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Abstract: A novel voltammetric sensor based on CeO2·Fe2O3 nanoparticles (NPs) has been developed
for the determination of lipoic acid, playing an essential role in aerobic metabolism in the living
organism. Sensor surface modification provides a 5.6-fold increase of the lipoic acid oxidation
currents and a 20 mV anodic shift of the oxidation potential. The best voltammetric parameters have
been obtained for the 0.5 mg mL−1 dispersion of CeO2·Fe2O3 NPs. Scanning electron microscopy
(SEM) confirms the presence of spherical NPs of 25–60 nm, and their aggregates evenly distributed on
the electrode surface and formed porous coverage. This leads to the 4.4-fold increase of the effective
surface area vs. bare glassy carbon electrode (GCE). The sensor shows a significantly higher electron
transfer rate. Electrooxidation of lipoic acid on CeO2·Fe2O3 NPs modified GCE is an irreversible
diffusion-controlled pH-independent process occurring with the participation of two electrons. The
sensor gives a linear response to lipoic acid in the ranges of 0.075–7.5 and 7.5–100 µM with the
detection limit of 0.053 µM. The sensor is selective towards lipoic acid in the presence of inorganic
ions, ascorbic acid, saccharides, and other S-containing compounds. The sensor developed has been
tested on the pharmaceutical dosage forms of lipoic acid.

Keywords: metal oxide nanoparticles; amperometric sensors; electrooxidation; lipoic acid; pharma-
ceutical analysis

1. Introduction

Lipoic acid is an essential compound in living systems showing a wide spectrum of
biological activity. It acts as a mitochondrial bioenergetic cofactor stimulating glucose and
lipid metabolism as well as an insulin-mimetic agent via regulation of the IR/PI3K/Akt
pathway [1–3]. Lipoic acid provides stress response regulation and an anti-inflammatory
effect as well as neuronal protection and hyperalgesia attenuation [1–4]. These positive
health effects are based on the antioxidant properties of lipoic acid in particular:

• the ability of the direct scavenging of reactive oxygen species [1–3];
• the ability to regenerate other antioxidants (both exogenous (ascorbic acid) and en-

dogenous (glutathione and α-tocopherol) ones) [1–3];
• participation in reparation of the oxidized proteins [1,3];
• action as a chelator of the metal ions reducing the risk of oxidative stress induced by

the transition metals [1–3].

Therefore, lipoic acid is widely used in medicine as a part of drug therapy in the
treatment of various pathologies. Accordingly, methods for lipoic acid quantification
are required for the pharmaceutical dosage forms quality control and determination of
lipoic acid contents in biological fluids. Electrochemical sensors can be applied for these
purposes as far as lipoic acid is the oxidizable substance as data for platinum [5], glassy
carbon (GCE) [6,7], carbon fiber [8], or boron-doped diamond [9,10] electrodes confirm. To
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provide high sensitivity and selectivity of quantification, sensor surface modification is a
promising tool.

Different types of sensors for lipoic acid have been presented to date. Their figures of
merit are summarized in Table 1.

Table 1. Electrochemical sensors based on the surface modification for lipoic acid determination and their figures of merit.

Sensor Detection Mode Detection
Potential

Limit of
Detection/µM

Linear Dynamic
Range/µM Ref.

Multi-walled carbon nanotubes/GCE LSW 1 0.81 19 26–180 and
210–780 [11]

Cobalt phthalocyanine/Pyrolytic
graphite electrode

DPV 2 0.8 0.0034 0.499–19.6 [12]
BIA with AD 3 0.9 0.015 1.3–100 [13]

Chitosan-based polyurethane/Gold
electrode DPV 0.87 4.931 5–200 [14]

Poly(vanillin)/Platinum electrode AdASWV 4 0.88 25 30–2000 [15]

Fluorine-doped SnO2 electrode SWV 0.95 3.68 5–500 [16]

SnO2 nanoparticles in
cetyltriphenylphosphonium

bromide/GCE
DPV 0.843 0.13 0.50–50 and 50–400 [17]

MnO2/Screen-printed graphene
electrode SWASV 5 0.65 0.42 1.4–120 [18]

