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Abstract Spontaneous activity drives the establishment of appropriate connectivity in different

circuits during brain development. In the mouse primary visual cortex, two distinct patterns of

spontaneous activity occur before vision onset: local low-synchronicity events originating in the

retina and global high-synchronicity events originating in the cortex. We sought to determine the

contribution of these activity patterns to jointly organize network connectivity through different

activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity

and topography, while global events homeostatically regulate connection strength. However, to

generate robust selectivity, we found that global events should adapt their amplitude to the history

of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous

cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a

slower timescale during development, demonstrating the remarkable capacity of the developing

sensory cortex to acquire sensitivity to visual inputs after eye-opening.

Introduction
The impressive ability of the newborn brain to respond to its environment and generate coordinated

output without any prior experience suggests that brain networks undergo substantial organization,

tuning and coordination even as animals are still in the womb, driven by powerful developmental

mechanisms. These broadly belong to two categories: activity-independent mechanisms, involving

molecular guidance cues and chemoaffinity gradients which establish the initial coarse connectivity

patterns at early developmental stages (Feldheim and O’Leary, 2010; Goodhill, 2016), and activity-

dependent plasticity mechanisms which continue with refinement of this initially imprecise connectiv-

ity into functional circuits that can execute diverse behaviors in adulthood (Ackman and Crair, 2014;

Richter and Gjorgjieva, 2017; Thompson et al., 2017). Non-random patterns of spontaneous activ-

ity drive these refinements and act as training inputs to the immature circuits before the onset of

sensory experience. Many neural circuits in the developing brain generate spontaneous activity,

including the retina, hippocampus, cortex, and spinal cord (reviewed in Blankenship and Feller,

2010; Wang and Bergles, 2015). This activity regulates a plethora of developmental processes such

as neuronal migration, ion channel maturation, and the establishment of precise connectivity

(Huberman et al., 2008; Moody and Bosma, 2005; Kirkby et al., 2013; Godfrey and Swindale,

2014), and perturbing this activity impairs different aspects of functional organization and axonal

refinement (Cang et al., 2005a; Xu et al., 2011; Burbridge et al., 2014). These studies firmly dem-

onstrate that spontaneous activity is necessary and instructive for the emergence of specific and dis-

tinct patterns of neuronal connectivity in the developing nervous system.
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Recent in vivo recordings in the developing sensory cortex have found that the spatiotemporal

properties of spontaneous activity, including frequency, synchronicity, amplitude and spatial spread,

depend on the studied region and developmental age (Golshani et al., 2009; Rochefort et al.,

2009; Gribizis et al., 2019). These studies have shown that the generation and propagation of

spontaneous activity in the intact cortex depend on input from different brain areas. For instance,

activity from the sensory periphery substantially contributes to the observed activity patterns in the

developing cortex, but there are other independent sources of activity within the cortex itself

(Ackman et al., 2012; Siegel et al., 2012; Hanganu et al., 2006; Gribizis et al., 2019). Two-photon

imaging of spontaneous activity in the in vivo mouse primary visual cortex before eye-opening (post-

natal days, P8-10) has demonstrated that there are two independently occurring patterns of sponta-

neous activity with different sources and spatiotemporal characteristics. Peripheral events driven by

retinal waves (Feller et al., 1996; Blankenship and Feller, 2010) spread in the cortex as low-syn-

chronicity local events (L-events), engaging a relatively small number of the recorded neurons. In

contrast, events intrinsic to the cortex that are unaffected by manipulation of retinal waves spread as

highly synchronous global events (H-events), activating a large proportion of the recorded neurons

(Siegel et al., 2012).

We know relatively little about the information content of these local and global patterns of spon-

taneous cortical activity relevant for shaping local and brain-wide neural circuits. Specifically, it is

unknown whether spontaneous activity from different sources affects distinct aspects of circuit orga-

nization, each providing an independent instructive signal, or if L- and H-events cooperate to syner-

gistically guide circuit organization. Therefore, using experimentally characterized properties of

spontaneous activity in the visual cortex in vivo at P8-10, we developed a biologically plausible, yet

analytically tractable, theoretical framework to determine the implications of this activity on normal

circuit development with a focus on the topographic refinement of connectivity and the emergence

of stable receptive fields.

We postulated that peripheral L-events play a key role in topographically organizing receptive

fields in the cortex, while H-events regulate connection strength homeostatically, operating in paral-

lel to network refinements by L-events. We considered that H-events are ideally suited for this pur-

pose because they maximally activate many neurons simultaneously, and hence lack topographic

information that can be used for synaptic refinement. We studied two prominent activity-dependent

plasticity rules to investigate the postulated homeostatic function of H-events, the Hebbian covari-

ance rule (Miller et al., 1989; Miller, 1994; Lee et al., 2002; Sejnowski, 1977) and the Bienen-

stock-Cooper-Munro (BCM) rule (Bienenstock et al., 1982). In the Hebbian covariance rule,

simultaneous pre- and postsynaptic activation (e.g. during L-events) triggers the selective potentia-

tion of synaptic connections, while postsynaptic activation without presynaptic input (e.g. during

H-events) leads to the unselective depression of all connections. In the BCM rule, H-events dynami-

cally regulate potentiation and depression. However, both rules generate receptive fields that have

either refinement or topography defects. Therefore, we proposed that H-events might be self-regu-

lating, with amplitudes that adapt to the levels of recent cortical activity. Indeed, we found evidence

of this adaptation in spontaneous activity recorded in the developing visual cortex (Siegel et al.,

2012). Besides generating topographically refined receptive fields, this adaptation leads to the spar-

sification of cortical spontaneous activity over a prolonged timescale of development as in the visual

and somatosensory cortex (Rochefort et al., 2009; Golshani et al., 2009). Therefore, our work pro-

poses that global, cortically generated activity in the form of H-events rapidly adapts to ongoing

network activity, supporting topographic organization of connectivity and maintaining synaptic

strengths in an operating regime.

Results

A network model for connectivity refinements driven by spontaneous
activity
How spontaneous activity instructs network refinements between the sensory periphery and the

visual cortex depends on two aspects: the properties of spontaneous activity and the activity-depen-

dent learning rules that translate these properties into specific changes in connectivity. We first char-

acterized spontaneous activity in the mouse primary visual cortex before eye-opening, and
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investigated two prominent learning rules to organize connectivity in a network model of the thala-

mus and visual cortex.

Spontaneous activity recorded in vivo using two-photon Ca2+ imaging exhibits two independently

occurring patterns: network events originating in the retina and propagating through the thalamus,

and network events generated in the cortex (Siegel et al., 2012; Figure 1A). These two types of

events were first identified by a cluster analysis based on event amplitude and jitter (a measure of

synchrony; Siegel et al., 2012). The analysis identified a participation rate criterion to separate net-

work events into local low-synchronicity (L-) events generated in the retina, where 20–80% of the

neurons in the field of view are simultaneously active, and global high-synchronicity (H-) events intrin-

sic to the cortex, where nearly all (80–100%) cortical neurons are simultaneously active. This same

80% participation rate criterion was recently validated both at the single-cell and population levels

(Leighton et al., 2020). We first confirmed differences in specific features of the recorded spontane-

ous events (Siegel et al., 2012), and also characterized novel aspects (Figure 1B). In particular,

L-events have a narrow distribution of amplitudes and inter-event intervals (IEI, the inverse of firing

frequency) that follow an exponential-like distribution. H-events have a broader distribution of ampli-

tudes with higher values and IEIs that follow a long-tailed distribution with higher values relative to

L-events. We found that L- and H-events have similar durations.

