FATE therapeutics iPSC CAR-NK product FT596 includes a constituently
active IL-15/IL-15 receptor fusion domain to provide autonomous signaling [133]. Several
groups have reported on the role of knocking out the cytokine-inducible sh2-containing
protein (CISH) gene, a negative regulator of IL-15 signaling, enhancing NK cell metabolism,
cytotoxicity, NK cell persistence and CAR-NK functionality [162]. Notably, CISH knockout
NK cells mediated improved disease control in an AML xenograft model [163]. Wang et al.
recently reported the benefit of inducible Myd88/CD40, providing co-stimulation as a
freestanding protein separate to the CAR construct, enhancing persistence and cytotoxicity
of CD123 CAR-NK cells. Myd88/CD40 represents a common downstream signaling
molecule for cytokines known to support NK cell function [164,165]. Notably, in this
study, first generation CAR expression, autocrine IL-15 and Myd88/CD40 expression were
required for tumor control in a xenograft model, and the authors suggest that separating
these signals could also abrogate exhaustion in the long-term. CIML-NK cells display
improved persistence in xenograft models, but the extent to which this translates to clinical
applications continues to be explored [74,166].

4.4. Next Steps: Optimizing CAR-NK Activity in AML

AML biology and clinical experiences with CAR-T and NK ACT infer a need to
consider approaches augmenting CAR-NK cell therapies beyond antigen specificity. Gene
transfer technologies, and pharmacological approaches to modulating NK cells, AML
blasts and the TME are summarized in Figure 3. We will consider the varied pathways
to improving CAR-NK activity through NK cell homing capability, disrupting inhibitory
checkpoints, modulating AML ligand expression, dual targeting, and NK cell persistence
(previously discussed).
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Figure 3. Pathways to augmenting CAR-NK in AML. RANK = receptor activator of nuclear factor kappa-B; TIGIT = T-cell
immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain; PD-1 = programmed cell death
protein 1; iKIR = inhibitory killer immunoglobulin receptor; PD-L1 = programmed death-ligand 1; RANKL = receptor
activator of nuclear factor kappa-B ligand; iMiDs = immunomodulatory drugs; FUT6/7 = alpha-1,3-fucosyltransferases 6
and 7; ATRA = all-trans retinoic acid; PARP1 = Poly (ADP-ribose) polymerase 1; CISH = cytokine-inducible sh2-containing
protein; CAR = chimeric antigen receptor.

4.4.1. CAR-NK Cell Homing

The density of NK cells on bone marrow core biopsies performed after NK ACT
for AML correlates with clinical responses [167]. Rapid homing of NK cells to bone
marrow could allow for activity before in vivo suppressive factors act and increase the
effective ratio of CAR-NK cells to targets. This aspect of CAR-NK design may be especially
relevant for approaches that seek to leverage transient CAR expression to balance off-
target effects. Depending on the method, expression of the chemokine receptor CXCR4, as
well as that of E-selectin ligands, can decrease during ex vivo NK cell expansion and the
gain of function variant CXCR4R334X has been shown to enhance NK cell homing to bone
marrow when introduced prior to adoptive transfer in animal models [168]. The tethering
of circulating leukocytes to endothelium, the first step in leukocyte transmigration, is
predominantly mediated by endothelial E-selectin binding of leukocyte E-selectin ligands
(cell surface glycolipids and glycoproteins such as CD44, expressing sialyl Lewis X). Bone
marrow vasculature constituently expresses E-selectin but this is upregulated in AML,
an important mechanism by which leukemic cells (which also highly express E-selectin
ligands) maintain their bone marrow niche and evade chemotherapy [169]. The application
of translational glycobiology to CAR-T engineering has recently been reviewed [170]. Sialyl
Lewis X expression can be enhanced on NK cells through fucosyltransferase activity, the key
enzymatic step which determines sialyl Lewis X production in humans. This principle was
shown to enhance bone marrow homing in a xenograft lymphoma model using NK-92 cells
treated ex vivo with human Alpha-(1,3)-fucosyltransferase (Fut6) and GDP-fucose [171].
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4.4.2. Inhibitory Checkpoints

