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Abstract: Poplar is an illustrious industrial woody plant with rapid growth, providing a range
of materials, and having simple post-treatment. Various kinds of environmental stresses limit its
output. Plant annexin (ANN) is a calcium-dependent phospholipid-binding protein involved in
plant metabolism, growth and development, and cooperatively regulating drought resistance, salt
tolerance, and various stress responses. However, the features of the PtANN gene family and different
stress responses remain unknown in poplar. This study identified 12 PtANN genes in the P. trichocarpa
whole-genome and PtANNs divided into three subfamilies based on the phylogenetic tree. The
PtANNs clustered into the same clade shared similar gene structures and conserved motifs. The
12 PtANN genes were located in ten chromosomes, and segmental duplication events were illustrated
as the main duplication method. Additionally, the PtANN4 homogenous with AtANN1 was detected
localized in the cytoplasm and plasma membrane. In addition, expression levels of PtANNs were
induced by multiple abiotic stresses, which indicated that PtANNs could widely participate in
response to abiotic stress. These results revealed the molecular evolution of PtANNs and their profiles
in response to abiotic stress.

Keywords: poplar annexin; duplication; tissue-specific expression; abiotic stress

1. Introduction

Plants may meet with adverse environments during their cycles of growth and de-
velopment [1]. Drought and salinity are the main environmental factors that affect the
geographical distribution of natural plants and limit agricultural and forestry output yield.
Meanwhile, the increasing frequency of extreme weather results in the aggravation of
the adverse effects of abiotic stress on plants [2]. Due to plants suffering from low water
tolerance, more water may be used to irrigate, which increases the burden on the environ-
ment. Therefore, agricultural and forestry production needs to breed stress-tolerant rice
cultivars. However, plants can recognize and sense adverse environments during long-
term evolution based on various signal transduction pathways, such as the abscisic acid
(ABA) signal transduction pathway [3,4]. Cytosolic ABA signaling cascade is composed
of pyrabactin resistance 1 (PYR1)/PYR1-like (PYL), protein phosphatase 2C (PP2C), and
sucrose non-fermenting1-related protein kinase2 (SnRK2). In the ABA-dependent signal
transduction pathway, the SnRK2.6 phosphorylated by PP2C results in the inactivation
of SnRK2.6 when the ABA is not present in the cytosol. However, integration of ABA
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and PYR/PYL can inhibit the PP2Cs, which leads to activating SnRK2.6 and initiating
ion channels and expression of ABA-responsive genes [5,6]. In addition, the promotion
of ABA contents results in stomatal closure coupled with transpiration and water loss
reduction. Moreover, ABA accumulation leads to activation of the Ca2+ channel in the
plasma membrane and improved free Ca2+ concentration in plant cytoplasm in response to
environmental stresses [7,8].

Annexins (ANNs) localized on the cytosolic membrane are a multigene family of
Ca2+-dependent proteins that maintain intracellular and extracellular Ca2+ homeostasis [9].
The distribution of ANNs occurs widely in some eukaryotes and prokaryotes with various
numbers, and the first ANN family members were characterized in Arabidopsis thaliana [10].
Subsequently, ten ANN genes were identified from Oryza sativa and Medicago sativa, re-
spectively [11]. Given ANN structure, these proteins consist of a core domain including
four-fold ANN repeats (I, II, III, and IV) with approximately 70 amino acids and an N-
terminal structure with different sequences and lengths [12]. For plant ANN repeats, I
and IV include an inline protein sequence of GXGT-(38 variable amino acid residues)-D/E
considered Ca2+ binding sites. Still, deficiency of Ca2+ binding sites on ANN repeats II and
IV [13,14]. The ANN repeats have relatively higher similarities among ANN members from
different species, indicating a specific evolutionary relationship. The divergences among
amino acid sequence and composition of ANN members mainly lie in the N-terminal
structures. Therefore, it is speculated that the different characterizations and functions
among ANN members may result from the difference in N-terminal structures. A study
illustrated that the N-terminal structure of Capsicum annuum ANN (ANNCa32) could inter-
act with its core domain (ANNCa32 repeat I), indicating that the regulatory functions of
plant ANN N-terminal structure are relatively conservative [15]. In addition, ANN repeats
can form curved disks, and the convex surfaces of curved disks contain Ca2+ binding
sites. The convex surface binding Ca2+ faces the cell membrane when the annexin binds
to phospholipids. The concave surface is toward the cytoplasmic matrix, making ANN
interact with other proteins and other molecules in the cytoplasm [9].

Moreover, plant ANNs have some sites of post-translational modifications, such
as phosphorylation site (Ser, Thy, Lys), S-glutathionylation site (Glu), glycosylation site
(N-Gly), and myristoylation site (N-Myr) [16,17]. A few studies showed that plants could
respond to environmental changes based on the ANN post-translational modifications. The
post-translational improvements of A. thaliana ANN1 (AtANN1) by phosphorylation can
improve the peroxidase activity, but dephosphorylation reduces the peroxidase activity [12].
Additionally, the down-regulation of Ca2+-binding efficiency resulting from AtANN1
glutathionylation could affect membrane interaction [12]. The interaction relationship
among ANN and protein kinases in O. sativa illustrated that some protein kinases (protein
kinase C (PKC), mitogen-activated protein kinase (MAPK), and cyclic AMP-cyclic GMP
(cAMP-cGMP) coordinate with phosphatase to regulate the post-translational modification
of rice ANN and could be involved in the Ca2+-dependent MAPK signaling [18].