Next, we built a model that incorporates these two different patterns of spontaneous activity to

investigate the potentially different roles that L- and H-events might play in driving connectivity

refinements between the thalamus and the visual cortex (Figure 1C). We used a one-dimensional

feedforward network model – a microcircuit motivated by the small region of cortex imaged experi-

mentally – composed of two layers, an input (presynaptic) layer corresponding to the sensory periph-

ery (the thalamus) and a target (postsynaptic) layer corresponding to the primary visual cortex

(Figure 2A). Cortical activity v in the model is generated by two sources (Figure 2B; Table 1). First,

L-events, u, activate a fraction between 20% and 80% of neighboring thalamic cells (also referred to

as the L-event size) and drive the cortex through the weight matrix, W. Second, H-events, vspon, acti-

vate the majority of the cortical cells (a fraction between 80% and 100%, also referred to as the
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Figure 1. Spontaneous activity patterns in early postnatal development. (A) Two distinct patterns of spontaneous activity recorded in vivo in the visual

cortex of young mice before eye-opening (P8-10). Blue shading denotes local low-synchronicity (L-) events generated by the retina; orange shading

denotes global high-synchronicity (H-) events generated by the cortex. Activated neurons during each event are shown in red. (B) Distributions of

different event properties (amplitude, inter-event interval, and event duration). Amplitude was measured as changes in fluorescence, relative to

baseline, F/F0. (C) Network schematic: thalamocortical connections are refined by spontaneous activity. The initially broad receptive fields with weak

synapses evolve into a stable configuration with strong synapses organized topographically.
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H-event size). We used a rate-based unit with a membrane time constant t m and linear activation

function consistent with the coarse temporal structure of spontaneous activity during development,

carrying information on the order of hundreds of milliseconds (Gjorgjieva et al., 2009; Butts and

Kanold, 2010; Richter and Gjorgjieva, 2017):

t m

dvðtÞ

dt
¼�vðtÞþWðtÞuðtÞþ vsponðtÞ: (1)

To investigate the refinement of network connectivity during development, we studied the evolu-

tion of synaptic weights using plasticity rules operating over long timescales identified experimen-

tally (Butts et al., 2007; Winnubst et al., 2015). First, we examined a classical Hebbian plasticity

rule where coincident presynaptic thalamic activity and postsynaptic cortical activity in the form of

L-events leads to synaptic potentiation. We postulated that H-events act homeostatically and main-

tain synaptic weights in an operating regime by depressing the majority of synaptic weights in the

absence of peripheral drive. Because they activate most cortical neurons simultaneously, H-events

lack the potential to drive topographical refinements. Their postulated homeostatic action resembles

synaptic depression through downscaling, as observed in response to highly correlated network

activity, for instance, upon blocking inhibition (Turrigiano and Nelson, 2004), or during slow-wave

sleep (Tononi and Cirelli, 2006). Therefore, to the Hebbian rule we added a non-Hebbian term that

depends only on the postsynaptic activity, with a proportionality constant that controls the relative

amount of synaptic depression. This differs from other Hebbian covariance plasticity rules for the

generation of weight selectivity, which include non-Hebbian terms that depend on both pre- and

postsynaptic activity (Lee et al., 2002; Mackay and Miller, 1990) and is mathematically related to

models of heterosynaptic plasticity (Chistiakova et al., 2014; Lynch et al., 1977; Zenke et al.,

2015). Hence, the change in synaptic weight between cortical neuron j and thalamic neuron i is given

by:
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Figure 2. A network model of thalamocortical connectivity refinements. (A) A feedforward network with an input layer of thalamic neurons uðtÞ

connected to an output layer of cortical neurons vðtÞ by synaptic weights WðtÞ. (B) Properties of L- and H-events in the model (amplitude Lamp;Hamp,

inter-event interval Lint;Hint and duration Ldur;Hdur) follow probability distributions extracted from data (Siegel et al., 2012) (see Table 1). (C) Initially

weak all-to-all connectivity with a small topographic bias along the diagonal (left) gets refined by the spontaneous activity events (right). (D) Evaluating

network refinement through receptive field statistics (see Materials and methods). We quantify two properties: (1) the receptive field size and (2) the

topography, which quantifies on average how far away the receptive field center of each cortical cell (red dot) is from the diagonal (dashed gray line).
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t w

dwjiðtÞ

dt
¼ vjðtÞðuiðtÞ� �uÞ; (2)

where t w is the learning time constant and �u the proportionality constant in the non-Hebbian term,

which we refer to as the ‘input threshold’. The activity time constant t m is much faster than the learn-

ing time constant, t m � t w, which allows us to separate timescales and to study how network activity

on average affects learning (see Appendix). Interestingly, in this Hebbian covariance rule, the input

threshold together with H-events effectively implement a subtractive constraint (see Appendix: ‘Nor-

malization constraints’). Subtractive normalization preserves the sum of all weights by subtracting

from each weight a constant amount independent of each weight strength and is known to generate

selectivity and refined receptive fields (Miller and MacKay, 1994). This is in contrast to the alterna-

tive multiplicative normalization, which generates graded and unrefined receptive fields where most

correlated inputs are represented (Miller and MacKay, 1994) and hence was not considered here.

Additionally, we investigated the BCM learning rule, which can induce weight stability and com-

petition without imposing constraints in the weights, and hence generate selectivity in postsynaptic

neurons which experience patterned inputs (Bienenstock et al., 1982). For instance, the BCM frame-

work can explain the emergence of ocular dominance (neurons in primary visual cortex being selec-

tive for input from one of the two eyes) and orientation selectivity in the visual system

(Cooper et al., 2004). An important property of the BCM rule is its ability to homeostatically regu-

late the balance between potentiation and depression of all incoming inputs into a given neuron

Table 1. List of parameters used in the model unless stated otherwise.

Name Value/Distribution Description

Network

Nu 50 Number of thalamic neurons

Nv 50 Number of cortical neurons

T 50,000 Simulation length [s]

Weights

wini U(0.15,0.25) Range of initial weights (U: uniform dist.)

s 0.05 Amplitude of Gaussian bias

ss 4 Spread of Gaussian bias

wmax 0.5 Weight saturation limit

L-events

Lamp 1.0 Amplitude (equivalently, binary neuron)

Lpct U(20%,80%) Percentage of thalamic cells activated

Ldur Nð0:15; 0:015Þ Mean duration [s] (N : Gaussian dist.)

Lint Exp(1.5) Mean inter-event interval [s] (Exp: exponential dist.)

H-events

Hamp Nð6; 2Þ Amplitude

Hpct U(80%,100%) Percentage of cortical cells activated

Hdur Nð0:15; 0:015Þ Mean duration [s]

Hint Gamma(3.5, 1.0) Mean inter-event interval [s] (Gamma: Gamma dist.)

Time constants

t m 0.01 Membrane time constant [s]

t w 500 Weight-change time constant for Hebbian covariance rule [s]

t w 1000 Weight-change time constant for BCM rule [s]

t � 20 Output threshold time constant for BCM rule [s]

t h 1 Adaptation time constant [s]
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depending on how far away the activity of that neuron is from some target level. The change in syn-

aptic weight between cortical neuron j and thalamic neuron i is given by:

t w

dwjiðtÞ

dt
¼ vjðtÞuiðtÞðvjðtÞ� �jvðtÞÞ; (3)

where

t �
d�jvðtÞ

dt
¼��jvðtÞþ

v2j ðtÞ

v0
(4)

describes the threshold �jvðtÞ between depression and potentiation which slides as a function of post-

synaptic activity, v0 is the target rate of the cortical neurons and t � the sliding threshold time con-

stant. According to this rule, synaptic weight change is Hebbian in that it requires coincident pre-

and postsynaptic activity, as is only the case during L-events. H-events induce no direct plasticity in

the network because of the absence of presynaptic activation, but they still trigger synaptic depres-

sion indirectly by increasing the threshold between potentiation and depression.

Based on experimental measurements of the extent of thalamocortical connectivity at different

developmental ages (López-Bendito, 2018), we assumed that initial network connectivity was weak

and all-to-all, such that each cortical neuron was innervated by all thalamic neurons. To account for

the activity-independent stage of development guided by molecular guidance cues and chemoaffin-

ity gradients, a small bias was introduced to the initial weight matrix to generate a coarse topogra-

phy in the network, where neighboring neurons in the thalamus project to neighboring neurons in

the cortex and preserve spatial relationships (Figure 2C, left). Following connectivity refinements

through spontaneous activity and plasticity, a desired outcome is that the network achieves a stable

topographic configuration (Figure 2C, right) where each cortical neuron receives input only from a

neighborhood of thalamic neurons.

To evaluate the success of this process, we quantified two properties. First, the receptive field

size defined as the average number of thalamic neurons that strongly innervate a cortical cell

(Figure 2D). We normalized the receptive field size to the total number of thalamic cells, so that it

ranges from 0 (no receptive field, all cortical cells decouple from the thalamus) to 1 (each cortical

cell receives input from all the thalamic cells, all weights potentiate leading to no selectivity). We

also quantified the topography of the final receptive field (Figure 2D and Materials and methods),

which evaluates how well the initial bias is preserved in the final network connectivity. The topogra-

phy ranges from 0 (all cortical neurons connect to the same set of thalamic inputs) to 1 (perfect

topography relative to the initial bias). We note that the lack of initial connectivity bias did not dis-

rupt connectivity refinements and receptive field formation but could not on its own establish topog-

raphy (Figure 3—figure supplement 1A).

Spontaneous cortical H-events disrupt topographic connectivity
refinement in the Hebbian covariance and BCM plasticity rules
Both the Hebbian and the BCM learning rules are known to generate selectivity with patterned input

stimuli (Mackay and Miller, 1990; Bienenstock et al., 1982), and we confirmed that L-events on

their own can refine receptive fields in both scenarios (Figure 3—figure supplement 2). We found

that including H-events in the Hebbian covariance rule requires that the parameters of the learning

rule and the properties of H-events (the input threshold �u and the inter-event interval Hint) follow a

tight relationship to generate selective and refined receptive fields (Figure 3A,C, left). For a narrow

range of Hint, weight selectivity emerges, but with some degree of decoupling between pre- and

postsynaptic neurons (Figure 3A, middle). Outside of this narrow functional range, individual cortical

neurons are either non-selective (Figure 3A, left) or decoupled from the thalamus (Figure 3A, right).