Co3O4 nanoparticles–single-walled
carbon nanotubes–carbon paste

electrode
SWV 0.87 0.37 2–100 [19]

Carboxylated multi-walled carbon
nanotubes–polyindole–Ti2O3/GCE AdADPV 6 0.9 0.012 0.39–115.8 [20]

1 Linear sweep voltammetry. 2 Differential pulse voltammetry.3 Batch injection analysis with amperometric detection. 4 Adsorptive anodic
square wave voltammetry. 5 Square wave anodic stripping voltammetry. 6 Adsorptive anodic differential pulse voltammetry.

As one can see, the analytical characteristics of lipoic acid can be further improved.
Moreover, the application of metal oxide NPs [17,19,20] as surface modifiers shows a better
response of lipoic acid in comparison to carbon nanomaterials [11] and polymers [14,15].
The lower detection limits and the possibility to quantify lower concentrations allow
consideration of metal oxide NPs as a perspective nanomaterial for the fabrication of
sensors to lipoic acid.

Among a wide range of metal oxide NPs, those with metals in higher oxidation states
(TiO2, In2O3, CeO2, ZnO, Fe3O4, etc.) are of interest as far as they provide a high effective
area of the sensors, high selectivity, and sensitivity of target analyte determination [21,22].
Sensors based on SnO2, TiO2, Fe2O3, Fe3O4, ZnO, and CeO2 NPs show sensitive and
selective response to natural phenolic antioxidants [23–29], neuromediators [30–33], and
some pharmaceuticals [34–38]. Electrochemical inertness of this type of NPs is another
advantage providing registration of its own redox signal of the target analytes which
improves the selectivity of their detection. Further development in this research area is a
combination of several metal oxide NPs as a sensitive layer of the sensor that can provide
improvement of the target compound analytical characteristics.

There is a lack of investigation regarding sensors based on the mixture of metal
oxide NPs. The electroactive metal oxide NPs such as NiO are used to increase the
conductivity of the sensor’s surface [39,40]. The combination of inert metal oxide NPs is
almost out of consideration. Fe3O4@ZrO2 magnetic NPs [41] and CeO2–ZnO composite
nanoellipsoids [42] based sensors for methyl parathion and 4-nitrophenol, respectively,
have been reported.

Current work is focused on the creation of a voltammetric sensor for lipoic acid using
CeO2·Fe2O3 NPs as a sensitive layer. The effect of the NPs concentration on the lipoic
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acid response is studied. The sensor is characterized by scanning electron microscopy
and electrochemical methods. The electrooxidation parameters of lipoic acid have been
calculated. The sensitivity and selectivity of the sensor response to lipoic acid have been
studied. The applicability of the sensor created to real samples has been shown.

2. Materials and Methods
2.1. Reagents

Lipoic acid of 99% purity was purchased from Sigma (Roedermark, Germany). Its
10 mM stock solution was prepared in ethanol (rectificate) and stored at +4 ◦C for up to one
week. Less-concentrated solutions were prepared by exact dilution before the experiment.
L-Cysteine (97%) from Aldrich (Germany), L-ascorbic acid (99%), L-cystine (98%), and
L-methionine (98%) from Sigma (Germany) were used in the interference study. Their
10 mM (0.10 mM for L-cystine) stock solutions were prepared in distilled water.

A 20% aqueous dispersion of CeO2·Fe2O3 NPs (50:50 wt.%) from Alfa Aesar Ce-
rion (USA) was used as an electrode surface modifier. The 0.25–1.5 mg mL−1 working
dispersions were prepared by appropriate dilution in distilled water.

Other reagents were of CP grade and used as received.

2.2. Apparatus

Electrochemical measurements were performed at ambient temperature (25 ± 2 ◦C)
using potentiostat/galvanostat PGSTAT 302N with FRA 32M module (Eco Chemie B.V.,
Utrecht, The Netherlands) supplied with NOVA 1.10.1.9 software (Eco Chemie B.V., Utrecht,
The Netherlands). A three-electrode electrochemical cell with bare GCE of 7.07 mm2

geometric surface area (CH Instruments Inc., Bee Cave, TX, USA), Ag/AgCl/3M KCl
reference electrode, and platinum wire auxiliary electrode was used.

