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Abstract: As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium
candidum are of great value due to their high yield and low cost. In this work, three glycoside
compounds, β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose
1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were
extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-
current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were
optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under
300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary
separation products were obtained. In addition, the products (150 mg) were separated by HSCCC
under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding
31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures
were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the
three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the
best antioxidant capacity and its IC50 value was 0.0497 mg/mL.

Keywords: ultrahigh pressure extraction (UPE); high-speed counter-current chromatography (HSCCC);
PLBs of D. officinale; glycoside compounds

1. Introduction

A culture of protocorm-like bodies (PLBs) of Dendrobium candidum has been obtained
by using a tissue culture to induce the regeneration of D. officinale [1], which has the
advantages of easy planting, short growth cycle, and low cost [2]. Its unique medical
value and health benefits have led to the excessive use of D. officinale, which has a low
reproduction rate in nature, and the resources of D. officinale are in short supply [3–5]. The
PLBs are considered as an excellent material to replace D. officinale [6]. PLBs of D. officinale
have the activities of treating skin problems and strengthening the immune system, and
they have antioxidant, anti-tumor, anti-cancer, and anti-inflammatory activities [7–9]. At
present, the research of PLBs of D. officinale has mainly focused on cultivation [10,11],
long-term preservation [12], gene expression [13,14], etc., and there are few reports on the
active components in PLBs [15,16], among which the separation of glycosides from PLBs of
D. officinale has not been reported.

Glycoside compounds are derivatives of polysaccharides and play an important role
in the treatment of liver diseases [16] and diabetes [17], and they have anti-tumor [18]
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and neuroprotective effects [19,20]. However, the separation of these compounds has
always been a major problem in natural medicinal chemistry research because of their
highly polarity-sensitive property. Most of their separation has mainly been with column
chromatography [21,22], which has obvious disadvantages such as high time-consumption
and solvent pollution, and low yield and efficiency. Thus, it is unsuitable for the large-
scale production of glycoside compounds in this traditional way [23,24]. In this regard,
an effective and ecofriendly approach for isolating glycosides from PLBs of D. officinale
is required.

Ultrahigh pressure extraction (UPE) subjects the material to extraction pressures
between 100 and 800 MPa, which can increase the mass transfer level and accelerate
the diffusion of active components. In recent years, it has been used to extract active
compounds from natural products due to its advantages of low energy consumption,
shortened extraction time, high efficiency, etc. [25,26]. Compared with conventional column
chromatography, high-speed counter-current chromatography (HSCCC) is a continuous
and efficient liquid-liquid extractive chromatography with no solid support [27–29], which
can also eliminate the irreversible adsorption problem of the sample and separate different
substances from the two phases through different distribution coefficients [30,31]. HSCCC
has the advantages of recoverable samples, less solvent consumption, and low cost [32,33].
A combined application of UPE and HSCCC could be a good choice for an effective
extraction and separation method.

In this study, an extraction and purified method of three glycoside compounds,
β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose 1-
[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III)
(Figure 1), from the PLBs of D. officinale was successfully established by a combination of
UPE and HSCCC.
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Figure 1. The chemical structure of the three compounds. I: β-D-glucopyranose 1-[(E)-3-(4-
hydroxyphenyl)-2-propenoat]; II: β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat];
III: 1-O-sinapoyl glucopyranoside.

2. Results and Discussion
2.1. Ultrahigh Pressure Extraction Parameters

The evidence shows that the factors affecting the UPE may include pressure level, pres-
sure holding time, type and concentration of solvent, time to achieve treatment pressure,
decompression time, product initial temperature, and product pH [34]. To investigate the
apparent parameters for UPE, we optimized four of them by changing the concentrations
of extraction solvents, the extraction pressure, the extraction time, and the liquid/solid
ratio in the action system. The yield of the target compounds was used as the marker for
extraction efficiency evaluation.