These results are robust to changes in the participation rates of L- and H-events. For instance, when

H-events involve 70–100% of cortical neurons, the percent of outcomes with selective receptive

fields increases slightly to 19.8% (compared to 14.0% when H-events involve 80–100% of cortical

neurons), while the percent of outcomes with decoupled cortical neurons increases to 60.4% (com-

pared to 43.6% when H-events involve 80–100% of cortical neurons), reinforcing the idea that

H-events are detrimental to receptive field refinements. In comparison, including H-events in the

BCM learning rule does not decouple pre- and postsynaptic neurons (Figure 3B) and selectivity can
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be generated over a wider range of H-inter-event-intervals Hint and target rates v0 for the BCM rule

(Figure 3C, right).

Despite this apparent advantage of the BCM rule, it generates receptive fields with much worse

topography than the Hebbian covariance rule (Figure 3D). The underlying reason for this worse

topography of the BCM rule is the sign of synaptic change evoked by L-events of different sizes cor-

responding to different participation rates. In particular, small L-events with low participation rates

generate postsynaptic cortical activity smaller than the sliding threshold and promote long-term syn-

aptic depression (LTD), while large L-events with high participation rates generate cortical activity

larger than the sliding threshold and promote long-term synaptic potentiation (LTP) (Figure 3E,F).
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Figure 3. Spontaneous cortical events disrupt receptive field refinement. (A) Receptive fields generated by the Hebbian covariance rule with input

threshold �u ¼ 0:4 and decreasing Hint. (B) Receptive fields generated by the BCM rule with target rate v0 ¼ 0:7 and decreasing Hint. (C) Top: Receptive

field sizes obtained from 500 Monte Carlo simulations for combinations of Hint and �u for the Hebbian covariance rule (left) and Hint and v0 for the BCM

rule (right). Bottom: Percentage of simulation outcomes classified as ‘selective’ when the average receptive field size is smaller than one and larger than

0, ‘non-selective’ when the average receptive field size is equal to 1, and ‘decoupled’ when the average receptive field size is 0 for the two rules. (D)

Topography of receptive fields classified as selective in C. Horizontal line indicates median, the box is drawn between the 25th and 75th percentile,

whiskers extend above and below the box to the most extreme data points that are within a distance to the box equal to 1.5 times the interquartile

range and points indicate all data points. Distributions are significantly different (***) as measured by a two-sample Kolmogorov-Smirnov test

(n ¼ 70; 302 selective outcomes for each rule out of 500; p<10�10; D = 0.45). (E) The response of a single cortical cell to L-events of different sizes (color)

as a function of the sliding threshold for the BCM rule with Hint ¼ 3:5 and v0 ¼ 0:7. The cell’s incoming synaptic weights from presynaptic thalamic

neurons undergo LTP or LTD depending on L-event size. (F) Probability of L-event size contributing to LTD (left) and LTP (right) for the BCM rule with

the same parameters as in E.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effect of initial bias on receptive field refinements and topography.

Figure supplement 2. Peripheral L-events generate robust receptive field refinement in the absence of H-events.
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Therefore, the amount of information for connectivity refinements present in the small L-events is

limited in the BCM learning rule resulting in poor topographic organization of receptive fields.

Taken together, our results confirm that H-events can operate in parallel to network refinements

by L-events and homeostatically regulate connection strength as postulated. However, the formation

of receptive fields by the Hebbian covariance rule is very sensitive to small changes in event proper-

ties (e.g. inter-event intervals), which are common throughout development (Rochefort et al.,

2009). In this case, H-events are disruptive and lead to the elimination of all thalamocortical synap-

ses, effectively decoupling the cortex from the sensory periphery. In the BCM rule, including

H-events prevents the decoupling of cortical cells from the periphery because the amount of LTD is

dynamically regulated by the sliding threshold on cortical activity. However, L-events lose the ability

to instruct topography because they generate LTP primarily when they are large. Therefore, neither

learning rule seems suitable to organize network connectivity between the thalamus and cortex dur-

ing development.

Adaptive H-events achieve robust selectivity
After comparing the distinct outcomes of the Hebbian and BCM learning rules in the presence of L-

and H-events, we proposed that a mechanism that regulates the amount of LTD during H-events

based on cortical activity, similar to the sliding threshold of the BCM rule, could be a biologically

plausible solution to mitigate the decoupling of cortical cells in the Hebbian covariance rule. This

mechanism combined with the Hebbian learning rule could lead to refined receptive fields that also

have good topographic organization. Hence, we postulated that H-events adapt by assuming that

during H-events cortical cells scale their amplitude to the average amplitude of the preceding recent

events. In particular, for each cortical cell j an activity trace hj integrates the cell’s firing rate vj over a

timescale t h slower than the membrane time constant:

t h

dhjðtÞ

dt
¼�hjðtÞþ vjðtÞ: (5)

This activity trace hj then scales the intrinsic firing rate of the cortical cells during an H-event,

Hamp ! hjHamp, making it dependent on its recent activity. The activity trace hj might biophysically

be implemented through a calcium-dependent signaling pathway that is activated upon sufficient

burst depolarization and that is able to modulate a cell’s excitability in the form of plasticity of intrin-

sic excitability (Desai et al., 1999; Daoudal and Debanne, 2003; Tien and Kerschensteiner, 2018).

A fast, activity-dependent mechanism that decreases single-neuron excitability following a pro-

longed period of high network activity has been identified in spinal motor neurons of neonatal mice

(Lombardo et al., 2018). However, there might be other ways to implement this adaptation (see

Discussion).

Using adaptive H-events, we investigated the refinement of receptive fields in the network with

the same Hebbian covariance rule (Figure 4A). In sharp contrast to the Hebbian covariance rule with

non-adaptive H-events (Figure 3A), we observed that changing the average inter-event interval of

H-events in a wider and more biologically realistic range (from the data, Hint ~ 3Lint) yields selectivity

and appropriately refined receptive fields (Figure 4A). Increasing �u or decreasing Hint yields pro-

gressively smaller receptive fields while mitigating cortical decoupling (Figure 4B). The refined

receptive fields also have a very good topography because L-events in the Hebbian learning rule

carry nearest-neighbor information for the topographic refinements (Figure 4C). The proportion of

selective receptive fields for adaptive H-events, however, is much higher than for their non-adaptive

counterparts (390 vs. 70 out of 500 simulations). These results persist when the participation rates of

L- and H-events change. For instance, when H-events involve 70–100% of cortical neurons, the per-

cent of outcomes with selective receptive fields (75.0%) and the percent of outcomes with

decoupled cortical neurons (0%) remain similar.

Next, we investigated how the proposed adaptive mechanism scales H-event amplitude by mod-

ulating the relative strength of H-events. For the Hebbian covariance rule, we calculated the analyti-

cal solution for weight development with L- and H-events by reducing the dimension of the system

to two: one being the average of the weights that potentiate and form the receptive field, wRF, and

the other being the average of the remaining weights, which we called ‘complementary’ to the

receptive field, wC (Figure 4D; see Appendix, Materials and methods). We calculated the phase

Wosniack et al. eLife 2021;10:e61619. DOI: https://doi.org/10.7554/eLife.61619 8 of 35

Research article Neuroscience

https://doi.org/10.7554/eLife.61619


0

0.1

0.2

0.3

0.4

0.5

1

25

50

c
o
rt

e
x

50
thalamus

1

25

50

c
o
rt

e
x

251 50
thalamus

1 25 50
thalamus

1 25

H
int

 = 4.5 H
int

 = 2.5H
int

 = 3.5A

H
in

t

0

0.1

0.2

0.3

0.4

0.5

B

w
e
ig

h
ts

w
e
ig

h
ts

0.3 0.4 0.5 0.6 0.7
2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
e
p
tiv

e
 fie

ld
 s

iz
e

0

20

40

60

80

100

C
la

s
s
if
ic

a
ti
o
n
 (

%
)

C E

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 a

re
a

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

N
o
n
-a

d
a
p
te

d
 s

tr
e
n
g
th

 o
f 
H

-e
v
e
n
ts

Adaptated strength of H-events 

Strength of H-events

Selective

No selectivity

Decoupled

0 0.25 0.5
0

0.25

0.5 Selective

Non-selective

Decoupled

D

Hebbian

covariance

adaptive

H-events

0.0

0.2

0.4

0.6

0.8

1.0

T
o
p
o
g
ra

p
h
y

76.8%

23.2%

Selective Non-selective Decoupled

0%

c
o
rt

e
x

thalamus

ns

Hebbian

covariance

non-adaptive

H-events

Figure 4. Adaptive cortical events refine thalamocortical connectivity. (A) Receptive field refinement with adaptive H-events and different H-inter-event-

intervals, Hint. Top: �u ¼ 0:5; bottom: �u ¼ 0:6. (B) Receptive field sizes from 500 Monte Carlo simulations for combinations of Hint and �u. Bottom:

Percentage of simulation outcomes classified as ‘selective’ when the average receptive field size is smaller than one and larger than 0, ‘non-selective’

when the average receptive field size is equal to 1, and ‘decoupled’ when the average receptive field size is 0 for the two rules. (C) Topography of

receptive fields classified as selective in B. Horizontal line indicates median, the box is drawn between the 25th and 75th percentile, whiskers extend

above and below the box to the most extreme data points that are within a distance to the box equal to 1.5 times the interquartile range and points

indicate all data points. Distributions are not significantly different (ns) as measured by a two-sample Kolmogorov-Smirnov test (n ¼ 70; 390 selective

outcomes for each rule out of 500; p ¼ 0:41; D = 0.45). (D) Top: Reduction of the full weight dynamics into two dimensions. Two sets of weights were

averaged: those which potentiate and form the receptive field, wRF, and the complementary set of weights that depress, wC. Bottom: Initial conditions

in the reduced two-dimensional phase plane were classified into three outcomes: ‘selective’, ‘non-selective’, and ‘decoupled’. We sampled 2500 initial

conditions which evolved according to Equation 16 until the trajectories reached one of the selective fixed points, ðwmax; 0Þ and ð0;wmaxÞ, or resulted in

no selectivity either because both weights depressed to ð0; 0Þ or potentiated to ðwmax;wmaxÞ. The normalized number of initial coordinates generating

each region can be interpreted as the area of the phase plane that results in each outcome. (E) Top: Normalized area of the phase plane of the

reduced two-dimensional system that resulted in ‘selective’, ‘non-selective’, and ‘decoupled’ outcomes for �u ¼ 0:53 as a function of H-event strength.

The darker shading indicates ranges of non-adapted H-event strength where the selectivity area is maximized. Bottom: The corresponding adapted

strength of H-events was calculated in simulations with adaptive H-events and plotted as a function of the nominal, non-adapted strength of H-events.

Figure 4 continued on next page
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plane area of the reduced two-dimensional system with non-adaptive H-events (calculated as the

proportion of initial conditions) that results in selectivity, potentiation or depression (Figure 4D, bot-

tom). We found that adaptively modulating the strength of H-events maximizes the area of the

phase plane that results in selectivity (Figure 4E, shaded region). The range of H-event strengths

that maximizes the selective area for each input threshold in the reduced two-dimensional system

can be related to the scaling of H-event amplitude in the simulations (Methods). In particular, the

adaptation reliably shifts the H-event amplitude that would have occurred without adaptation, which

we call ‘non-adapted strength of H-events’, into the regime of amplitudes that maximizes selectivity,

which we call ‘adapted strength of H-events’ (Figure 4E). Therefore, the adaptation of H-event

amplitudes controls the selective refinement by peripheral L-events by modulating the cortical

depression by adapted H-events.

In vivo spontaneous cortical activity shows a signature of adaptation
To determine whether spontaneous cortical activity contains a signature of our postulated adapta-

tion mechanism of H-event amplitudes, we reanalyzed published in vivo two-photon Ca2+ imaging

data recorded in the visual cortex of young mice (P8-10) (Siegel et al., 2012). We combined multiple

consecutive ~ 300 s long recordings for up to 40 mins of data from a given animal. First, we tested

for long-term fluctuations in cortical excitability in the concatenated recordings of the same animal.

We identified L- and H-events based on previously established criteria (Siegel et al., 2012). We

found that the average amplitude of all (L and H) events is not significantly different across consecu-

tive recordings of the same animal (Figure 5—figure supplement 1A). Additionally, across different

animals and ages, individual event amplitudes remain uncorrelated between successive recordings

at this timescale (Figure 5—figure supplement 1B). This suggests that there are no prominent long-

term amplitude fluctuations, and therefore, the correlations cannot be explained by such fluctua-

tions. Even so, slow amplitude fluctuations would not be able to generate refined receptive fields in

the model (Figure 5—figure supplement 2).

Next, we investigated the relationship between the amplitude of a given H-event and the average

activity preceding it. For each detected H-event, we extracted all spontaneous (L- or H-) events that

preceded this H-event up to Tmax ¼ 300 s before it. We then scaled the amplitude of each previous

event multiplying it by an exponential kernel with a decay time constant of t decay ¼ 1000 s, which is

sufficiently long to integrate many preceding spontaneous events (compared with the inter-event

intervals in Figure 1B), and averaged these scaled amplitudes to get an aggregate quantity over

amplitude and frequency (see Materials and methods).

We found that this aggregate amplitude of L- and H-events preceding a given H-event is signifi-

cantly correlated (r ¼ 0:44, p<10�10) to the amplitude of the selected H-event (Figure 5B). Conse-

quently, a strong (weak) H-event follows strong (weak) average preceding network activity

(Figure 5C), suggesting that cortical cells adapt their spontaneous firing rates as a function of their

previous activity levels. The correlations are robust to variations in the inclusion criteria, maximum

time Tmax to integrate activity and the exponential decay time constant t decay (Figure 5—figure sup-

plement 3).

Modulating spontaneous activity properties affects receptive field
refinements
Our results make relevant predictions for the refinement of receptive fields upon manipulating spon-

taneous activity. For example, H-event frequency can be experimentally reduced by a gap junction

blocker (carbenoxolone) (Siegel et al., 2012). Our work demonstrates a trade-off between H-event

frequency and the learning rule’s threshold between potentiation and depression on receptive field

size; hence, less frequent H-events will need a somewhat higher threshold to achieve the same

receptive field size (Figure 4).

Figure 4 continued

The range of adapted H-event strengths (bottom) corresponds to the range of non-adaptive values that maximize the selectivity area (top). Each point

shows the average over 10 runs and the bars the standard deviation (which are very small).
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Similarly, L-events can also be experimentally manipulated, for instance, by altering inhibitory sig-

naling (Leighton et al., 2020), or the properties of retinal waves which propagate as L-events into

the cortex. We performed Monte Carlo simulations with a range of input thresholds �u and variable

participation rates of thalamic neurons in L-events, using the Hebbian covariance rule with adaptive

H-events (Figure 6A). Larger L-events in our model produce less refined, that is, larger receptive

fields in the cortical network (Figure 6B,C, left). This result is not surprising given the proposed role

of L-events in guiding receptive field refinements, and is consistent with the imprecise and unrefined

receptive fields observed in the visual cortex of animals where retinal wave properties have been

modified. For instance, a prominent example of retinal wave manipulations are b2 knockout mice,

which lack expression of the b2 subunit of the nicotinic acetylcholine receptor (b2-nAChR) that medi-

ates spontaneous retinal waves in the first postnatal week. In these animals, retinal waves are consis-

tently larger as characterized by the increased correlation with distance (Sun et al., 2008;

Stafford et al., 2009; Cutts and Eglen, 2014), in addition to other features. As a result, there are

measurable defects in the retinotopic map refinement of downstream targets (Grubb et al., 2003;

Cang et al., 2005b; Burbridge et al., 2014). Smaller L-events also refine receptive fields with better

topographic organization (Figure 6C, right) and do not impair connectivity refinements. This result

could be linked to experiments where the expression of b2-nAChR is limited to the ganglion cell

layer of the retina, resulting in smaller retinal waves than those in wild-type and undisturbed retino-

topy in the superior colliculus (Xu et al., 2011), although the effects in the cortex are unknown.

Therefore, we suggest that certain manipulations that modulate the size of sensory activity from

the periphery have a profound impact on the precision of receptive field refinement in downstream

targets, making predictions to be tested experimentally. In contrast to retinal wave manipulations,

the effect of altered inhibitory signaling on receptive field refinements is still unknown. It is likely

that such manipulations will also affect H-events (Leighton et al., 2020), as well as shape ongoing

plasticity in the network (Wu et al., 2020), and hence have less predictable effects on receptive field

size and topography.

Adaptive H-events promote the developmental event sparsification of
cortical activity
Thus far, we focused on the development of the network connectivity in our model driven by sponta-

neous activity based on properties measured during a few postnatal days (P8-10, Figure 4A).