Inhibitory pathways represent potential NK cell checkpoints modulating CAR and
innate signaling in NK cells. Genetic engineering could provide for robust knockdown
of inhibitory receptors, although caution is warranted given the importance of certain
inhibitory pathways in NK cell education and licensing, where a separate and carefully
timed antibody-based receptor blockade may be preferable. Monoclonal antibodies to
many of these targets have been developed and evaluated in clinical trials across a variety of
hematological and solid organ malignancies, and several appear especially relevant to AML
therapy [172,173]. Despite promising pre-clinical findings a monoclonal antibody blocking
the interaction between inhibitory KIRs (KIR2DL1/2/3) and HLA-C, lirilumab, failed to
prolong leukemia free survival for elderly AML patients in remission as monotherapy, and
notably triggered concern that continuous KIR inhibition could impair NK cell immune
surveillance [174]. The study group proposed that a secondary activating stimulus may
be necessary to see benefit from KIR inhibition. In vitro data supports the concept that
iKIR can dampen CAR signaling, although clinical exploration of this combination would
require a careful dosing schedule [137].

NK cell NKG2A is upregulated in AML, and a population of strongly NKG2A in-
hibited NK cells dominates recovery post haploidentical ASCT which has prompted in-
vestigation of the NKG2A monoclonal antibody monalizumab in this setting [175,176].
Interestingly, in vitro data suggests CAR expression overcomes NKG2A negative regula-
tion in NK cells, although an enhancement of innate signaling could still be an important
contributor to overall efficacy. Elimination of surface NKG2A expression enhanced NK cell
activity against primary AML blasts and no indications of NK cell impairment were seen in
xenograft solid tumor models [177,178]. AML is a disease with a relatively low mutational
burden and poor responses to programmed cell death protein 1 (PD-1) blockade were en-
countered with monotherapy [179]. Combination approaches and augmenting alloreactive
T-cell responses post ASCT are now the focus of investigation [180]. NK-cells and blast cells
do express PD-1 and PD-L1, respectively and blockade using a PD-1 monoclonal antibody
or scFv enhanced NK cell cytotoxicity against AML targets in vitro, although appears to
be most relevant for resting rather than cytokine activated NK cells [181]. Inhibition of
TIGIT in AML is intuitive, however conflicting reports regarding its effect in experimental
systems in vitro suggest caution is warranted [92,182]. An antibody recognizing CD200
positive blast cells enhances the activity of cytokine induced killer cells, and the expression
of CD200 on AML LSCs suggests this may be a useful pathway to target [183,184]. Isolation
of NK-92 cells negative for the NK inhibitory receptor Siglec-7 (which recognizes sialic acid
containing siglec-ligands on the target cell surface), identified enhanced cytolytic activity
against AML blasts -while disruption of the interaction of Siglec-7 with CD43 (a dominant
source of Siglec-7 ligands) also enhanced NK cell anti-leukemic activity in vitro [93,185].
Denosumab (a clinically available monoclonal antibody against RANKL) has been shown
to overcome the immunosuppressive signaling associated with blast cell RANKL and
interactions with NK cell RANK [96].

4.4.3. AML Ligand Expression and Dual Targeting

Combining with treatments which modulate the expression of the CAR target antigen,
or the NK cell receptor ligand profile of blast cells is another route to enhancing CAR-NK
activity. Hypomethylating agents, ATRA and HDAC inhibitors modify NKG2D ligand
expression in AML especially relevant to NKG2D CAR therapy but also antigen negative
innate reactivity, while the CDK inhibitor dinaciclib enhances NK cell recognition of AML
blasts predominantly by reducing blast cell HLA-E expression [186–189]. Suppression of
NKG2D ligands on LSCs specifically can be overcome by poly (ADP-ribose) polymerase 1
(PARP1) inhibition [81] PARP1 inhibition has also been shown to induce death receptor 5
(DR5) on AML blasts, sensitizing to killing by TRAIL [190]. Immunomodulatory agents
lenalidomide and pomalidomide enhanced NK cell cytolytic activity against AML via a
heterogenous effect on NKG2D ligands and CD155 and a consistent decrease in HLA class
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I expression [191]. ATRA also upregulates CD38 acting through a retinoic acid response
element in the CD38 gene, and sensitizes KG1a cells and primary AML samples to CD38
CAR-NK activity [148]. Recent evidence suggesting a negative effect of direct ATRA
exposure on NK cell cytotoxicity warrants caution in the timing of this combination [142].