An “Expert-001” pH meter (Econix-Expert Ltd., Moscow, Russia) supplied with the
glass electrode was used for the pH measurements.

A high-resolution field emission scanning electron microscope MerlinTM (Carl Zeiss,
Oberkochen, Germany) was used for the electrode surface characterization and operated at
5 kV accelerating voltage and emission current of 300 pA.

Coulometric titration was performed on the “Exper-006” coulometric analyzer (Econix-
Expert Ltd., Moscow, Russia) with a four-electrode electrochemical cell consisting of
working and auxiliary platinum electrodes which were separated by a semipermeable
membrane. The titration end-point was monitored with two polarized platinum electrodes
(∆E = 200 mV).

2.3. Sensor Creation

The GCE surface was polished with 0.05 µm alumina followed by rinsing with acetone
and distilled water. Then, the sensor was created by drop-casting of 6 µL of CeO2·Fe2O3
NPs dispersion with further standing for 8 min for evaporation of the solvent to dryness.

2.4. Electrochemical Measurements

Voltammetric measurements were performed in 0.1 M phosphate buffer (PB) of pH
5.0–8.0. Five scans of supporting electrolyte were registered. Then, an aliquot portion (4.0–
40 µL) of the lipoic acid solution was added and cyclic voltammograms (CVs) were recorded
from 0.5 to 1.3 V with the scan rate of 100 mV s−1 or differential pulse voltammograms
(DPVs) were recorded from 0.5 to 1.2 V. Modulation parameters were varied. Baseline
correction using NOVA 1.10.1.9 software was applied for DPVs.

Chronoamperometry of [Fe(CN)6]4− in 0.1 M KCl on GCE was performed at 0.45 V
for 75 s.

Electrochemical impedance spectroscopy (EIS) was performed using a 1.0 mM [Fe
(CN)6]4−/3− mixture as a redox probe in 0.1 M KCl. The direct current potential was
calculated as a half-sum of the peak potentials of the redox probe used. The EIS spectra
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were recorded within the frequency range from 10 kHz to 0.04 Hz (in 12 frequency steps
per decade) at a polarization potential of 0.23 V.

2.5. Pharmaceutical Dosage Forms Analysis

Lipoic acid tablets and concentrate for the infusion preparation commercially available
in pharmacies were studied. The average weight of the tablet was measured before
sample treatment. Then, ten tablets were ground thoroughly in a porcelain mortar and
the exact weight of powder in the range of 0.1–0.2 g was taken and dissolved in 15 mL of
ethanol. The solution was filtered, diluted if necessary, and used for further measurements.
The concentrate for the infusion preparation was 10-fold diluted with ethanol prior to
measurements.

Voltammetric determination of lipoic acid was performed in differential pulse mode.
PB pH 7.0 (3.90 or 3.85 mL) was inserted in the electrochemical cell and five curves were
recorded. Then, 10–15 µL of the sample were added and DPVs from 0.5 to 1.2 V were
registered at modulation amplitude of 100 mV and time of 25 ms and a potential scan rate
of 20 mV s−1.

2.6. Coulometric Determination

Coulometric determination of lipoic acid was performed using its reaction with elec-
trogenerated bromine [6] obtained by constant-current electrolysis at 5.0 mA current using
0.2 M KBr in 0.1 M sulfuric acid as a bromine precursor. A total of 20 mL of precursor
solution was added to the coulometric cell; the working, auxiliary, and indicator electrodes
were placed; and generating circuit was switched on. The indicator current value of 40 µA
was achieved, and the generating circuit was switched off. Then, the aliquot portion of
the sample solution (10–100 µL) was inserted, and simultaneously the timer together with
generating circuit was switched on again. The titration end-point was set when the indica-
tor current reached the initial value of 40 µA. The automatically calculated quantity of the
electricity spent for titration was used for the lipoic acid content calculation using Faraday’s
equation, taking into account that reaction with electrogenerated bromine proceeds with
the participation of four electrons.