The various studies reported that ANNs have ATPase/GTPase and peroxidase activi-
ties coupled with regulation of Ca2+-binding activity and contribute to regulating a large
number of essential physiological processes in response to environmental stresses [19–22].
For example, the relative expression of rice Nagina22 (N22) ANN was improved under the
drought treatment [23]. Triticum aestivum Anns, P39 and P22.5 expression levels increased
when exposed to low-temperature stress, illustrating that TaANNs might participate in
low-temperature signal transduction [24]. Arachis hypogaea ANNs were speculated to be
involved in drought, salt, heavy metals, and low-temperature stresses depending on the
analysis of AhANNs expression accumulations under the above stresses [25]. In addition,
AtANN1 interaction with AtANN4 took essential roles in response to salt and drought
treatments under the long-day condition and influenced the photoperiod of Arabidop-
sis [26]. OsANN3 expression level was induced under polyethylene glycol (PEG), and
abscisic acid (ABA) treatments and overexpression of OsANN3 in rice improved the sur-
vival rates of rice under drought stress, suggesting that OsANN3 conferred drought stress
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tolerance at the seed germination stages. Additionally, overexpression of OsANN3 in rice
increased the number and length of rice roots and stomatal closure, and reduced water
loss by regulating the ABA-dependent stress response pathway [22]. Overexpression of
Nelumbo nucifera ANN in Arabidopsis improved the heat tolerance and hydrogen perox-
ide activity, released lipid peroxidation, and reactive oxygen species (ROS) in transgenic
Arabidopsis seeds were decreased [27]. AtANN8 could respond to salt and dehydration
stresses and alleviate damage on those stresses in Arabidopsis [28]. Interaction between
soybean GmANN and glutathione S-transferase (GmGST) responded to high temperature
and high humidity (HTH) stress. It was concluded that it formed plant seed vitality [29].
GhDsPTP3a could interact with GhANN8b, which plays a positive role in the response
of cotton to salt stress. Salt stress-induced phosphorylation of GhANN8b and GhANN3a,
respectively, and GhANN8b and GhANN3a conversely regulated Ca2+ influx and Na+

efflux [30]. The increased cell membrane damage caused by cold stress was associated
with the inhibition of transcript levels of ZmANN33 and ZmANN35, and the rescue of cell
membrane accompanied the rapid recovery of ZmANN33 and ZmANN35 expression levels.
The Arabidopsis seedlings overexpressed ZmANN33 and ZmANN35 had better growth
trends than wild-type (WT) Arabidopsis seedlings under the low temperature, illustrating
that ZmANN33 and ZmANN35 play a positive role in response to low temperature [31].
Drought, heavy metal stress, and salt stress can lead to peroxide accumulation in plant
cells and result in plant cell damages or large numbers of tissue and cell death. ANN
plays an essential role in maintaining the stability of membrane structure and cell secretion
and has been proved to have peroxidase activity. In addition, Ca2+ is closely related to
the transcriptional regulation of the ANN gene, especially in the abiotic stress response,
indicating that ANN is closely involved in environmental stress. Taken together, plant
ANNs are involved in various kinds of physiological processes and play essential roles in
response to environmental stresses.

Poplars have essential values as vital elements in industrial products and environ-
mental ecology. They have unique profiles and characterizations, such as primary and
secondary growth and metabolism and response to environmental stresses. Poplars show
some resistance systems, including cell structure changes and signal transduction [32–34].
They are generally exposed to recurrent damages by various biotic and abiotic stresses.
Therefore, the development and discovery of stress response theories to avoid or reduce
injuries imposed by environmental stress are essential for poplars. Although the ANN
gene family has been considered a vital stress regulator in model species, its molecular
characterization and evolution remain less clear in woody plants. Here, the molecular
characterization and function of the poplar ANN gene family was systematically analyzed.
The 12 putative PtANN genes from Populus trichocarpa were cloned, and molecular evolu-
tion, protein structures, genes composition, and cis-elements were analyzed. Additionally,
tandem and segmental duplication among poplar ANN genes and collinearity among ANN
genes from different species were determined based on a comprehensive genome synteny
analysis. The subcellular localization analysis was performed to determine the localization
of PtANN. Furthermore, the expression patterns of PtANN members across different tissues
and under divergent treatments were analyzed. In summary, the present study provides
insight into the characterizations and structures of PtANNs and lays the foundation for
illustrating the biological function in response to abiotic stress.

2. Results
2.1. Identification of Putative ANN Family Members in Poplar

Genes, proteins, and coding DNA sequences (CDS) annotation in P. trichocarpa were
downloaded from the Phytozome database. HMMER software version 3.0 [35] was applied
to identify the poplar ANN members based on the Pfam database (PF00191). Additionally,
the Arabidopsis ANN sequences were obtained from Clark et al. [10] and Cantero et al. [36]
(Supplementary Table S1), as a query to search the PtANN members in P. trichocarpa genome.
Then, the SMART and NCBI CDD were used to ensure that whether each putative PtANN
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contains a complete ANN domain or not. In summary, 12 PtANN genes were identified
from the poplar genome based on Pfam and sequence similarity with AtANN proteins. In
addition, according to chromosome localization of PtANNs, 12 PtANN genes were named
PtANN1-PtANN12 (Supplementary Table S1).

Based on the characterization of 12 PtANNs, the length of 12 PtANN proteins ranged
from 312 aa to 329 aa, indicating that little diversity within the length of PtANN mem-
bers. We speculated that the little divergence in length results from the 4 ANN repeats in
C-terminal and variable sequences in the N-terminal structure. The predicted isoelectric
points (pI) ranged between 5.69 (PtANN1) and 9.23 (PtANN10), suggesting PtANN pro-
teins not only belong to acidic proteins but also reside the alkaline proteins. The instability
index varied from 31.39 to 52.73. PtANN2, PtANN8, PtANN9, and PtANN11 were thought
to be unstable proteins, while others were considered stable proteins. The aliphatic index
of PtANNs ranged from 84.26 (PtANN11) to 97.6 (PtANN5) had diversity features. Addi-
tionally, the GRAVY values of PtANNs were predicted to be negative, representing that
all PtANNs possess hydrophilic characteristics. Subcellular localization of PtANNs was
speculated to be localized in the cytoplasm (Supplementary Table S2).

2.2. ANN Sequences Alignment and Phylogenetic Evolution Analysis of ANN Members

Through the multiply alignment of poplar, Arabidopsis, and rice ANNs, the poplar
ANN family proteins had relatively high identification with Arabidopsis and rice ANNs,
suggesting that the ANN family is relatively conservative in the process of evolution. Addi-
tionally, poplar ANNs contained four relatively conserved repeat domains (Supplementary
Figure S1), and each repeat contained approximately 70 amino acid residues. Both the I
and IV repeat domains had the dominant Ca2+ binding site (G/KXGT-38-D/E), the main
structural features of plant ANNs, while no Ca2+ binding site was found in II and III repeat
domains. In addition to the Ca2+ binding site, poplar ANNs also contained some critical
conserved sites related to function. For example, IRI site binding to F-actin was displayed
in repeat domain III; DXXG site binding to GTP was found in repeat domain IV; S3 clus-
ters (MCCY) were associated with ANN peroxidase activity; histidine40 (His40) residues
binding to hemoglobin were involved in a redox reaction, and tryptophan (Trp) residues
participated in promoting ANN binding to membrane independent Ca2+ (Supplementary
Figure S1). The above observations showed that poplar ANNs are relatively conserved
with other plants ANNs in structure.