2.1.1. The Effect of Ethanol Concentration

The concentration of the extraction solvent will affect the solubility of the target
component, and different solvents will produce different target compounds. To assess this,
five different concentrations of aq. ethanol were used as solvents, and UPE extraction was
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performed at 300 MPa, 2 min, and with a 1:20 (g/mL) solid/liquid ratio. The yields of
glycoside compounds extracted with different concentrations of aq. ethanol are shown
in Figure 2a. When the aq. ethanol concentration ranged from 30% to 50%, the increased
glycoside extraction rate was observed with an increasing aq. ethanol concentration. In
contrast, the extraction rate of glycosides decreased as the aq. ethanol concentration
increased from 50% to 70%. The extraction rate of the three glycoside compounds reached
its highest with the aq. ethanol concentration of 50%. The polarity of the extraction solvent
was similar to that of the target compound. Besides, ethanol is the most commonly used
nontoxic organic solvent as the extraction solvent. Therefore, in the further experiments,
50% ethanol solution was chosen for the following experiments.
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Figure 2. Effects of solvents (a), extraction pressure (b), extraction time (c), and sample solvent volume ratio (g/mL)
(d) on the contents of target compounds by UPE. (I) β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat]; (II) β-D-
glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat]; (III) 1-O-sinapoyl glucopyranoside.

2.1.2. The Effect of Pressure

Ultrahigh pressure can increase the mass transfer rate and the solubility of glycosides,
which is directly associated with the extraction rate and extraction time. The effect of pres-
sure was investigated by extracting samples at pressures from 100 to 500 MPa with other
parameters such as a 50% ethanol solution, 2 min, and a 1:20 (g/mL) solid/liquid ratio. As
shown in Figure 2b, the extraction yield increased as the pressure rose from 100 to 300 MPa.
Meanwhile, no obvious change was observed when the pressure was in the range of
300–500 MPa. Therefore, the pressure of 300 MPa was selected for subsequent experiments.

2.1.3. The Effect of Extraction Time

The effect of extraction time was investigated in the range from 1 to 5 min with other
conditions such as 300 MPa, 50% ethanol solution, and a 1:20 (g/mL) solid/liquid ratio,
and the results are shown in Figure 2c. The extraction yield increased with extraction time
from 1 to 2 min. However, there was no obvious increase in their extraction yields with
the extraction times of 3, 4, and 5 min. This was because the different pressures between
the inner and outer cell membranes were large enough to cause instant permeation and to



Molecules 2021, 26, 3934 4 of 12

obtain the highest yield rapidly under high pressure [35]. Therefore, the extraction time of
2 min was selected.

2.1.4. The Effect of Solid-Liquid Ratio

As presented in Figure 2d, a clear relationship between the yield of the three com-
pounds and the solid-liquid ratio was revealed with a 50% ethanol solution under a 300 MPa
pressure for 2 min. Gradually increased yields were observed with the decrease in the
solid-liquid ratio. Taking the solvent consumption and processing cost into consideration,
the solid-liquid ratio of 1:30 (g/mL) was chosen as the best ratio in subsequent experiments.

According to the results of single factor experiments, the suitable conditions of the three
target compounds extracted by UPE were 50% ethanol solution, 300 MPa extraction pressure,
2 min extraction time, and 1:30 (g/mL) solid-liquid ratio. Using the above UPE conditions, the
extraction yields of three compounds were 2.84, 5.89, and 15.31 mg/g, respectively.

2.2. Comparison of UPE and Hot Reflux Extraction

The extract yields of three glycoside compounds from PLBs implemented by UPE
and traditional heat reflux extraction were compared. Under the conditions of Section 3.4,
the extraction yields of the three compounds by HRE were 2.71, 4.18, and 15.23 mg/g,
respectively. The results showed that UPE attained slightly higher extraction yields than
those of HRE, while reducing the extraction time from 60 to 2 min and not requiring
heating. Therefore, UPE was an effective and rapid technique for the extraction of the three
glycosides from PLBs.

2.3. Selection of the Optimized Two-Phase Solvent System

In order to successfully obtain monomeric compounds through HSCCC, the KD value
of each target compound should be considered. Generally, the KD value for the target
component is usually expected to be between 0.5 and 2.0. If the KD value is under 0.5,
the solute will be eluted near the solvent front, which may result in peak resolution loss
and poor separation performance; if the KD value is much greater than 2.0, the solute
will elute in an excessively broad peak and may lead to a longer elution time, reduced
column efficiency, and wasted solvent [36–38]. Meanwhile, the stationary phase retention
can reflect the exaction rate during HSCCC separation. The KD values of three compounds
in different solvent systems are shown in Table 1.