2.7. Statistical Treatment

The results were statistically treated for five replicates at a confidence level of 0.95.
All data were expressed as the average value and coverage interval. The random errors of
determination were evaluated through the relative standard deviation values. Validation
of the developed and coulometric methods was performed using F- and t-tests.

The detection limit was calculated as 3SDa/b where SDa was the standard deviation
of the calibration graph intercept and b was the calibration graph slope.

3. Results and Discussion
3.1. Voltammetric Characteristics of Lipoic Acid

Voltammetric response of lipoic acid on bare GCE and CeO2·Fe2O3 NPs modified
electrodes has been studied using cyclic voltammetry in a neutral medium. An irreversible
oxidation step at 0.893 V is observed on bare GCE (Figure 1a, curve 2). The oxidation cur-
rents of 61 ± 2 nA for 5.0 µM concentration indicate low sensitivity of lipoic acid response.

Electrode modification with CeO2·Fe2O3 NPs has been performed to solve this prob-
lem. As one can see from Figure 1b, this approach provides significant improvement of
the voltammogram shape as well as a 5.6-fold increase of the oxidation currents and a
20 mV anodic shift of the lipoic acid oxidation potential. Higher oxidation currents are
caused by the increase of the electroactive surface area of the electrode as shown by further
investigations (Section 3.2).
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which is probably caused by the high thickness of the electrode surface coverage and its 
partial leaching when inserted in the supporting electrolyte. This is indirectly confirmed 
by the low reproducibility of lipoic acid oxidation currents on the electrodes modified 
with 1.0 and 1.5 mg mL−1 СеO2·Fe2O3 NPs dispersions. Thus, the best voltammetric re-
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Figure 1. Cyclic voltammograms of 5.0 µM lipoic acid (curve 2) at the bare GCE (a) and CeO2·Fe2O3 NPs/GCE (b) in PB
pH 7.0 (curve 1). Potential scan rate is 100 mV s−1. CeO2·Fe2O3 = 0.5 mg mL−1.

Nanomaterial concentration on the electrode surface also affects the voltammetric
characteristics of the target analyte [17]. Therefore, CeO2·Fe2O3 NPs dispersions with the
concentration of 0.25–1.5 mg mL−1 have been studied (Figure 2). The oxidation potential in-
significantly increases for 0.25 and 0.50 mg mL−1 and then remains constant. The oxidation
currents of lipoic acid are also increased, achieving maximum at 0.50 mg mL−1. Further
increase of CeO2·Fe2O3 NPs concentration leads to the lowering of oxidation currents
which is probably caused by the high thickness of the electrode surface coverage and its
partial leaching when inserted in the supporting electrolyte. This is indirectly confirmed
by the low reproducibility of lipoic acid oxidation currents on the electrodes modified with
1.0 and 1.5 mg mL−1 CeO2·Fe2O3 NPs dispersions. Thus, the best voltammetric response
of lipoic acid has been obtained for the 0.5 mg mL−1 dispersion of CeO2·Fe2O3 NPs.
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3.2. SEM and Electrochemical Characterization of the Electrodes

Electrodes surface morphology has been studied by SEM (Figure 3). Bare GCE and
modified electrode surfaces significantly differ. As Figure 3b and Figure S1 show, spherical
CeO2·Fe2O3 NPs of 25–60 nm and their aggregates are evenly distributed at the surface of
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the electrode forming porous coverage. SEM data confirm successful immobilization of
the modifier.
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Figure 3. Surface morphology of bare GCE (a) and CeO2·Fe2O3 NPs/GCE (b) obtained by SEM.