To discover the molecular evolution of PtANNs, a phylogenetic tree with neighbor-
joining (NJ) method was constructed by PtANN protein sequences (Supplementary Figure S2).
To further clarify the evolutionary relationship and putative functions of PtANNs, the NJ
method was also performed to establish a phylogenetic tree with 12 PtANNs, 8 AtANNs,
and 10 OsANNs (Figure 1). According to the phylogenetic tree, the PtANN gene family was
divided into three major subfamilies: I, II, and III. Among them, subfamily I consisted of
PtANN1–7; subfamily II composed of PtANN8–10 and PtANN12; subfamily III contained
PtANN11 (Supplementary Figure S2). Additionally, the phylogenetic tree displayed the
evolution relationship among poplar, Arabidopsis, and rice fell into three distinct subfamilies,
illustrating that ANN may originate from some ancestral gene and is evolved into three
subfamilies in the process of evolution (Figure 1). In addition, the clustering relationship of
poplar, Arabidopsis, and rice ANNs was relatively complex. ANNs of poplar, Arabidopsis,
and rice were widely distributed at the phylogenetic tree, and PtANNs were interspersed
and distributed in each clade, showing the complexity of the evolutionary relationship of
ANNs. In most cases, the PtANN members were first grouped with AtANN proteins and
then grouped with OsANN proteins within each clade, which indicated that ANN from
P. trichocarpa might have a closer evolutionary relationship with Arabidopsis ANNs. However,
a small part of PtANNs was clustered into OsANNs in clades, indicating that the ANN
evolutionary relationship was somewhat divergent from the relationship among monocots
and dicots.
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Figure 1. Phylogenetic tree analysis of ANN proteins among poplar, Arabidopsis, and rice. The
MEGA7 software was applied to draw the neighbor-joining (NJ) method tree with 1000 bootstrap
replicates. Lines with Roman numerals represent different ANN subfamilies. The Arabidopsis, rice,
and poplar ANN proteins can be clustered into three clades.

2.3. Analysis of PtANN Phosphorylation Site and 3D Structure

The NetPhosK 3.0 Server was used to analyze the post-translational modification of
the kinase phosphorylation site, and the result showed that PtANN family proteins contain
different types of phosphorylation sites (Supplementary Table S3). The serine phosphory-
lation sites had made up a considerable part of PtANN phosphorylation sites, followed
by threonine phosphorylation and tyrosine phosphorylation. Moreover, the phosphoryla-
tion probabilities of serine, threonine, and tyrosine in PtANN were 50.99%, 38.61%, and
10.4%, respectively. In the PtANN family proteins, the phosphorylation mode of PtANN6,
PtANN7, and PtANN12 was the most likely protein kinase A (PKA) phosphorylation. At
the same time, other PtANNs may apply the protein kinase C (PKC) phosphorylation
mode. There were ten types of potential kinase phosphorylation mode in PtANN1, namely
PKC, p38MAPK, cyclin-dependent kinase 5 (Cdk5), glycogen synthase kinase 3 (GSK3),
DNA-dependent protein kinase (DNA-PK), ribosomal S6 kinase (RSK), PKA, cell division
cycle2 (cdc2), casein kinase II (CKII), and CKI phosphorylation. PKC phosphorylation
occurred ten times in PtANN1 phosphorylation mode, and the highest score (0.873) ap-
peared on Ser44. Additionally, there were nine types of putative kinase phosphorylation
mode in PtANN2, namely CKI, CKII, cdc2, PKC, PKA, PKG, RSK, p38MAPK, and EGFR
phosphorylation. The CKII and PKC phosphorylation appeared the highest frequency
of phosphorylation in PtANN2 phosphorylation, and Thr195 site had the highest score
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(0.866). In addition, PtANN9 has 11 types of kinase phosphorylation, namely PKC, DNAPK,
ATM, PKA, CKII, INSR, p38MAPK, cdc2, CKI, EGFR, and RSK phosphorylation. PKC
phosphorylation in PtANN9 reaching 14 times had the highest number of phosphorylation,
and the highest score (0.819) was PKC on Thr91.

The three-dimensional (3D) structure prediction of PtANN proteins showed that
PtANN proteins are composed of coils and helixes (Supplementary Figure S3). The he-
lixes occupy a significant part of ANN structures, while coils only account for a small
amount of ANN structures. The PtANNs were divided into three subfamilies based on the
phylogenetic tree. PtANNs belonging to subfamily I shared a similar 3D structure, and
the same result was found in subfamily II and III. Based on the comparative analysis of
3D structure and evolution of PtANN members, the PtANNs clustered in three different
clades of the evolutionary tree showed the divergent 3D structure, suggesting that putative
various features and functions might exist in members distributed in other subfamilies. In
addition, the IRI site, S3 clusters, His residues, and Trp residues displayed a somewhat
variance among PtANN members. For example, both PtANN4 and AtANN1 had the IRI
site, S3 sites, His residues, and Trp residues, which suggested the features and functions
of PtANN4 might be similar with AtANN1. However, the F-actin binding domain (IRI)
was not identified in PtANN1, and PtANN2 had the S3, IRI, and Trp site except for the
DXXG domain. All these observations indicated that there are differences in some spe-
cial functional sites of PtANNs, in addition to the common conserved domain. Those
functional site divergences might result in various functions of PtANN members in the
process of evolution.

2.4. Analysis of PtANN Gene Structures and Conserved Motifs

To illustrate the features of PtANNs, the intron/exon patterns of poplar, Arabidopsis,
and rice PtANNs were investigated based on the poplar, Arabidopsis, and rice genomes
and innovations (Figure 2). The genomic PtANN sequences illustrated the number of
exons ranging from four to six, and the number of introns changed from three to five.
Most of them usually had six exons and five introns. The length of PtANN12 introns was
longer than other PtANN introns. Moreover, PtANNs belonging to subfamily I shared
the relatively similar intron/exon patterns, while the divergent intron/exon patterns
were identified in different subfamilies. In addition, the MEME online tool was used to
predict conserved motifs of PtANN proteins (Figure 2). The number of PtANN motifs was
distinctive, ranging from 1 to 10, and most of PtANNs shared five to eight motifs. Generally
speaking, the PtANNs in the same evolutionary clade have certain similarities in the kinds
and relative positions of motifs. For example, PtANN8–10 and PtANN12 clustered in the
same evolutionary clade shared similar motif compositions. In contrast, the types of motifs
showed divergences in the different evolutionary clade, such as PtANN2 and PtANN5.
Moreover, the result of PtANN in the same evolutionary clade possessing the similar motif
compositions was consistent with PtANNs family phylogenetic clustering, which further
supported the evolutionary relationship among each PtANN member.