Table 1. The KD values of three compounds in different solvent systems.

Solvent System Volume Ratio
(v/v)

KD Values

Compound I Compound II Compound III

MTBE-n-butyl alcohol-
acetonitrile-water

4:2:3:8 0.39 0.79 0.95

5:1:2:6 0.98 1.24 1.45

2:0:2:3 0.23 0.36 0.39

6:0:3:8 0.21 0.38 0.43

chloroform-methanol-
water 4:3:3 2.56 2.98 3.79

First, a chloroform-methanol-water (4:3:3, v/v/v) two-phase solvent system was
selected according to the properties of the target compounds. However, the KD value
was too large, the target compound eluted for a long time, and the resolution was poor.
Then, a series of highly polar solvent systems with varying volume ratios composed of
MTBE-n-butanol-acetonitrile-water were used to efficiently resolve the compounds.

It can be seen from Table 1 that when the MTBE-n-butanol-acetonitrile-water (4:2:3:8,
v/v/v/v) solvent system was used, the KD values of the three compounds were 0.39, 0.79,
and 0.95, respectively, which was in line with the relatively ideal range of KD values. The
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KD values of the three compounds were also greater than 0.5 and less than 2 in the MTBE-
n-butanol-acetonitrile-water (5:1:2:6, v/v/v/v) two-phase solvent system. Therefore, these
two solvent systems were suitable for the target compounds separation.

The MTBE-n-butanol-acetonitrile-water (4:2:3:8, v/v/v/v) two-phase solvent system
for the separation solvent system was used first. As Figure 3a shows, when the flow rate of
the aqueous phase was 2.0 mL/min, the three compounds eluted together. Based on this,
the MTBE-n-butanol-acetonitrile-water (5:1:2:6, v/v/v/v) two-phase solvent system was
used as the separation solvent for the second time. The evidence showed that although
this system provided a suitable KD value at a 2.0 mL/min flow rate of the aqueous phase,
stationary phase retention was small (about 35.9%). In addition, compound I was separated,
but compounds II and III were eluted together (Figure 3b) under this condition. The
reason may be that the flow rate was too fast to separate compounds II and III. Therefore,
the flow rate was adjusted to 1.0 mL/min, and the others remained unchanged in the
next experiment. The results indicated that the stationary phase retention was 41.67%,
and compounds I, II, and III were successfully isolated (Figure 3c). The elution flow
rate decreased with the length of the separation column, which means it improved the
separation effect.
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Figure 3. HSCCC chromatogram of the crude sample from PLBs of D. officinale. (a) MTBE-n-butyl alcohol-acetonitrile-
water (4:2:3:8, v/v/v/v) system, retention of stationary phase: 36.7%, flow rate: 2.0 mL/min; (b) MTBE-n-butyl alcohol-
acetonitrile-water (5:1:2:6, v/v/v/v) system, retention of stationary phase: 35.9%, flow rate: 2.0 mL/min; (c) MTBE-n-butyl
alcohol-acetonitrile-water (5:1:2:6, v/v/v/v) system, retention of stationary phase: 41.67%, flow rate: 1.0 mL/min. Peak I:
β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat], Peak II: β-D-glucopyranose 1-[(E)-3-(3,4-dihydroxyphenyl)-2-
propenoat], Peak III: 1-O-sinapoyl glucopyranoside.
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2.4. Purification of Three Compounds by HSCCC

A 150 mg sample (fraction 4, separated as Section 3.5) was separated and purified in
the MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v) solvent system. As shown in
Figure 3c, three compounds were separated in one step by HSCCC in 4 h. Finally, 31.43 mg
of β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I) with a purity of 97.8%,
10.21 mg of β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II) with a
purity of 98.6%, and 24.75 mg of 1-O-sinapoyl glucopyranoside (III) with a purity of 98.4%
were obtained, the purities being determined by HPLC, as shown in Figure 4.
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2.5. Identification of Purified Compounds

The structures of the purified compounds were identified by the comparison of their ESI-
MS, 1H NMR, and 13C-NMR data with those in the literature (see Supplementary Materials).