Electrochemical characteristics of the CeO2·Fe2O3 NPs based electrode have been
studied by electrochemical methods and compared with those for bare GCE. The electro-
chemically active surface area has been obtained based on cyclic voltammetry data for
electrooxidation of hexacyanoferrate(II) ions in 0.1 M KCl. Oxidation at bare GCE proceeds
quasi-reversible which is confirmed by redox peak potential separation (Figure 4a, curve
2). Electrode modification with CeO2·Fe2O3 NPs provides the reversibility of redox probe
oxidation in comparison to bare GCE which means the increase of the electron transfer rate
on the modified electrode, which agrees with the reported for CeO2 [24] and Fe2O3 [30]
NPs modified electrodes. A statistically significant increase of the hexacyanoferrate(II) ions
oxidation currents at the modified electrode has been observed (Figure 4a, curve 3).
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Taking into account the above-mentioned, the electrochemically active surface area for
GCE has been calculated from the chronoamperometry data (Figure 4b) from the plots of I
versus t−1/2 (Figure 4b, inset) using the Cottrell equation [43]. Cyclic voltammetry and the
Randles–Shevchik equation have been used for the modified electrode [43]. As calculations
show, electrode surface modification provides a 4.4-fold increase of the electroactive surface
area (38.9 ± 0.6 vs. 8.9 ± 0.3 mm2 for GCE) that explains the higher oxidation currents of
lipoic acid at the CeO2·Fe2O3 NPs/GCE.

The electron transfer parameters of the electrodes have been tested by EIS. The corre-
sponding Nyquist plots are shown in Figure 5.
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The comparison of semicircle diameter in the high frequencies region indicates a
dramatic decrease of the charge transfer resistance at the CeO2·Fe2O3 NPs/GCE vs. bare
GCE. The quantitative impedance parameters obtained by fitting using Randles equivalent
circuit (Figure 5b, Table 2) show a 17.6-fold decrease of the charge transfer resistance, i.e.,
improvement of the electron transfer rate for the modified electrode. These data agree
with the reported for CeO2 [24] or γ-Fe2O3 [35] NPs, as well as for CeO2/Fe2O3 composite
nanospindles [44].

Table 2. Electrochemical impedance parameters of the electrodes (n = 5; P = 0.95).

Electrode Rs/Ω Rct/kΩ Q/µΩ−1 n W/µΩ−1 X2

GCE 245 ± 5 72 ± 3 3.7 ± 0.2 0.789 - 0.03
CeO2·Fe2O3 NPs/GCE 92 ± 1 4.1 ± 0.2 0.448 ± 0.009 0.883 236 ± 12 0.02

Thus, the effectiveness of the CeO2·Fe2O3 NPs as electrode surface modifier has been
confirmed by SEM, EIS, and cyclic voltammetry.

3.3. Electrooxidaton of Lipoic Acid at the CeO2·Fe2O3 NPs/GCE

In order to find lipoic acid electrooxidation parameters, the effect of supporting
electrolyte pH and potential scan rate on the voltammetric characteristics has been studied.

The variation of supporting electrolyte pH in the range of 5.0–8.0 (Figure 6a) has
shown that lipoic acid oxidation potential is independent of the pH. This means the
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nonparticipation of protons in the electrooxidation of lipoic acid which agrees well with
the data for the electrode modified with tin dioxide NPs and cetyltriphenylphosphonium
bromide [17]. The oxidation currents of lipoic acid are increased with the pH growth
achieving maximum at pH 7.0 (Figure 6a). The statistically significant decrease of the
oxidation currents in the basic medium is caused by the oxidation of lipoic acid with air
oxygen [45]. Therefore, further investigations have been performed in a neutral medium.
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The changes of the voltammetric characteristics of lipoic acid at the varied potential
scan rate (Figure 6b) allowed concluding that electrooxidation is a diffusion-controlled
process as far as oxidation current is linearly dependent on the square root of potential
scan rate (Equation (1)) and slope of the lnI vs. lnυ (Equation (2)) is close to the 0.5.

I [µA] = (−0.10 ± 0.01) + (0.076 ± 0.002) υ
1
2 [mV s−1] R2 = 0.9971 (1)

lnI [µA] = (1.17 ± 0.03) + (0.585 ± 0.008) lnυ [V s−1] R2 = 0.9992 (2)

The absence of cathodic steps on the cyclic voltammograms of lipoic acid indicates
the irreversibility of electrooxidation. An anodic transfer coefficient of 0.46 has been
calculated from the Tafel plots for the low potential scan rates [43]. The number of electrons
participating in the reaction has been calculated using Equation (3) [43] and equaled to
two, which corresponds well to the reported data [12,16,17].