2.5. Analysis of PtANN Cis-Acting Elements and Putative Interaction of Protein-Protein

The cis-acting promoter elements are short DNA sequences presented on the pro-
moters. They ensure the specificity of the gene expression response because different
transcription factors specifically recognize them. The PlantCARE was applied to illustrate
the cis-acting promoter elements of PtANNs, and various kinds of cis-acting elements were
identified in PtANN promoters (Figure 3). The cis-acting elements are involved in plant
development, response to abiotic stress and hormone, and putative cis-acting elements in-
cluding light-, gibberellin- (GA), salicylic acid- (SA), auxin-, anaerobic, abscisic acid- (ABA),
methyl jasmonate- (MeJA) and low-temperature responsiveness. Most PtANN promoter el-
ements were identified as involved in hormone and light response. The cis-acting elements
related to endosperm and tissue development were also found in PtANN promoters. The
cis-acting elements associated with SA-responsiveness were located in the promoters of
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PtANN1, PtANN2, PtANN7, PtANN8, PtANN10, and PtANN11. The cis-acting elements that
respond to GA were found in the PtANN1–5, PtANN7, PtANN9, and PtANN11 promoters.
The cis-acting elements involved in ABA-responsiveness were illustrated in the PtANN2–7
promoters. The cis-acting elements connected with MeJA-responsiveness mainly existed
in the promoters of PtANN3–5, PtANN6, PtANN8, and PtANN11. The cis-acting elements
that might be associated with low-temperature responsiveness were found in the PtANN3,
PtANN5, PtANN7, and PtANN10 promoters. All the observations of PtANN cis-acting
elements indicated that PtANN genes might be involved in environmental stresses and hor-
mone regulation and play an essential role in physiological and developmental processes.

Figure 2. The PtANN conserved motifs and PtANN gene structures analysis. The motif compositions
and distributions of PtANNs were identified by MEME, and different colorful rectangles indicated
divergent motifs. The PtANN gene structures were performed to identify using genome database
and annotation, and the solid black lines, green and yellow rectangles implied intron, 5′-/3′-UTR,
and exon, respectively.

2.6. Chromosomal Localization and Collinearity Analysis of PtANNs

According to the poplar genome annotation, the 12 PtANN genes were identified to
localize in ten chromosomes (Supplementary Figure S4). The distribution of PtANN genes
mapped on each chromosome was relatively independent and irregular. PtANN1–3 was
present on chromosome 1, while PtANN genes were absent on chromosomes 4, 6, 9, 11, and
14, and other chromosomes only contained one PtANN gene, respectively.

To further understand the evolutionary relationship of PtANN genes and the evolu-
tionary origin of ANN genes, the microsynteny analysis within the poplar genome and
among different species was performed using MCScanX and TBtools. The duplication
events containing tandem duplication, segmental duplication, and whole-genome duplica-
tion played an essential role in plant evolution. Among 12 PtANN genes, no pairs of PtANN
genes were identified as tandem duplication, which signified tandem duplication was not
involved in PtANN expansion. In addition, segmental duplication surveys revealed ten
gene pairs of PtANN genes mapping on chromosomes 1–3, 5, 7, 8, 10, 12, and 15 (Figure 4).
The nonsynonymous (Ka) and synonymous (Ks) ratios were used to determine the selection
pressure of gene duplications. The value of Ka/Ks on the PtANN genes usually is lower
than 1, implying that PtANNs experience strong purifying selection during the process
of evolution.
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Figure 3. The predicted cis-elements in PtANN gene promoters. PlantCARE analyzed promoter
sequences (−2000 bp) of poplar, Arabidopsis, and rice ANN genes. The different colored rectangles
indicated divergent cis-elements, and the solid black lines implied PtANN promoters.

Figure 4. Synteny analysis of PtANN genes. The orange rectangles indicated chromosomes 01–19.
The yellow gradient lines in rectangles implied gene densities on chromosomes. Gray lines in the
circle showed segmental duplication events in poplar, and colored lines indicated collinearity events
of PtANN members.
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To further explore the evolutionary origin among PtANN, AtANN, OsANN, and
SpANN members, a syntenic map of P. trichocarpa associated with A. thaliana, Salix purpurea,
and O. sativa was constructed based on the syntenic orthologous gene pairs. Accord-
ing to MCScanX analysis, six syntenic orthologous gene pairs were identified between
P. trichocarpa and A. thaliana, seven gene pairs between P. trichocarpa and O. sativa, and
23 gene pairs between P. trichocarpa and S. purpurea, implying that P. trichocarpa has dif-
ferent directions in evolution with A. thaliana, O. sativa and S. purpurea (Figure 5). Those
results indicated that the poplar and willow had a closer relationship [37]. The inter-and
intra-genomic collinearity analysis suggested that segmental duplication or whole-genome
duplication of orthologous gene pairs occupied a significant proportion in the evolutionary
process of the ANN gene family.

Figure 5. Extra-genomic collinearity related to PtANN gene family in P. trichocarpa, A. thaliana,
O. sativa, and S. purpurea. Gray lines in extra-genome were presented at collinear blocks, and the
colored lines implied synteny blocks of ANN genes.

2.7. Interaction Prediction and GO Enrichment Analysis

Interaction prediction can reveal the putative relationship among proteins. In gen-
eral, the interacting proteins may play an essential role in plant growth and develop-
ment and response to various stresses by comprehensive regulation. The String database
(https://string-db.org/ (accessed on 22 August 2021)) was used to identify the possible
interaction network, and the Cytoscape software was applied to visualize. As shown in
Figure 6A, the interaction network of AtANN members was relatively complicated, and the
putative proteins that interacted with AtANNs contained ubiquitin-associated (UBA)/TS-
N domain-containing protein, cold shock domain protein, glutathione S-transferase, gly-
cylpeptide N-tetradecanoyltransferase, calcineurin-like metallo-phosphoesterase, and so
on. Additionally, the interaction relationship of PtANNs indicated that PtANNs might
interact with glutathione S-transferase, glycylpeptide N-tetradecanoyltransferase, and so

https://string-db.org/
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on (Figure 6B). The putative interaction relationship revealed that ANNs might regulate
cellular ROS and the balance of intracellular and extracellular permeability.