Compound I: positive ESI-MS m/z: 349[M+Na]+ C15H18O8, 1H NMR (400 MHz,
DMSO) δ:7.62 (1H, d, J = 16 Hz, HC-7), 7.56 (2H, d, J = 8 Hz, HC-2, 6), 6.79 (2H, d, J = 8Hz,
HC-3, 5), 6.37 (1H, d, J = 16 Hz, HC-8), 5.44 (1H, d,J = 8Hz,HC-1’). 13C-NMR (400 MHz,
DMSO): 165.8(s, C-9), 160.6 (s, C-4), 146.4(d, C-7), 131.0 (d, C-2, 6), 125.4 (s, C-1), 115.4 (d, C-
3, 5), 114.0 (d, C-8), 94.7 (d, C-1’), 78.3 (d, C-3’ or 5’), 76.9 (d, C-5’ or 3’), 72.8 (d, C-2’), 69.9 (d,
C-4’), 61.0 (t, C-6’). The data were in accordance with a previous report [39], and compound
I was identified as β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat].

Compound II: positive ESI-MS m/z: 365[M+Na]+. C15H18O9, 1H NMR(400 MHz,
DMSO) δ:7.54 (1H, d, J = 16Hz, HC-7), 7.07 (1H, d, J = 2 Hz, HC-2), 7.00 (1H, dd, J = 8 Hz
and 2 Hz, HC-6), 6.77 (iH, d, J = 8 Hz, HC-5), 6.25 (1H, d, J =16Hz, HC-8), 5.43 (1H, d,
J = 8 Hz, HC-1’).13C-NMR (400 MHz, DMSO) δ:165.8 (s, C-9), 150.1 (s, C-4), 148.4(d, C-7),
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146.7 (s, C-3), 125.8 (s, C-i), 123.8 (d, C-6), 116.1 (d, C-2), 114.4 (d, C-8), 111.8 (d, C-5), 94.7
(d, C-i’), 78.3 (d, C-3’ or 5’), 77.0 (d, C-5’ or 3’), 73.0 (d, C-2’), 70.0 (d, C-4’), 61.1 (t, C-6’).
The data were in agreement with the literature [40], and compound II was defined as
β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat].

Compound III: positive ESI-MS m/z: 409[M+Na]+. 1H NMR(400 MHz, DMSO) δ:
7.05(2H, s, H-2 and H-6), 7.64 (1H, d, J = 15.9 Hz, H-7), 6.55(1H, d, J = 15.9 Hz, H-8), 3.80 (6H,
s, OCH3), 5.46 (1H, d, J = 8.0 Hz, H-1’); 13C-NMR (400 MHz, DMSO) δ: 124.75(C-1), 106.88(C-
2 and C-6), 148.52(C-3 and C-5), 147.08 146.02 (C-4), 139.07(C-7), 114.82(C-8), 165.87(C-9),
56.57 (CH3), 94.70(C-1’), 73.04(C-2’), 78.31(C-3’), 70.03(C-4’), 77.01(C-5’), 61.10(C-6’). The
data of compound III were consistent with those of 1-O-sinapoyl glucopyranoside reported
in reference [40].

2.6. DPPH Radical Scavenging Effect

To verify the antioxidant activity of compounds I–III, DPPH radical scavenging effect
tests were performed. The DPPH radical scavenging ability of the three compounds
increased with the concentration, as shown in Figure 5. The IC50 value indicates the
concentration of the corresponding compound when the scavenging rate reaches 50% [41].
The IC50 values of compounds II and III were 0.0497 and 0.1111 mg/mL, respectively.
Compound II had the best DPPH radical scavenging activities in three compounds.
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Figure 5. Scavenging effects of three compounds on DPPH assay (the upper horizontal axis was Vc’s).
I: β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat], II: β-D-glucopyranose 1-[(E)-3-(3,
4-dihydroxyphenyl)-2-propenoat], III: 1-O-sinapoylglucopyranoside.

3. Experimental Section
3.1. Reagents

Organic solvents, including TMBE, n-butyl alcohol, and acetonitrile for HSCCC, were
all purchased from Juye Chemical Factory (Jinan, China). Acetonitrile for HPLC analysis
was obtained from Yuwang Chemical Factory (Yucheng, China). All reagents were at
analytical class without further purification. The water used in solutions and dilutions was
treated with a Milli-Q water purification system (Millipore, Burlington, MA, USA). Ultra-
pure water was prepared by the Milli-Q water purification system (Millipore, Burlington,
MA, USA) for solutions and dilutions.