While dual CAR targeting may increase the proportion of AML blasts eliminated by
antigen specific recognition as discussed previously, some mechanisms of immune escape
may still persist, including failure of the leukaemic cells to bind perforin and resistance to
granzyme mediated cell death through leukemic expression of serpinB9/protease inhibitor-
9 [192,193]. Here, an alternative mechanism of killing through death receptor pathways
may be required. TRAIL is expressed by NK cells, and is considered a desirable feature
of ‘activation’ in the context of NK cell expansion. Recent evidence suggests that death
receptor mediated killing may be particularly important after pre-formed stores of perforin
and granzyme are depleted, providing a backup mechanism of cytotoxicity [194]. Ongoing
‘serial’ death receptor mediated killing also appears to be limited however, perhaps due to
exhaustion of pre-formed death ligand, or degradation within the immune synapse during
an initial killing event. NK cells can be engineered to constitutively express novel high
affinity TRAIL variants with specificity for one or other TRAIL receptor, reducing the role
of ‘decoy’ receptors and presenting a viable approach to enhanced death receptor mediated
killing [195]. The expression of these TRAIL in a membrane bound form induces optimal
death receptor clustering, propagating a potent apoptotic stimulus [67]. A DR4 variant
TRAIL is under investigation to mitigate antigen escape in AML [196]. Pharmacological ap-
proaches to modulating TRAIL receptor expression could also be applied—the proteosome
inhibitor bortezomib is considered the most well-known, and clinically relevant TRAIL
sensitizing agent via upregulation of DR5 expression [197]. An element of caution is also
required when engineering NK cell death ligand expression- acknowledging the role that
death receptor mediated killing has in modulating immune responses and the potential for
fratricide [69,198,199].

5. CAR-NK in the Context of AML Immunotherapy

At the essence of CAR-NK cell therapies is the conferral of antigen specific targeting
to alloreactive NK cells, augmenting their innate anti-leukaemic activity. The overlap-
ping fields of CAR-T and NK ACT have been considered above, however several other
prominent and related approaches to AML immunotherapy are in development. Cytokine
administration has been investigated to enhance endogenous immunity against AML.
IL-2 in combination with histamine dichloride improved LFS in a phase III trial as a con-
solidation therapy likely through recruiting NK cells, but has not been widely adopted
into clinical practice [72]. The IL-15 superagonist ALT-803 achieved responses in patients
with relapse post ASCT, and may be combined with other NK cell directed therapies or
ACT in the future [200]. Unconjugated antibodies alone have not proven beneficial in
AML. The ADC gemtuzumab ozogomycin improves overall survival when combined with
induction chemotherapy in CD33 positive favorable and intermediate risk AML [201].
ADCs against other targets are in development [202]. Bispecific and trispecific antibody
constructs engage immune cells and targets through simultaneous recognition of a cancer
antigen and immune cell surface proteins. This principle has been explored for NKG2DL
targeting using an NKG2D-CD16 fusion protein [203]. Trispecific killer engager (TriKE)
constructs include an IL-15 moiety to stimulate as well as recruit NK cells, and are in
development targeting CD33 and CLL-1 [204,205]. These novel agents recruit endogenous
NK cells in an antigen specific manner. Relative logistical simplicity is a potential advan-
tage over CAR-NK, although whether the inherent dysfunction of NK cells in active AML
will be sufficient to constrain this elegant approach remains an active question, and the
heterogenous expression of these antigens is equally relevant here. Application of these
agents as post remission therapy with restored NK cell function or indeed combination
with NK cell adoptive transfer which would also permit alloreactivity may ultimately
be considered. T cells with engineered TCRs can target a range of intracellular antigens
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including both TAAs and neoantigens. This bypasses the heterogeneity in cell surface
antigens. The TAA Wilms tumor 1 (WT1) has been investigated as a target of both a high
affinity engineered TCR-T cell therapy and a vaccine based approach post ASCT with
favorable outcomes [206,207].

6. Conclusions

CAR-NK cell therapies are at an early stage of investigation in AML, but present an
appealing combination of antigen specific, innate and alloreactive activity supported by
engineered persistence. The closely related fields of CAR-T cell therapy and NK cell ACT
have provided a wealth of information which can be applied to expedite the development
of this platform, although challenges remain. The range of NK cell sources, expansion
methods, CAR designs and combination approaches offer a toolbox with which to tackle
the inherent complexity of AML treatment. If the potential of CAR-NK is realized, this
approach may strike an ideal balance in the challenging but expanding field of AML
immunotherapy and ultimately improve treatment responses while reducing toxicities.
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