∆E1/2 = 47.7/αan (3)

Electrooxidation of lipoic acid is a two-electron process corresponding to its transfor-
mation in 5-(1-oxodithiolan-3-yl)pentanoic acid according to Scheme 1.
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Other parameters of lipoic acid electrooxidation have been evaluated, taking into
account the irreversibility and diffusion control of the electrode reaction. The diffusion coef-
ficient (D) of (3.94 ± 0.02) × 10−6 cm2 s−1 and the standard heterogeneous electron transfer
rate constant (k0) of (9.7 ± 0.2) × 10−4 cm s−1 have been calculated from Equation (4) [43]
and Equation (5) [46], respectively.

Ip = π
1
2 χ(bt)nFAcD

1
2 (

αanαF
RT

)

1
2
υ

1
2 (4)

k0 = 2.415e−
0.02F

RT D
1
2 (Ep − Ep/2)

− 1
2 υ

1
2 (5)

3.4. Lipoic Acid Quantification Using CeO2·Fe2O3 NPs Based Sensor

The sensor developed has been used under conditions of differential pulse voltamme-
try in PB pH 7.0. The effect of pulse parameters on the sensor response towards lipoic acid
has been evaluated first (Figure 7). The oxidation potentials are decreased as modulation
time and amplitude are increased (Figure 7a). The oxidation currents are increased with
the growth of the amplitude modulation. The modulation time shows different trends:
oxidation currents are at first increased with the growth of time and then start to decrease.
The voltammogram’s shape is not affected by pulse parameters. The best response is
registered at the modulation amplitude of 100 mV and time of 25 ms.
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Figure 7. Effect of pulse parameters on the oxidation potentials (a) and oxidation currents (b) of 5.0 µM lipoic acid in PB
pH 7.0.

The sensor gives a linear response to lipoic acid at 0.830 V in the ranges of 0.075–7.5
and 7.5–100 µM (Figure 8). The calibration graphs are described by Equations (6) and (7),
respectively, and presented in Figure S2. The limit of detection (S/N = 3) is 0.053 µM. The
analytical characteristics are the best ones to date (see Table 1). Although the lower detection
limits have been reported for the electrodes based on cobalt phthalocyanine [12] and
carboxylated multi-walled carbon nanotubes–polyindole–Ti2O3 [20], the linear dynamic
range for them are significantly worse than obtained for the current sensor. Furthermore,
the sensor developed is simple in preparation.

I [µA] = (0.103 ± 0.004) + (22.7 ± 0.1) × 104 c [M] R2 = 0.9998 (6)

I [µA] = (1.27 ± 0.04) + (69.7 ± 0.8) × 103 c [M] R2 = 0.9994 (7)
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The accuracy of lipoic acid determination with the sensor created has been tested on
the model solutions (Table 3). The RSD values of 0.46–1.8% confirm the absence of the
random errors of the determination as well as the very good reproducibility of the sensor
response (sensor surface has been renewed after each measurement). The recovery values
indicate the high accuracy of the method developed.

Table 3. Quantification of lipoic acid in model solutions (n = 5; p = 0.95).

Added/µg Found/µg RSD/% R/%

0.0620 0.061 ± 0.002 1.6 98 ± 2
0.620 0.63 ± 0.01 1.8 101 ± 2
6.20 6.17 ± 0.04 0.46 99.5 ± 0.6
20.6 20.6 ± 0.2 0.49 100 ± 1
82.5 82.5 ± 0.7 0.65 100.0 ± 0.8

3.4.1. Selectivity Study

Sensor response selectivity has been studied at 1.0 µM of lipoic acid. Typical potential
interferences such as inorganic ions and saccharides have been tested. K+, Mg2+, Ca2+,
NO3

−, Cl− иSO4
2− ions as well as glucose, rhamnose, and sucrose are electrochemically

inactive and do not affect lipoic acid response at 500- and 100-fold higher concentrations,
respectively. A 100-fold excess of ascorbic acid does not show the interfering effect as far
as it is oxidized at significantly less potential which is out of the electrochemical window
under consideration.