Molecules 2021, 26, 3934 8 of 12

3.2. Apparatus

The ultrahigh pressure-assisted extraction was performed with an HPP.L3-600 High
Hydrostatic Pressure Processor (Huataisenmiao Biology Engineering Technology Co. Ltd.,
Tianjin, China). The pressure ranged from 0 to 900 MPa, and the pressure precision was
±5 MPa.

The separation of HSCCC was carried out by a TBE-300A apparatus (Tauto Biotech,
Shanghai, China) with a series of three multilayer coil columns (2.6 mm i.d. total capacity
of 300 mL) and a 20 mL sample loop. The above system was also equipped with a
Model TBP1002 constant-flow pump (Tauto Biotech, Shanghai, China), a Model 8823B-UV
detector (Beijing Tianchen Biotech Co., Ltd., Beijing, China), and a DCW-0506 circulatory
temperature regulator (Shanghai Baidian Instrument Co., Ltd., Shanghai, China). A Model
STR1001 portable recorder (Jiangsu shun tong instrument Co., Ltd., Xuzhou, China) was
used to record the chromatogram.

HPLC analysis was performed with Agilent 1120 HPLC equipment (Agilent, Santa
Clara, CA, USA) using a YMC-Pack ODS-A column (5 µm, 250 mm × 4.6 mm, i.d.). ESI-
MS and NMR spectra analysis and identification were performed on an Agilent 6520
Q-TOF (Agilent, Santa Clara, CA, USA) and a Bruker AV-400 spectrometer (Bruker BioSpin,
Rheinstetten, Germany), respectively.

3.3. UPE Conditions

The dried PLBs of D. officinale powder (1 g) was mixed with a given number of solvents,
and it was then moved into a sterile polyethylene bag. The bag was sealed after the removal
of bubbles, and then the mixture was subjected to UPE treatment for a given period. The
different ethanol solution concentrations (30%, 40%, 50%, 60%, and 70% ethanol solution,
v/v), extraction pressures (100, 200, 300, 400, and 500 MPa), extraction times (1, 2, 3, 4, and
5 min), and solid-liquid ratios (1:10, 1:20, 1:30, 1:40, and 1:50 g/mL) were studied. The
extracting solution was centrifuged at 4000 rpm for 10 min, and the supernatant was filtered
through a 0.45 µm membrane. Then, the filtrate was injected into the HPLC for further
analysis. After the UPE conditions were optimized, 150 g of sample powder was extracted.

3.4. Heat Reflux Extraction

Here, 120 mL of 50% (v/v) methanol solution as the extraction solvent was added to
10 g of dried plant powder. The temperature and time of the heat reflux extraction were
fixed at 75 ◦C and 1 h, respectively.

3.5. Silica Gel Column Chromatography Separation

The crude product (63g) extracted by UPE was purified by column chromatography
on silica gel using petroleum:ether-ethyl acetate (4:1-1:1, v/v) as the eluent solvent. The
eluted fraction was combined together according to TLC analysis. Fraction 1 was obtained
by eluting petroleum:ether-ethyl acetate (4:1, v/v), and fractions 2, 3, and 4 were eluted
and achieved by the petroleum:ether-ethyl acetate (3:1, 2:1, and 1:1) solvent, respectively.
Fraction 4 (13.6 g) was further purified by HSCCC.

3.6. Selection of Two-Phase Solvent System and Preparation of Sample for HSCCC

The separation success with HSCCC largely relies on the selection of a suitable two-
phase solvent system, which provides an ideal range of partition coefficients (KD) for
the target compounds. First, after configuring all the two-phase solvent systems, the
appropriate amount of sample that needs to be separated by HSCCC was dissolved in
the upper and lower phases of the same volume. When the distribution equilibrium
was attained, the upper and lower phases were respectively percolated through a 0.45 µm
membrane filter, and the same solution was taken for analysis. The KD value was calculated
using following formula [36]:

KD = CU/CL
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where KD is the partition coefficient, CU is the concentration of the target compound in the
upper phase, and CL is the concentration of the target compound in the lower phase.