Figure 6. The putative proteins interacted with ANNs. The String database and Cytoscape were used
to identify the interaction relationship of ANN members in Arabidopsis (A) and poplar (B).

Regarding ANNs associated with ROS and osmotic homeostasis, gene ontology (GO)
was applied to identify the putative physiological function of ANNs. Based on the GO
analysis, the ANNs were significantly enriched in molecular function, such as calcium
ion binding function, phospholipid-binding function, calcium-dependent phospholipid
binding function, and lipid-binding function (Figure 7). It is suspected that ANNs may
participate in osmotic stresses by regulating osmolytes, including lipid and ion. In addition,
ANNs as the Ca2+-dependent proteins were supposed to be associated with the stress
resistances through maintaining intracellular and extracellular Ca2+ homeostasis. These
observations have shown that ANNs are essential proteins for cells to resist intracellular
and extracellular homeostasis.

Figure 7. Gene ontology (GO) analysis of ANN genes from Arabidopsis (A), rice (B), and poplar
(C) and distribution in categories of molecular function.
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2.8. Cloning and Subcellular Localization of PtANNs

Gene-specific primers for PtANN CDS applications were designed based on the PtANN
sequences (Supplementary Table S4). Using P. trichocarpa cDNA as a template, the target
PtANN genes were amplified using PCR (Supplementary Figure S5). Additionally, the PCR
products of PtANN genes were purified, and each PtANN gene fragment was ligated with
PEASY-T3 plasmid, respectively. Then, the positive clones containing PtANN genes were
screened and sequenced (Supplementary Figure S6).

To further discover the function of PtANNs, the PtANN4 homologous with AtANN1
was chosen to examine the subcellular localization. The PtANN4 was cloned into the
pCAMBIA1300-GFP plasmid to generate the recombinant plasmid pCAMBIA1300-PtANN4-
GFP. Subsequently, the recombinant plasmid transformed into Agrobacterium strain
GV3101 was used to infiltrate tobacco leaves. The subcellular localization of PtANN4-GFP
was identified 72 h after infiltration using a C2-ER confocal laser fluorescence microscope
(Nikon, Tokyo, Japan). Subcellular localization showed that GFP signals (control group)
were detected in the whole cells, while the fluorescence of the GFP emitted by PtANN4-
GFP fusion protein was localized in the cytoplasm and plasma membrane of tobacco cells
(Figure 8). Taken together, the result suggested that PtANN4 is a cytoplasm and plasma
membrane-colocalized protein.

Figure 8. Subcellular localization of PtANN4. Transient expression of pCAMBIA1302-PtANN4-GFP
vector in tobacco leaf cells with the pCAMBIA1302-GFP construct used as the control. Bar = 10 µm.

2.9. Tissue-Specific Expression Profile of PtANNs

To explore the putative functions of PtANNs, qRT-PCR was used to examine the
expression patterns of PtANN genes in different tissues of P. trichocarpa, ‘Nanlin 895’, and
‘Shanxinyang’. Generally speaking, the heatmap in Figure 9 showed that the 12 PtANN
genes were expressed in the roots, stems, and leaves of poplar, and PtANN genes are
presented at the dominant tissue-specific expression. (Figure 9A). Additionally, the highest
expression levels PtANN4, 9, and 11 were identified in stems of P. trichocarpa. In contrast, the
largest expression accumulations of PtANN5–7 were found in roots, and the highest mRNA
accumulations of PtANN2 were detected in young leaves of P. trichocarpa. In addition,
PtANN1, 3, 8, 10, and 12 were highly expressed in mature leaves of P. trichocarpa (Figure 9A).
Cluster analysis showed that PtANN10 and PtANN12 were clustered on the same branch.
In contrast, PtANN1–9 and PtANN11 were clustered on another branch, implying that
PtANNs clustered on the same branch had relatively similar expression patterns. The
expression patterns of the PtANN genes were also discovered in the leaves, stems, and
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roots of ‘Nanlin 895’ (Figure 9B). For example, PtANN6, 7, and 9 had relatively higher
expression levels in stems. In comparison, other PtANNs presented higher expression
levels in leaves, and the lower expression levels of all PtANNs were detected in roots. For
‘Shanxinyang’, the PtANNs expression shared the divergent features in different organs
and tissues (Figure 9C). For example, higher transcriptional levels of PtANN5 and 6 were
presented at roots. PtANN1–3, 8, 10, and 12 exhibited higher expression levels in mature
leaves. In addition, higher expression levels of PtANN4, 7, 9, and 11 were accumulated in
the stems. Taken together, PtANNs are widely expressed in various tissues, indicating that
PtANNs may be extensively involved in several types of physiological activities of poplar.
In addition, the expression pattern of the same PtANN gene in different poplar varieties
occupied the divergent feature, indicating that the same PtANN may participate in various
physiological processes and performs other functions in different poplar varieties.

Figure 9. Tissue-specific expression patterns of PtANN genes in P. trichocarpa (A), ‘Nanlin 895’ (B), and
‘Shanxinyang’ (C) tissues. Three independent experiments were repeated, and poplar PtActin (XM-
006370951) was used as an internal control.