The potential interference effect of other sulfur-containing amino acids is the most in-
teresting from the analytical point of view. Cysteine is oxidized at 0.933 V but the oxidation
currents are very low and fully disappear at concentrations less than 5.0 µM. Therefore,
cysteine does not show an interference effect up to the 5 µM level (Figure S3a). Methionine
and cystine are electrochemically silent in the potential window under consideration and
do not affect lipoic acid response at 5-fold excess (Figure S3b,c, respectively). Thus, the
sensor developed shows excellent selectivity towards lipoic acid including structurally
related compounds which is an important advantage over other electrochemical sensors.

3.4.2. Application to Real Samples

The applicability of the sensor created in real samples analysis has been shown on the
commercially available pharmaceutical dosage forms of lipoic acid. Lipoic acid tablets and
concentrate for the infusion preparation have been tested.

One well-resolved oxidation peak of lipoic acid at 0.825 V is registered on the differential
pulse voltammograms. Lipoic acid quantification results are presented in Table 4.
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Table 4. Quantification of lipoic acid in pharmaceutical dosage forms (n = 5; p = 0.95).

Sample Type №
Labelled

Amount/mg,
mg mL−1,*

Found/mg,
mg mL−1,* RSD/%

Found by
Coulometry/mg,

mg mL−1,*
RSD/% t-Test 1 F-Test 2

Tablets
1 25 25.0 ± 0.5 1.5 25.0 ± 0.4 1.4 0.0890 1.07
2 600 611 ± 19 2.5 612 ± 12 1.6 0.173 2.65

Concentrate for the
infusion preparation 3 30 * 29.5 ± 0.6 * 1.5 29.6 ± 0.3 * 0.70 0.183 4.58

1 tcrit = 2.31 at P = 0.95 and f = 8. 2 Fcrit = 6.39 at P = 0.95 and f 1 = f 2 = 4. * Lipoic acid contents units for the concentrate for the infusion
preparation.

The data obtained are compared with the ones obtained by the coulometric titration
with electrogenerated bromine. The t- and F-test results are less than their critical values at
p = 0.95 which allows concluding the absence of the systematic errors in the determination
using the CeO2·Fe2O3 NPs based sensor as well as similar precision of both methods
used. High sensitivity and selectivity of the sensor in combination with the simplicity and
reliability of the response towards lipoic acid allow its application for the pharmaceutical
dosage forms quality control.

4. Conclusions

A novel sensor based on CeO2·Fe2O3 NPs has been created using a simple drop-casting
method. Sensor exhibits 4.4-fold higher electroactive surface area and 17.6-fold lower
charge transfer resistance which means increased electron transfer rate. CeO2·Fe2O3 NPs
can be considered as a perspective nanomaterial for the fabrication of voltammetric sensors.
Screen-printed electrodes can probably be used as a platform for modifier immobilization.
Such sensors have significant potential in electroanalytical applications.

The sensor developed gives a highly sensitive and selective voltammetric response
to the lipoic acid. The analytical characteristics obtained are the best ones among those
reported to date for electrochemical methods including chemically modified electrodes.
Another advantage of the method is the high selectivity of the electrode response towards
lipoic acid in the presence of other sulfur-containing compounds (cysteine, cystine, and
methionine). The sensor has been successfully tested on the pharmaceutical dosage forms
of lipoic acid and validated with the independent coulometric method. Thus, a simple, sen-
sitive, and selective, cost-effective, and reliable sensor can be applied for pharmaceuticals
quality control.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21227639/s1. Figure S1. SEM image of CeO2·Fe2O3 NPs/GCE at low (a) and high (b)
magnitude. Figure S2. (a) Calibration plot of lipoic acid in the concentration range of 0.075–7.5 µM;
(b) Calibration plot of lipoic acid in the concentration range of 7.5–100 µM. Figure S3. (a) Effect of
4.0 µM cysteine on the response of lipoic acid; (b) Effect of 5.0 µM methionine on the response of
lipoic acid; (c) Effect of 5.0 µM cystine on the response of lipoic acid.
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