Then, based on the target compound partition coefficient (KD) and stationary phase
retention, two-phase HSCCC solvent systems were selected, namely chloroform-methanol-
water (4:3:3, v/v/v), MTBE-n-butanol-acetonitrile-water (4:2:3:8, v/v/v/v), MTBE-n-butanol-
acetonitrile-water (5:1:2:6, v/v/v/v), MTBE-n-butanol-acetonitrile-water (2:0:2:3, v/v/v/v),
and MTBE-n-butanol-acetonitrile-water (6:0:3:8, v/v/v/v).

3.7. HSCCC Separation Procedures

For the HSCCC experiment, the two-phase solvent system of TMBE-n-butyl alcohol-
acetonitrile-water (5:1:2:6, v/v/v/v) was placed in a separator funnel for use. The HSCCC
separation procedures were as follows: the solvent system was separated in a separatory
funnel after equilibrium, and the upper and lower phases were degassed with an ultra-
sound bath for 15 min before use. First, the upper phase was pumped into the multilayer
coiled column and entirely filled at a flow rate of 15 mL/min; then, the lower aqueous
phase was pumped into the column at a flow rate of 2.0 mL/min using the head to end
mode at 800 rpm. After hydrodynamic equilibrium was established, the sample solution
containing 150 mg of sample (fraction 4, separated as Section 3.5) was injected into the
separation column through the injection loop. The effluent collected manually every 6 min
was monitored online using a UV detector at 280 nm at a flow rate of 1.0 mL/min. When the
HSCCC separation was finished, the retention rate of the stationary phase was calculated
as the volume retained in the stationary phase divided by the total volume of the column.

3.8. HPLC Analysis and Identification of HSCCC Fractions

The crude sample was first isolated with a silica column. Then, the purified fractions
separated via HSCCC were analyzed by HPLC at room temperature. The mobile phases of
a solution of acetonitrile (A) and 0.2% formic acid (B) in gradient mode were as follows:
0–5 min: 5% A, 5–15 min: 5–10% A, 15–25 min: 10–15% A, 25–35 min: 15–20% A, 35–40 min:
20–25% A, 40–41 min: 25–100% A, 41–50 min: 100–100% A; the flow-rate was set at
1 mL/min. The effluent was monitored by a PDA at 280 nm.

The identification of the HSCCC peak fractions was performed by ESI-MS on an
Agilent 1100/MS-G1946, and NMR spectra were recorded on a Varian-600 spectrometer
(Varian, Palo Alto, CA, USA) with tetramethylsilane (TMS) as an internal standard.

3.9. DPPH Radical Scavenging Effect

According to the method in [41], the antioxidant capacity of the three target com-
pounds was evaluated with minor modifications. Compounds I–III were serially diluted
at concentrations of 0.01, 0.02, 0.04, 0.05, 0.08, 0.1, and 0.2 mg/mL in ethanol, which were
used as sample solutions. DPPH· ethanol solution (3 mL, 0.08 mmol/L) was added to
the test tubes, which had 2 mL of sample solution, and it was then allowed to react for
30 min under dark conditions at room temperature. The absorbance value of every group
was determined under 517 nm by ultraviolet spectrophotometry. The IC50 values were
calculated by dose-scavenging curves using Origin 8.5 software (version 8.5, OriginLab,
Northampton, MA, USA).

4. Conclusions

In this study, a significantly efficient method for the extraction and purification of
β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat], β-D-glucopyranose1-[(E)-
3-(3, 4-dihydroxyphenyl)-2-propenoat], and 1-O-sinapoyl glucopyranoside from PLBs of D.
officinale was achieved by UPE coupled with HSCCC. The suitable conditions for UPE of
the target compounds were 50% ethanol, 300 MPa of pressure, 2 min of extraction time, and
a 1:30 (g/mL) solid/liquid ratio. The crude extraction of UPE was chromatographed over
a silica gel column and eluted with a solvent system composed of petroleum:ether-ethyl
acetate (1:1, v/v). The eluting fraction was successfully purified by HSCCC using a MTBE-n-
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butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v) solvent system. Particularly, this method
revealed a good performance in separating and purifying glycosides compounds with
similar polarity, which may provide a reference for the rapid extraction and effective
isolation of these substances in the future.

Supplementary Materials: The following are available online, Figures S1–S3: 1H-13C-NMR spectra
of compound I; Figures S4–S7: 1H-13C-NMR spectra of compound II; Figures S8–S10: 1H-13C-NMR
spectra of compound III.
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