A B

0 50 100 150 200 250 300
Time (s)

0.9

1

1.1

1.2

1.3

1.4

1.5

 F
/F

0

L H

H

L

L L

CL-events H-events

0.8 1.0 1.2 1.4

1.0

1.2

1.4

1.6

Avg. scaled amplitude of preceding events

A
m

p
lit

u
d

e
 H

-e
v
e

n
t 

(m
e

a
n

 F
/F

0
)

Figure 5. Spontaneous events in developing cortex adapt to recent activity. (A) Calcium trace of a representative recording with L- (blue) and H-events

(orange) (Siegel et al., 2012). (B) The amplitude of an H-event shown as a function of the aggregate amplitude of preceding L- and H-events up to

Tmax ¼ 300 s before it, scaled by an exponential kernel with a decay time constant of 1000 s (N ¼ 195 events from nine animals). Animals with fewer than

12 H-events preceded by activity within Tmax were excluded from this analysis (see Materials and methods). The Pearson correlation coefficient is

r ¼ 0:44; p<10�10, CI ¼ ð0:32; 0:54Þ. Red line indicates regression line with 95% confidence bounds as dashed lines. (C) Schematic of the postulated

adaptation: A weak (strong) H-event is more likely to be preceded by weak (strong) spontaneous events.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Fluctuations in cortical activity cannot generate correlations between event amplitude and average preceding activity.

Figure supplement 2. Long-term fluctuations in the amplitudes of L- and H-events cannot guide proper network refinement.

Figure supplement 3. Robustness of correlation under variations in the inclusion criteria, Tmax and t decay.
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However, in vivo spontaneous activity patterns are not static, but dynamically regulated during

development by ongoing activity-dependent plasticity which continuously reshapes network connec-

tivity that lasts several days (Rochefort et al., 2009; Golshani et al., 2009; Frye and MacLean,

2016). Moreover, it is unclear if the same criteria based on event participation rates and amplitude

can be used to separate the spontaneous events into L and H at later developmental ages. Hence,

we next asked how our observed modifications in network connectivity that are the result of recep-

tive field refinement further modify spontaneous activity patterns on a much longer developmental

timescale of several days in our model. Therefore, we analyzed all spontaneous events of simulated

cortical neurons during the process of receptive field refinement in the presence of adaptive

H-events (Figure 4B). Since the input threshold �u of the Hebbian learning rule is related to receptive

field size (Figure 4B), we used �u as a proxy for time of development in the model: low �u corre-

sponds to earlier developmental stages when receptive fields are large, while high �u corresponds to

late developmental stages when receptive fields are refined. This assumption is also in line with the

fact that the input resistance of neurons in V1 and S1 decreases during development

(Etherington and Williams, 2011; Golshani et al., 2009), so that the depolarizing current necessary

to trigger an action potential increases with age.

At an early developmental stage in the model (�u ¼ 0:45), the unrefined receptive fields of cortical

neurons in our network model propagate thalamic activity into the cortex as very broad spontaneous

events, while adaptive H-events remain intrinsic to the cortical layer. As in the data (Figure 7A,C;

Siegel et al., 2012), the amplitude of events with 20–80% participation rate is approximately half

the amplitude of events with greater than 80% participation rate (Figure 7B,D, left). Moreover, we

also observed a high proportion of large events with greater than 80% participation rate (Figure 7—

figure supplement 1A), suggesting that in the network model large spontaneous events are very

frequent. At an intermediate developmental stage in the model (�u ¼ 0:50), as receptive fields refine
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Figure 6. Receptive field refinement depends on the properties of L-events. (A) Receptive field sizes from 500 Monte Carlo simulations for different

sizes of L-events where the minimum participation rate was 20%, and the maximum participation rate was varied. The input threshold was taken from

the range 0:3 � �u � 0:7, while the adaptive H-events had a fixed inter-event-interval Hint ¼ 3:5. (B) Individual receptive fields for different L-event

maximum participation rates and �u ¼ 0:50. As the upper bound of the participation rate progressively increases from 40% to 80%, receptive fields get

larger. (C) Left: Receptive field sizes from A binned according to the maximum L-event size. Right: Corresponding topography of selective receptive

fields for different sizes of L-events. Diamonds in red indicate the mean, while horizontal bars indicate the 95% confidence interval.
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Figure 7. Adaptive H-events promote sparsification of cortical activity during development. (A) Spontaneous activity in the mouse visual cortex

recorded in vivo at P8-10 (Siegel et al., 2012). Each activity trace represents an individual cortical cell. Blue and orange shading denotes L-events and

H-events, respectively, as identified by Siegel et al., 2012. (B) Sample traces of cortical activity for different values of �u (as a proxy for developmental

age). Gray shading denotes all events detected in our networks. (C) Amplitude vs. participation rate plot from the data (Siegel et al., 2012). The

regression line for the amplitude vs. participation rate in H-events has a positive slope. (D) Amplitude vs. participation rate plots from the model, for

different values of �u. Inset: The regression line for the amplitude vs. participation rate in large events with greater than 80% participation rate has a

slope that decreases with �u. Error bars represent standard deviation. (E) Correlation between cortical neurons decreases as a function of the input

threshold �u in the model, a proxy for developmental time. (F) Correlation matrices of simulated cortical neuron activity corresponding to D. (G,H).

Event sizes and the relationship between frequencies (open squares) and amplitudes (filled circles) of spontaneous events at different postnatal ages

(data reproduced from Rochefort et al., 2009). Error bars represent standard error of the mean (number of animals used at each age is provided in the

original reference). (I) Spontaneous event sizes as a function of the input threshold �u. (J) Frequencies (squares) and amplitudes (circles) of events with

20–80% participation rate in the model at different input thresholds. Error bars represent the standard error of the mean of 10 simulations.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Developmental event sparsification in the model.

Wosniack et al. eLife 2021;10:e61619. DOI: https://doi.org/10.7554/eLife.61619 13 of 35

Research article Neuroscience

https://doi.org/10.7554/eLife.61619


and peripheral events activate fewer cortical neurons, our proposed adaptation of H-event ampli-

tudes decreases the overall level of intrinsic activity in the cortical layer. This changes the relationship

between effective amplitude and participation rate (Figure 7D, middle), with large events decreas-

ing their amplitudes and density (Figure 7—figure supplement 1A). Finally, at late developmental

stages in the model (�u ¼ 0:60), the relationship between effective amplitude and participation rate

is almost absent (Figure 7D, right). Overall event amplitude is much lower resulting in far fewer large

events with greater than 80% participation rate (Figure 7—figure supplement 1B). Therefore, due

to the progressive receptive field refinements and the continued H-event adaptation in response to

resulting activity changes, spontaneous events in our model progressively sparsify during ongoing

development, whereby spontaneous events become smaller in size with fewer participating cells.

This finding suggests that spontaneous events in the cortex at later developmental ages can no lon-

ger be separated into L and H using the same criteria of participation rate and amplitude as during

early development. We also found that the mean pairwise correlation of all cortical neurons in the

model decreases as a function of developmental age (�u; Figure 7E,F), which further supports the

trend of progressive sparsification already observed in the event sizes.

Interestingly, such event sparsification of spontaneous activity has been observed experimentally

in the mouse barrel cortex during postnatal development from P4 to P26 (Golshani et al., 2009)

and in the visual cortex from P8 to P79 (Rochefort et al., 2009). During this period, in the visual cor-

tex, the size of spontaneous events decreases (Figure 7G), the amplitude of the participating cells

also decreases, while event frequency increases (Figure 7H; Rochefort et al., 2009). This progres-

sive event sparsification of cortical activity is generated by mechanisms intrinsic to the cortex, and

does not seem to be sensory-driven (Rochefort et al., 2009; Golshani et al., 2009). We found the

same relationships in our model using �u as a proxy for developmental time (Figure 7I,J).

In summary, our framework for activity-dependent plasticity and receptive field refinement

between thalamus and cortex with adaptive H-events can tune the properties of cortical spontane-

ous activity and provide a substrate for the event sparsification of cortical activity during develop-

ment on a much longer timescale than receptive field refinement. This sparsification has been found

in different sensory cortices, including visual (Rochefort et al., 2009), somatosensory

(Golshani et al., 2009), and auditory (Frye and MacLean, 2016), suggesting a general principle that

underlies network refinement. However, the event sparsification we observe is different from sparse

network activity implicated in sparse efficient coding, which interestingly seems to decrease during

development (Berkes et al., 2009; Berkes et al., 2011). Our modeling predicts that cortical event

sparsification is primarily due to the suppression of cortically-generated H-events in the Hebbian

covariance rule, which switches cortical sensitivity to input from the sensory periphery after the onset

of sensory experience.