2.10. Expression Analysis of PtANNs under Abiotic Stress

To sufficiently investigate PtANNs function in abiotic stress, the 12 PtANNs expres-
sions were analyzed by qRT-PCR experiments. The leaves of ‘Nanlin 895’ were treated for
salt, drought, ABA, and PEG treatments. The expression of all PtANNs was up-regulated
under 10% PEG6000 stress for most of the treatment time, and the transcript levels of
PtANN1–3 and 6–8 were distinctly accumulated when poplars were treated by PEG6000
stress. All those observations illustrated that PtANNs might be involved in the response
of PEG6000 stress (Figure 10A). Moreover, the expression level of PtANNs was increased
with 200 mM NaCl treatment. The most significant expression of PtANN1, 2, and 7 were
detected in 200 mM NaCl treatment (Figure 10B). In addition, the mRNA accumulations of
PtANN1, 2, 4, 6, 9, and 12 were down-regulated under the 2 mM H2O2 treatment. While
The expression levels of PtANN3, 5, 7, 8, and 11 increased significantly after 2 mM H2O2
stress treatment. These results indicated that PtANNs have differentiated in response to
H2O2 stress. The detailed regulation mechanism of PtANNs in response to ROS needs
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to be further explored (Figure 10C). Moreover, except for PtANN2, the transcript levels
of PtANNs experienced large numbers of accumulation when the poplars were treated
by 200 µM ABA stress. The highly significant expression accumulations were identified
in PtANN3, 5, 7, 8, and 11 under the most stressful time. Therefore, most PtANNs could
respond to ABA treatment, implying that PtANNs may regulate stress response through the
ABA signaling transduction pathway (Figure 10D). The above observations indicate that
PtANNs that are considered the key regulators are possibly involved in various stresses.

Figure 10. The qRT-PCR identification of PtANN expression levels in response to various stresses.
The heatmap was used to show PtANN gene transcript levels under 10% PEG6000 (A), 200 mM NaCl
(B), 2 mM H2O2 (C), and 200 µM ABA (D). Three independent experiments were repeated, and
poplar PtActin (XM-006370951) was used as an internal control. PtANN expression was normalized
to that in the untreated leaf.

3. Discussion

Abiotic stresses usually affect cell homeostasis and even result in cell death, which
seriously affects plant development and output [38]. Plants have a series of regulatory
mechanisms to withstand extremely adverse environments and maintain relative stability
of the internal cell environment during evolution [39,40]. ANN plays an essential role in
maintaining Ca2+ homeostasis, especially the stability of Ca2+ in the plasma membrane [13].
Plant ANN is a large and conserved gene family, which plays a vital role in plant growth
and development and participates in various stress responses such as cold, drought, and
salt resistance [26,41]. At present, the studies on the reaction of plant ANN to abiotic stress
have partially been analyzed. To date, the research mainly focuses on herb plants such as
Arabidopsis, rice, and cotton. However, the evolutionary history and characterization of
ANN remain unknown in woody plants. In the present study, the poplar ANN gene family
was identified based on the poplar genome, and annotation and the transcript patterns of
PtANNs were also analyzed, providing a theoretical basis for studying the physiological
mechanism and PtANNs function.

The cluster analysis found that the evolutionary relationship of plant ANN is complex,
and ANNs from different species are distributed at intervals, with PtANNs interspersed
among them. PtANNs are clustered with Arabidopsis (dicotyledon) ANNs, and a small
part of PtANNs are pressed with rice (monocotyledon), implying that the evolutionary
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complexity of the PtANN gene family. Jami et al. [42] constructed a phylogenetic tree of
149 plant ANNs and divided them into nine groups. The observation implied that the
expansion of the ANN gene family might be associated with genome complexity. Addition-
ally, the phylogenetic tree indicated that the ANN gene family might be related to gene
duplication, and ANN expansion means that the ANN family may play an essential role
in response to environmental stress [43]. P. trichocarpa is a diploid plant with clear genetic
information and contains 12 PtANN genes in the whole genome, more than ANN genes
in A. thaliana. It is speculated that poplar has a relatively larger genome than A. thaliana.
The ANN gene replication may occur with the evolution of species and the complexity
of the plant genome, which increases the number of ANN family members in a species.
The ANNs from monocotyledons and dicotyledons are clustered in different evolutionary
subbranches, which indicates that their common ancestor produced species specificity in
the process of evolution. Poplar ANNs have a close relationship with Arabidopsis ANNs,
but a small part of poplar ANNs and rice ANNs are clustered together. The number of
PtANN exons is mostly six, and few members occupy the four or five exons. It is speculated
that this phenomenon results from combining two exons into one exon. At the same time,
many members of PtANNs are distributed on the same chromosome, and their sequences
and protein structures have high similarities.

For analysis of the PtANN conservative domain, it was found that PtANN4–7 con-
tains the IRI motif and GXGT motif. Previous studies showed that IRI could promote the
combination of plant ANN and F-actin. F-actin participates in many essential physiol-
ogy activities in plant growth and development, such as cell secretion, cell division, cell
morphology maintenance, and material transportation [10,44]. In relation to the ANN
domain-containing IRI motif, it was speculated that this kind of ANN participant in plant
regulatory processes through F-actin. Three of the eight members of the Arabidopsis ANN
family (AtANN3, AtANN4, and AtANN4) do not contain IRI motifs [10], indicating that
not all ANN members have IRI motifs, and this type of ANN may participate in plant
physiological activities in other regulatory ways. PtANN4–7 contains a conserved IRI
domain, implying that PtANN4–7 involved in plant physiological regulation are closely
associated with domain IRI and F-actin. At the same time, PtANN1–3 and 8–12 may apply
other regulatory mechanisms during the whole poplar lifestyle. In addition, the analysis
of AtANN1 showed that the conserved His40 resembled the structure of horseradish per-
oxidase plays an essential role in Arabidopsis peroxidase activity [10,45]. The previous
study on the crystal structure of cotton GhAnn1 indicated that the GhAnn1 MCCY domain
named as S3 cluster is formed by two Cys, Met, and Tyr, which can be used as one of the
receptors of the electron transport chain to participate in intracellular redox reaction [46].
At present, many studies have proved that ANN has peroxidase activity in plant cells. The
recombinant C. annuum AnnCa24 and mustard AnnBj1 had peroxidase activity [20,21,47],
and maize ANN showed peroxidase activity under pH 7.4 without calcium ion [48].

Moreover, maize, cotton, and tomato ANNs have proved that ANNs have the function
of binding nucleotides and are involved in nucleotide hydrolyzation [21,49]. ANNs of maize
and tomato can hydrolyze ATP and GTP, and the reaction rate is similar, but their affinity
for GTP is significantly lower than that of cotton AnnGh1. The Walker A (GXXXXGKT/S)
and GTP binding domain (GXXG), considered as a typical structure of GTPase, plays a
vital function in ANN nucleotide-binding and hydrolyzation [49]. The cotton AnxGh2 and
maize AnxZm33/35 showed that the GTP-binding motif partly overlaps with the Ca2+-
binding site on the repeat IV, indicating that Ca2+ and GTP have a competitive relationship
and Ca2+ can inhibit the GTPase activity of annexin [49,50]. In this study, the PtANN1, 3–5,
7, and 9 were identified to occupy the GXXG domain, indicating that PtANNs might have
a similar function to cotton AnxGh2 and maize AnxZm33/35. However, the exact role of
PtANN in nucleotide binding and hydrolyzation needs to be furtherly explored.