Discussion
We examined the information content of spontaneous activity for refining local microcircuit connec-

tivity during early postnatal development. In contrast to classical works on activity-dependent refine-

ments, which used mathematically convenient formulations of spontaneous activity (Willshaw and

von der Malsburg, 1976; Mackay and Miller, 1990), we used spontaneous activity patterns charac-

terized in the mouse visual cortex in vivo before the onset of vision (P8-10), which revealed its rich

structure. Specifically, we explored the joint contribution of two distinct patterns of spontaneous

activity recorded in the mouse visual cortex before the onset of vision, local (L-events) and global (H-

events), on establishing topographically refined receptive fields between the thalamus and the cor-

tex without decoupling in a model network with activity-dependent plasticity. Because of their spa-

tially correlated activity, we proposed that peripherally generated L-events enable topographic

refinement, while H-events regulate connection strength homeostatically. We investigated two Heb-

bian learning rules – the Hebbian covariance and the BCM rules – which use joint pre- and postsyn-

aptic activity to trigger synaptic plasticity. First, we studied the Hebbian covariance rule that induces

global synaptic depression in the presence of only postsynaptic activity (i.e. H-events). Second, we

studied the BCM rule, which is known to establish the emergence of ocular dominance and orienta-

tion selectivity in the visual system. Although L-events successfully instruct topographic receptive

field refinements in the Hebbian covariance rule, naively including H-events provides too much

depression, eliminating selectivity in the network despite fine-tuning (Figure 3). In contrast, in the
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BCM rule, H-events are indeed homeostatic, regulating the threshold between depression and

potentiation. However, small L-events, which carry precise information for topographic connectivity

refinements, mostly cause long-term depression in the synaptic weights and disrupt topography.

Inspired by the sliding threshold in the BCM rule, we proposed a similar adaptive mechanism operat-

ing at the single-cell level in the Hebbian covariance rule. This mechanism regulates the amplitude of

the cortically generated H-events according to the preceding average activity in the network to

homeostatically balance local increases and decreases in activity, and can successfully refine recep-

tive fields with excellent topography (Figure 4). Without any additional fine-tuning, this mechanism

can also explain the long-term event sparsification of cortical activity as the circuit matures and starts

responding to visual input (Figure 7). Therefore, we propose that L- and adaptive H-events cooper-

ate to synergistically guide circuit organization of thalamocortical synapses during postnatal

development.

The origin of cortical event amplitude adaptation
After a re-examination of spontaneous activity recorded in the developing cortex in vivo between

postnatal days 8 and 10 (Siegel et al., 2012), we found evidence for the proposed H-event ampli-

tude adaptation (Figure 5). This mechanism is sufficiently general in its formulation that it could be

realized at the cellular, synaptic or network level. At the cellular level, the adaptation mechanism

resembles the plasticity of intrinsic excitability. Typically, plasticity of intrinsic excitability has been

reported in response to long-term perturbations in activity or persistent changes in synaptic plastic-

ity like LTP and LTD, where the intrinsic properties of single neurons are adjusted in an activity-

dependent manner (Daoudal and Debanne, 2003; Desai et al., 1999). During plasticity of intrinsic

excitability, neurons can alter the number and expression levels of ion channels to adjust their input-

output function either by modifying their firing thresholds or response gains, which could represent

the substrate for H-event amplitude regulation. Our adaptation mechanism is consistent with the

fast plasticity of intrinsic excitability operating on the timescale of several spontaneous events sup-

ported by many experimental studies. For instance, intrinsic excitability of spine motoneurons is

depressed after brief but sustained changes in spinal cord network activity in neonatal mice

(Lombardo et al., 2018). Similarly, hippocampal pyramidal neurons also exhibit a rapid reduction of

intrinsic excitability in response to sustained depolarizations lasting up to several minutes (Sánchez-

Aguilera et al., 2014). In addition to reduced excitability, in the developing auditory system,

enhanced intrinsic excitability has been reported in the cochlea followed by reduced synaptic excit-

atory input from hair cells in a model of deafness, although this change is slower than our proposed

adaptation mechanism (Babola et al., 2018).

At the synaptic level, our adaptation mechanism can be implemented by synaptic scaling, a pro-

cess whereby neurons regulate their activity by scaling incoming synaptic strengths in response to

perturbations (Turrigiano et al., 1998). A second possibility is short-term depression, which appears

to underlie the generation of spontaneous activity episodes in the chick developing spinal cord

(Tabak et al., 2001; Tabak et al., 2010). Similarly, release probability suppression has been

reported to strongly contribute to synaptic depression during weak activity at the calyx of Held

(Xu and Wu, 2005), which is more pronounced at immature synapses where morphological develop-

ment renders synaptic transmission less effective (Renden et al., 2005; Nakamura and Takahashi,

2007). This is also the case in the cortex, where short-term synaptic plasticity in young animals is

stronger (Oswald and Reyes, 2008). Beyond chemical synapses, plasticity of gap junctions, which

are particularly prevalent in development (Niculescu and Lohmann, 2014), could also be a contrib-

uting mechanism that adapts overall network activity (Cachope et al., 2007; Haas et al., 2011).

Finally, at the network level, the development of inhibition could be a substrate for amplitude

adaptation of cortically generated events. The main inhibitory neurotransmitter, GABA, is thought to

act as a depolarizing neurotransmitter, excitatory in early postnatal days (Ben-Ari, 2002), although

recent evidence argues that GABAergic neurons have an inhibitory effect on the cortical network

already in the second postnatal week (Murata and Colonnese, 2020; Kirmse et al., 2015;

Valeeva et al., 2016). Thus, the local maturation of inhibitory neurons – of which there are several

types (Tremblay et al., 2016) – that gradually evolve to balance excitation and achieve E/I balance

(Dorrn et al., 2010) could provide an alternative implementation of the proposed H-event

adaptation.
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Developmental sparsification of cortical activity
On a longer timescale than receptive field refinement, we demonstrated that the adaptation of

H-event amplitude can also bring about the event sparsification of cortical activity, as global, corti-

cally generated H-events are attenuated and become more localized (Figure 7). The notion of

‘sparse neural activity’ has received significant attention in experimental and theoretical studies of

sensory processing in the cortex, including differing definitions and implementations (Field, 1994;

Willmore and Tolhurst, 2001; Berkes et al., 2009; Olshausen and Field, 2004; Zylberberg and

DeWeese, 2013). In particular, sparse activity in the mature cortex has been argued to be important

for the efficient coding of sensory inputs of different modalities (Olshausen and Field, 2004;

Field, 1994). Hence, the developmental process of receptive field refinement might be expected to

produce sparser network activity over time. However, experiments directly testing this idea have

found no, or even opposite, evidence for the developmental emergence of efficient sparse coding

(Berkes et al., 2009; Berkes et al., 2011). In the context of our work, sparsification simply refers to

an overall sparsification of network events (fewer active cells per event). Given that our data pertain

to developmental spontaneous activity before eye-opening, in complete absence of stimulation, it is

not straightforward to relate our event sparsification to the sparse efficient coding hypothesis.

Assumptions in the model
Our model is based on the assumption that L- and H-events have distinct roles during the develop-

ment of the visual system. Retinal waves, the source of L-events, carry information downstream

about the position and function of individual retinal ganglion cells (Stafford et al., 2009), hence

they are ideally suited to serve as ‘training patterns’ to enable activity-dependent refinements based

on spatiotemporal correlations (Ko et al., 2011; Ackman and Crair, 2014; Thompson et al., 2017).

Since all cells are maximally active during H-events, these patterns likely do not carry much informa-

tion that can be used for activity-dependent refinement of connectivity. In contrast, we assumed that

H-events homeostatically control synaptic weights, operating in parallel to network refinements by

L-events (Figure 4). Indeed, highly correlated network activity can cause homeostatic down-regula-

tion of synaptic weights via a process known as synaptic scaling (Turrigiano and Nelson, 2004). The

homeostatic role of H-events is also consistent with synaptic downscaling driven by slow waves dur-

ing sleep, a specific form of synchronous network activity (Tononi and Cirelli, 2006;

Vyazovskiy et al., 2008). Since during development sleep patterns are not yet regular, we reasoned

that refinement (by L-events) and homeostasis (by H-events) occur simultaneously instead of being

separated into wake and sleep states.

We focused on the role of spontaneous activity in driving receptive field refinements rather than

study how spontaneous activity is generated. While the statistical properties of spontaneous activity

in the developing cortex are well-characterized, the cellular and network mechanisms generating

this activity remain elusive. In particular, while H-event generation has been shown to rely on gap

junctions (Siegel et al., 2012; Niculescu and Lohmann, 2014), which recurrently connect developing

cortical cells, not much is known about how the size of cortical events is modulated and how an

L-event is prevented from spreading and turning into an H-event. It is likely that cortical inhibition

plays a critical role in localizing cortical activity and shaping receptive field refinements (Wood et al.,

2017; Leighton et al., 2020), for instance, through the plasticity of inhibitory connections by regu-

lating E/I balance (Dorrn et al., 2010). As new experiments are revealing more information about

the cellular and synaptic mechanisms that generate spatiotemporally patterned spontaneous activity

(Fujimoto et al., 2019), a full model of the generation and the effect of spontaneous activity might

soon be feasible.

The threshold parameter in the Hebbian covariance rule in the presence of H-events implements

an effective subtractive normalization that sharpens receptive fields (see Appendix). Despite the

strong weight competition, subtractive normalization seems to be insufficient to stabilize receptive

fields in the presence of non-adaptive H-events (Figure 3). Multiplicative normalization is an alterna-

tive normalization scheme, but it does not generate refined receptive fields (Miller and MacKay,

1994). Therefore, we also studied the BCM rule due to its ability to generate selectivity in postsyn-

aptic neurons under patterned input. While the BCM rule successfully generates selectivity and

receptive field refinement, the resulting topography is worse than in the Hebbian covariance rule

(Figure 3). Both rules have an adaptive component: in the BCM rule it is the threshold between
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potentiation and depression that slides as a function of postsynaptic activity, while in the Hebbian

covariance rule it is the adaptive amplitude of H-events, while the rule itself is fixed. Although

experiments have shown the stereotypical activity dependence of the BCM rule (Kirkwood et al.,

1996; Sjöström et al., 2001), whether a sliding threshold for potentiation vs. depression exists is still

debated. Moreover, the timescale over which the threshold slides to prevent unbounded synaptic

growth needs to be much faster than found experimentally (Zenke et al., 2017). Our proposed

H-event amplitude adaptation operates on the fast timescale of several spontaneous events found

experimentally (Siegel et al., 2012; Sánchez-Aguilera et al., 2014; Lombardo et al., 2018). Hence,

together with the better topography and the resulting event sparsification as a function of develop-

mental stage that the Hebbian covariance rule with adaptive H-events generates, we propose it as

the more likely plasticity mechanism to refine receptive fields in the developing visual cortex.

Finally, we have focused here on the traditional view that molecular gradients set up a coarse

map that activity-dependent mechanisms then refine (Goodhill and Xu, 2005). In our model, this

was implemented as a weak bias in the initial connectivity, which did not affect our results regarding

the refinement of receptive fields. Both activity and molecular gradients may work together in inter-

esting ways to refine receptive fields (Grimbert and Cang, 2012; Godfrey and Swindale, 2014;

Naoki, 2017), and future work should include both aspects.

Predictions of the model
Our model makes several experimentally testable predictions. First, we showed that changing the

frequency of H-events can affect the size of the resulting receptive fields under both the BCM (Fig-

ure 3) and the Hebbian covariance rule with adaptive H-events (Figure 4). The frequency of H-events

can be experimentally manipulated using optogenetics or pharmacology. For instance, gap junction

blocker (carbenoxolone) has been shown to specifically reduce the frequency of H-events

(Siegel et al., 2012), hence in that scenario our results predict broader receptive fields.

Additionally, L-events can also be experimentally manipulated. Recently, reduced inhibitory sig-

naling by suppressing somatostatin-positive interneurons have has been shown to increase the size

of L-events in the developing visual cortex (Leighton et al., 2020). With the effect of altered inhibi-

tory signaling on receptive field refinements still unknown, our work predicts larger receptive fields

and worse topography upon reduction of inhibition. L-events can also be experimentally manipu-

lated by changing the properties of retinal waves, which can significantly affect retinotopic map

refinement of downstream targets (Grubb et al., 2003; Cang et al., 2005b; Burbridge et al.,

2014). Indeed, b2 knockout mice discussed earlier have larger retinal waves and less refined recep-

tive fields in the visual cortex (Sun et al., 2008; Stafford et al., 2009; Cutts and Eglen, 2014). If we

assume that these larger retinal waves manifest as larger L-events in the visual cortex following

Siegel et al., 2012, then these experimental observations are in agreement with our model results.

Third, our model predicts that as a result of receptive field refinement during development, net-

work events sparsify as global, cortically generated events are attenuated and become more local-

ized. Interestingly, the properties of spontaneous activity measured experimentally in different

sensory cortices (Rochefort et al., 2009; Frye and MacLean, 2016; Smith et al., 2015;

Ikezoe et al., 2012; Shen and Colonnese, 2016; Golshani et al., 2009) and in the olfactory bulb

(Fujimoto et al., 2019) change following a very similar timeline during development as predicted in

our model. However, in many of these studies activity has not been segregated into peripherally

driven L-events and cortically generated H-events. Therefore, our model predicts that the frequency

of L-events would increase while the frequency of H-events would decrease over development.

Finally, we propose that for a Hebbian covariance rule to drive developmental refinements of

receptive fields using spontaneous L- and H-event patterns recorded in vivo (Siegel et al., 2012),

H-events need to adapt to ongoing network activity. Whether a fast adaptation mechanism like the

one we propose operates in the cortex requires prolonged and detailed activity recordings in vivo,

which are within reach of modern technology (Ackman and Crair, 2014; Ji, 2017; Gribizis et al.,

2019). Our framework also predicts that manipulations that affect overall activity levels of the net-

work, such as activity reduction by eye enucleation, would correspondingly affect the amplitude of

ongoing H-events.
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Conclusion
In summary, we studied the refinement of receptive fields in a developing cortex network model

constrained by realistic patterns of experimentally recorded spontaneous activity. We proposed that

adaptation of the amplitude of cortically generated spontaneous events achieves this refinement

without additional assumptions on the type of plasticity in the network. Our model further predicts

how cortical networks could transition from supporting highly synchronous activity modules in early

development to sparser peripherally driven activity suppressing local amplification, which could be

useful for preventing hyper-excitability and epilepsy in adulthood while enhancing the processing of

sensory stimuli.

Materials and methods

Network model
We studied a feedforward, rate-based network with two one-dimensional layers, one of Nu thalamic

neurons (u) and the other of Nv cortical neurons (v), with periodic boundary conditions in each layer

to avoid edge effects. The initial connectivity in the network was all-to-all with uniformly distributed

weights in the range wini ¼ ½a; b�. In addition, a topographic bias was introduced by modifying the ini-

tially random connectivity matrix to have the strongest connections between neurons at the matched

topographic location, and which decay with a Gaussian profile with increasing distance (Figure 2C),

with amplitude s and spread ss. During the evolution of the weights, soft bounds were applied on

the interval ½0;wmax�. We studied weight evolution under two activity-dependent learning rules: the

Hebbian (Equation 2) and the BCM (Equation 3) rules. Table 1 lists all parameters. Sample codes

can be found at github.com/comp-neural-circuits/LH-events (Wosniack, 2021; copy archived at swh:

1:rev:b90e189a9e1a4d0cdda097d435fa91b1236f1866).

Generation of L- and H-events
We modeled two types of spontaneous events in the thalamic (L-events) and the cortical (H-events)

layer of our model (Siegel et al., 2012). During L-events, the firing rates of a fraction (Lpct) of neigh-

boring thalamic neurons were set to Lamp ¼ 1 during a period Ldur and were otherwise 0. Similarly,

during H-events, the firing rates of a fraction (Hpct) of cortical cells were set to Hamp during time Hdur.

As a result, cortical neuron activity was composed of H-events and L-events transmitted from the

thalamus. For each H-event, Hamp was independently sampled from a Gaussian distribution with

mean Hamp and standard deviation Hamp=3. The inter-event intervals were Lint and Hint sampled from

experimentally characterized distributions in Siegel et al., 2012, (Table 1). The event durations and

inter-event intervals were shortened by a factor of 10 compared to the values measured in the data

(Figure 1) to speed up our simulations, but the relationships observed in the data were preserved.

We note that in the experiments, both L- and H-events were characterized in the primary visual cor-

tex; in our model, we assume that L-events are generated in the retina and subsequently propa-

gated through the thalamus to the cortex, where they manifest with the experimentally reported

characteristics (see Figure 7B for example). This interpretation is supported by experimental evi-

dence (Siegel et al., 2012), but we cannot exclude the possibility that the retina also generates

H-events or that L-events are generated in the cortex.

Reduction of the weight dynamics to two dimensions
To reduce the full weight dynamics to a two-dimensional system, we averaged all the n weights

belonging to the receptive field that are predicted to potentiate along the initial topological bias, as

wRF, and all the Nu � n remaining weights, which we call complementary to the receptive field, as

wC. When all weights behaved the same, we arbitrarily split them into two groups of the same size.

Details about the classification of weights as wRF or wC can be found in the Appendix.

Computing the strength of simulated H-events
To relate the reduced two-dimensional phase planes to the simulation results, we wrote down the

steady state activity of neuron j (Equation 1), which contains the rate gain from H-events relative to

L-events, hRHi (also called ‘Strength of H-events’ in Figure 4E):
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hRHi ¼
hLinti

hHinti

hHampi

hLampi

hHduri

hLduri
¼

Lint

Hint

hHampi (6)

since hLduri ¼ hHduri and hLampi = 1.

In the absence of adaptive H-events, for a fixed set of values for Hamp and Lint (as in Table 1) and

a chosen hRHi which we called ‘Non-adapted strength of H-events’ in Figure 4E, we used Equation 6

to find the Hint value that satisfies the equation. Next, we ran simulations with the same Hint and Lint

parameters, but adaptive Hamp. We fixed the inter-event intervals of both L- and H-events to their

mean values Lint and Hint instead of sampling them from distributions in Figure 4E. Then we numeri-

cally estimated the average amplitude of H-events with adaptation, which we called ‘Adapted

strength of H-events’ in Figure 4E at the end of the simulation (final 5% of the simulation time) when

the dynamics were stationary.