Subcellular localization of a protein is usually associated with its function [51,52].
ANN has been considered a cytoplasmic protein with two soluble and stable forms. ANNs
reversibly bound to cytoskeletal components or mediated the protein interaction between
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cells and extracellular matrix. Plant ANNs were identified as localized in the cytoplasm,
plasma membrane, and nuclear membrane. Additionally, the more significant proportion
of plant ANNs was illustrated as localized in the cytoplasm, and the possible reason was
that ANNs play an essential role in membrane function [53,54]. In addition, the subcellular
localization of plant ANNs was closely associated with the concentration of Ca2+ and pH
in the cytoplasm [55]. In Arabidopsis, AnnAt2, AnnAt3, and AnnAt6 were located in the
cytoplasm and nucleus, and AnnAt5 were located in peroxisome [10]. The wheat ANNs,
P39, and p22.5 were localized to the plasma membrane under low-temperature stress [24].
Alfalfa MtAnn1 was located in the nuclear membrane [56]. Celery ANN, named VCaB42,
was localized in the vacuolar membrane [57]. In this study, all PtANNs were predicted
as located in the cytoplasm, and PtANN4 homologous with AtANN1 was identified as
distinctly localized in the plasma membrane. A part of the GFP signal was detected in
the cytoplasm. The plasma membrane was considered an essential interface between
plant intracellular and extracellular environments, regulating various development and
metabolic pathways. PtANN4 as a dominant plasma membrane binding protein may be
well adapted to sense and respond to environmental stimuli.

The gene expression patterns are dominantly related to gene function, and there
were significant differences in the expression patterns of ANNs in divergent plant tissues.
The previous studies showed that the plant ANNs expression has a tissue-specific pat-
tern [10,36,58]. Arabidopsis AtANN1 was expressed in all tissues and highly accumulated
in stems. Still, the AtANN2 expression level in stems was relatively lower than that in
other tissues, and a higher transcript level was identified in roots AtANN5, AtANN6, and
AtANN7 were expressed preferentially in flowers [10]. The expression of plant ANN is
related to plant growth and development, involving embryogenesis, seed germination, root
development, vascular bundle development, cork formation, cotton fiber elongation, and
cell cycle [10,59,60]. Wheat TaAnn10 gene was specifically expressed in anthers, related to
wheat male fertility [61]. The difference in the ANN expression pattern reflects the differ-
ence in the functional division of annexin members. In this study, 12 PtANN genes were
identified in different tissues of P. trichocarpa, ‘Nanlin 895’, and ‘Shanxinyang’, revealing
that PtANNs are ubiquitously expressed in various tissues of poplar. In addition, the expres-
sion of PtANN4, 9, and 11 dominantly accumulated in stems of P. trichocarpa. The relatively
higher expression levels of PtANN6, 7, and 9 were presented in stems of ‘Nanlin 895’, and
the higher mRNA levels of PtANN4, 7, 9, and 11 were illustrated in stems of ‘Shanxinyang’.
The same PtANN gene in different poplar varieties showed divergent expression patterns,
implying that PtANNs undergo functional differentiation in the process of evolution. ABA
and H2O2, as the critical stress signal in plant cells, are widely involved in plant growth
and development or abiotic stress [62]. They are composed of systemic signal transduction
and respond to abiotic stress through complex gene regulation networks [63,64]. The previ-
ous studies showed that environmental factors, such as drought, salt, lower temperature,
and plant hormone, have distinct influences on the plant ANNs expression [36,65]. The
Arabidopsis and rice ANN genes expression and abundance were regulated by drought
stress [12,23,36]. For example, the Arabidopsis AtANN1 and AtANN4 expression levels
were associated with the salt stress response [36]. The transcript level of rice OsANN3
was also induced by PEG and ABA treatment [22]. Additionally, the expression levels
of 8 tomato SlANNs were influenced by plant hormones, both SlANN3, 6, 8, and 9 were
affected by ABA treatment, and the mRNA accumulations of SlANN 1.1, 1.2, 4, and 7 were
induced by GA treatment [17]. In addition, six peanut AhANNs might respond to drought,
salt, low-temperature, and hormones treatments [25]. In this study, we distinguished the
expression levels of 12 PtANNs that could be affected by diverse abiotic stresses, which
suggested that PtANNs might possess abiotic stress resistance based on the analysis of
qRT-PCR. Additionally, the divergence within expression levels and abundances under
the diverse abiotic stresses implied that PtANNs occupied different regulation modes in
resistance to various treatments. Drought and salt stress can accumulate peroxide in plants,
damage plant cells, and even cause many tissues and cell death. ANNs have peroxidase
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activity that plays an essential role in maintaining the stability of membrane structure
and cell secretion. The objective was to explore the putative features and functions of
PtANNs and provide a basis for improving the quality of poplars by mining the dominant
PtANN resources.

4. Materials and Methods
4.1. Genome-Wide Identification of PtANN Genes

The whole genomes and annotations of P. trichocarpa, A. thaliana, and O. sativa were
applied to downloaded from the phytochrome (https://phytozome-next.jgi.doe.gov/ (ac-
cessed on 2 August 2021)). The HMM model PF00191 of PtANN domain and 8 AtANN
sequences were downloaded from TAIR (The Arabidopsis Information Resource) as a query
to search the P. trichocarpa genome protein databases. The PtANNs achieved from the above
methods were considered candidates and determined the completeness of the PtANN do-
main with SMART and the CDD database. In addition, the Cell-PLoc 2.0 (http://www.csbio.
sjtu.edu.cn/bioinf/Cell-PLoc-2/ (accessed on 2 August 2021)) was used to identify the puta-
tive subcellular localization of PtANNs. The ExPASy (https://web.expasy.org/protparam/
(accessed on 2 August 2021)) was applied to calculate the molecular weights (MWs), theo-
retical isoelectric points (pI), and grand averages of hydropathicity (GRAVYs) of PtANNs.

4.2. Phylogenetic Tree and Three-Dimensional (3D) Structures of PtANNs

The software ClustalX2 was applied to perform the multiply alignment of PtANNs.
The MEGA7 was used to construct phylogenetic trees using the neighbor-joining (NJ)
method. The evolutionary relationships of the phylogenetic tree were calculated by per-
forming the bootstrap values, tree inferred from 1000 replicates at each branch. The
SWISS-MODEL (https://swissmodel.expasy.org (accessed on 2 August 2021)) was com-
mitted to constructing the homologous structures of PtANNs, and Chimera software was
applied to visualize the 3D structures of PtANNs. The MEME program was used to identify
motif structures of PtANN proteins, and the TBtools were used to visualize the conserved
motifs and PtANN gene structures based on the poplar genome and innovation.

4.3. Promoter Cis-Acting Elements and Collinearity Analysis of PtANNs

The 2 kb upstream region sequences of PtANNs were extracted and submitted to
the PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed
on 2 August 2021)), and the TBtools was used to visualize cis-acting elements in PtANN
promoters. The chromosomal distribution information of PtANN genes were obtained
from P. trichocarpa genome database and genome gff3 file. Both PtANN gene duplication
events, including tandem and segmental duplication and collinearity among different
species, were analyzed by MCScanX and visualized by TBtools [66], and the values of
Ka (nonsynonymous), Ks (synonymous), and Ka/Ks were calculated by TBtools/Simple
Ka/Ks calculator.

4.4. Plant Materials and Various Abiotic Treatments

Poplar strains including P. trichocarpa, ‘Shanxinyang’ (P. davidiana× P. bolleana Loucne),
and ‘Nanlin 895’ (P. deltoides× P. euramericana) were cultivated in a greenhouse under
long-day conditions at 23 ◦C and 74% humidity. The P. trichocarpa, ‘Shanxinyang’, and
‘Nanlin 895’ were applied to investigate the transcript levels of PtANNs in different tissues.
Additionally, ‘Nanlin 895’ was chosen to identify the expression patterns of PtANNs in
response to various abiotic stresses. The poplar seedlings were treated individually with
200 mM NaCl, 10% PEG6000, 2 mM H2O2, and 200 µM ABA, and the poplar leaves were
sampled at certain treatment times and stored at −80 ◦C until following RNA extraction.

4.5. PtANN Amplifications

Poplar RNA was extracted from the leaf before and after various stress treatments,
stem, and root samples by RNA extraction kit (Takara, Tokyo, Japan) based on the instruc-
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tion. The first-strand cDNA was synthesized using the 1 µg total RNA as template and
reverse-transcriptase (Takara, Tokyo, Japan). To clone a full-length CDS of PtANNs, the
gene-specific primers (Supplementary Table S4) were designed based on the poplar genome
annotation. The PCR reaction procedure was followed: pre-denaturation at 95 ◦C for 5 min;
followed by 35 cycles of denaturation at 95 ◦C for 1 min, annealing at 56 ◦C for 30 s, and
extension at 72 ◦C for 30 s; and a final extension at 72 ◦C for 10 min. Subsequently, PCR
products were ligated into the PEASY-T3 vector (TransGen, Beijing, China) and sequenced.

4.6. Subcellular Localization of PtANN4

Based on the analysis of restriction sites of PtANN4 and pCAMBIA1302, the KpnI and
XbaI were chosen to construct the subcellular plasmid. The gene-specific primers for con-
structing the recombinant vectors are shown in Supplementary Table S4. The coding region
of PtANN4 was cloned into the pCAMBIA1302 vector to generate the recombinant vector
pCAMBIA1302-PtANN4-GFP. The Agrobacterium GV3101 containing the recombinant vec-
tor pCAMBIA1302-PtANN4-GFP were cultivated, harvested, and resuspended in 10 mM
MgCl2 solution containing 10 mM 4-morpholineethanesulfonic acid hydrate (MES). The re-
suspended Agrobacterium GV3101 suspensions were infiltrated into N. benthamiana leaves,
and the GFP signals were detected by a C2-ER confocal laser fluorescence microscope
(Nikon, Tokyo, Japan) after injection for 72 h.

4.7. Identification of PtANN Expression Levels

The reverse-transcribed cDNA template was mixed in the total 20 µL reaction volume
by UltraSYBR Green I Mixture (CWBIO, Beijing, China). The qRT-PCR analysis was
performed on ABI 7500 Fast Real-Time PCR System (Applied Biosystems). The primers
designed for the PtANN expression analysis were listed in Table S4. The Ptactin (XM-
006370951) as an internal reference was used to identify the relative expression levels of
PtANN genes through 2–∆∆CT method. The amplification conditions were as follows:
95 ◦C for 10 min; followed by 40 cycles of 95 ◦C for 10 s, 60 ◦C for 30 s, and 72 ◦C for 30 s.

5. Conclusions

In the present study, the 12 PtANNs were systemically identified from P. trichocarpa
genome, and gene application, gene and protein structures, chromosomal localization,
and expression patterns were comprehensively illustrated. The 12 PtANNs could be
divided into three major classes based on the phylogenetic tree. The PtANN structures
and motif distributions shared high similarities with ANN in the same phylogenetic clade.
Additionally, PtANNs presented tissue-specific expression patterns. In addition, PtANNs
might play an essential role in the resistance of various abiotic stresses. These observations
provide a theoretical basis and valuable information for further exploring the regulation
mechanism of PtANNs in drought and salt stresses.
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Abbreviations

annexin ANN
abscisic acid ABA
neighbor-joining NJ
protein kinase C PKC
three-dimensional 3D
actin-binding domain IRI
gibberellin GA
salicylic acid SA
methyl jasmonate MeJA
Pyrabactin resistance 1 PYR1
PYR1-like PYL
protein phosphatase 2C PP2C
sucrose non-fermenting1-related protein kinase2 SnRK2
protein kinase C PKC
mitogen-activated protein kinase MAPK
cyclic AMP cAMP
glutathione S-transferase GmGST
high temperature and high humidity HTH
cyclin-dependent kinase 5 Cdk5
protein kinase A PKA
cyclin-dependent kinase 5 Cdk5
glycogen synthase kinase 3 GSK3
DNA-dependent protein kinase DNA-PK
ribosomal S6 kinase RSK
division cycle2 cdc2
casein kinase II CKII
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