Receptive field statistics
The following receptive field statistics were used to quantify properties of the weight matrix W after

the developing weights became stable.

Receptive field size
The receptive field of a cortical neuron is the group of weights from thalamic cells for which

wij>wmax=5. The lower threshold was chosen to make the measurement robust to small fluctuations

around 0, which are present because of the soft bounds. Mathematically, we compute the receptive

field size of cortical neuron j as:

RFðwjÞ ¼
1

Nu

X

Nu

i¼1

I i; (7)

with the IIIII vector given by:

I i ¼
1; wij>wmax=5

0; otherwise:

�

(8)

The normalized receptive field ranges from 0 corresponding to a total decoupling of the cortical

cell from the input layer, to one corresponding to no selectivity due to the potentiation of all weights

from the input layer to that neuron. To compute the average receptive field size of the network, we

include only the cortical neurons (N�) that have not decoupled:

RFðWÞ ¼
1

N�

X

N�

j¼1

RFðwjÞ: (9)

If all the cortical cells have decoupled from the thalamus, we set RFðWÞ ¼ 0.

Topography T
The topography of the network is a measure of how much of the initially weak biased topography is

preserved in the final receptive field. Due to our biased initial conditions, neighboring thalamic cells

are expected to project to neighboring cortical cells, yielding a diagonal weight matrix. For each

cortical neuron, we calculated how far the center of its receptive field is from the ideal diagonal.

Mathematically, for each row j of W, we determined the center of the receptive field cj and calcu-

lated the smallest distance (while considering periodic boundary conditions) between the receptive

field center and the diagonal element j. Then, we summed all the squared distances and calculated

the average error of the topography:

�¼
1

Nv

X

Nv

j¼1

jcj� jj2: (10)

To normalize the topography, we compared x to the topography error � of a column receptive

field (Figure 3—figure supplement 1A) where the centers of all cortical receptive fields were the
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same, cj ¼ c (c a constant). For such a column receptive field, �¼ N2

u

12
. Therefore, we define the topog-

raphy score T as:

T ¼ 1�
�

�
: (11)

The topography will be close to one if the weight matrix is perfectly diagonal and 0 if the final

receptive field is a column (�¼ �).

Proportion of cortical decoupling D
To quantify the cortical decoupling, we use Equation 8 to compute the fraction of decoupled neu-

rons divided by the number of neurons, 1

Nu

PNu

j¼1

QNu

i¼1
ð1� I ijÞ. If the decoupling is 0, no cortical neu-

ron has decoupled from the thalamus, while decoupling of 1 means that all the cortical neurons are

decoupled from the thalamus.

Quantifying adaptation in the data
We first investigated if fluctuations in the activity across recordings could generate significant corre-

lations. We analyzed consecutive recordings (each ~5 mins long) in the same animal of which we had

between 3 and 14 in all 26 animals (separated by <5 mins due to experimental constraints on data

collection) to identify possible fluctuations on a longer timescale. We found that the average ampli-

tude of all (L and H) events is not significantly different across consecutive recordings of the same

animal (Figure 5—figure supplement 1A, one-way ANOVA tests, p>0.05 in 23 out of 26 animals).

Across different animals and ages, individual event amplitudes remained uncorrelated between suc-

cessive recordings at this timescale, which we confirmed by plotting the difference in event ampli-

tude as a function of the time between recordings (Figure 5—figure supplement 1B), Kruskal-Wallis

test, p>0.05.

For our reanalysis of the spontaneous events (Figure 5), we only included events that recruited at

least 20% of the cells in the imaging field of view following Siegel et al., 2012. We computed the

average amplitude of all events that occurred within a time window Tmax before an H-event (consecu-

tive recordings were concatenated) and compared it to the amplitude of the H-event. We excluded

animals that had fewer than 12 H-events preceded by spontaneous activity within the time window

Tmax (nine animals remained after exclusion). Next, we computed the correlation coefficient of the

relationship between H-event amplitude and the average amplitude of preceding activity within Tmax

with a leaky accumulator of time constant t decay. To estimate the 95% confidence interval, we per-

formed a bootstrap analysis in which we generated 1000 bootstrap datasets by drawing without

replacement from the valid pairs of H-event amplitudes and average amplitude of preceding activity.

We repeated this analysis with different thresholds for excluding data (Figure 5—figure supplement

3A,B), different values of the time window Tmax within which events are averaged (Figure 5—figure

supplement 3C) and for different decay time constants t decay (Figure 5—figure supplement 3D).

All data and analysis code can be found at github.com/comp-neural-circuits/LH-events.

Spontaneous events identification in the model
To quantify the properties of spontaneous activity in the cortical layer of our model, we used the

time series of activity of all the simulated cortical neurons (after weight stabilization is achieved) sam-

pled in a high time resolution (0.01 s, Figure 7B). We defined a global activity threshold n ¼ vmax=r,

where vmax is the highest amplitude among the cortical cells in the recording and r is a fixed scaling

constant (r ¼ 8 for all recordings). For each cortical cell j, we labeled the intervals where the cell was

active (1) or inactive (0) based on:

xjðtÞ ¼
1; if vjðtÞ � n;

0; otherwise:

�

(12)

We then used the trace XðtÞ ¼
PN

j¼1
xjðtÞ to define the number of active cortical cells at each time

step t, that is, the participation rate. For each identified event, we averaged the amplitude of the

active cells to obtain the amplitude vs. participation rate relationship.
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Appendix 1

The weight dynamics under the Hebbian covariance rule
Since synaptic plasticity operates on a much slower time scale than the response dynamics of the

output neuron, we make a steady state assumption and write Equation 1 for neuron j as:

vjðtÞ ¼ u
>
ðtÞwjðtÞþ hRHiðtÞ; (13)

where wj is the vector of the elements in the row of the weight matrix W, that is, the vector of

weights from all thalamic neurons into cortical neuron j. hRHiðtÞ is the rate gain from H-events rela-

tive to L-events, which depends on the duration, amplitude, and inter-event intervals of both L- and

H-events. Specifically, hRHi is proportional to hHampi, hHduri, hLinti and inversely proportional to

hHinti, hLampi and hLduri (where h�i denotes an ensemble average over the activity patterns), such

that:

hRHi ¼
hLinti

hHinti

hHampi

hLampi

hHduri

hLduri
: (14)

Rewriting Equation 2 in vector form:

t w

dwjðtÞ

dt
¼ vjðtÞ uðtÞ� �uð Þ

 �

: (15)

Inserting Equation 13 into the weight dynamics from Equation 15 yields (dependence on t is

omitted for clarity):

t w

dwj

dt
¼ u

>
wjþRH

� �

u� �uð Þ

 �

¼Cwj � �u �huið Þhu
>
iwj� RHh i�u

¼C0ð�uÞwj� RHh i�u;

(16)

where C¼Q�hui2 is the input covariance matrix, Q¼ huu>i is the input correlation matrix and we

have defined C0ð�uÞ ¼C�hui �u �huið Þ ¼Q�hui�u to be the ‘modified covariance matrix’ of the learn-

ing rule. We write hui to denote the vector with repeated element hui, which is the mean normalized

size of an L-event (e.g. for L-events engaging 20–80% of input neurons, hui ¼ 0:5). We also used the

fact that the occurrence of L- and H-events is uncorrelated (Siegel et al., 2012), such that hRHui ¼ 0.

Normalization constraints
The unconstrained Hebbian covariance rule has the undesirable effect that all the synaptic inputs to

an output cell are potentiated and no selectivity is achieved. However, the presence of the threshold

and H-events in Equation 16 effectively implements a subtractive constraint in the weight dynamics

(Miller and MacKay, 1994). In general, a subtractive constraint can be written as:

t w

dwj

dt
¼Awj� "ðwjÞn; (17)

where A is a symmetric matrix, wj the weight vector, "ðwjÞ a scalar function of the weights and n a

constant vector of ones. By comparing the terms of the second line of Equation 16, we can identify

C¼A, since the covariance matrix is symmetric, and the function "ðwjÞ as:

"ðwjÞ ¼ �u�huið Þhu
>
iwj �hRHi�u: (18)

Due to the subtractive constraint in Equation 16, the synaptic weights will saturate at either the

upper or lower bounds, resulting in the sharpening of receptive fields. Notice that if hRHi ¼ 0, the

decay term in the subtractive constraint is proportional to wjðtÞ. Then, the subtractive component

can be adjusted to induce less depression and prevent the decoupling of cortical cells. With non-

adaptive H-events, however, hRHi 6¼ 0 adds a constant decay rate to the weight dynamics that is

independent of weight strength and therefore decouples cortical cells.
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The input correlation matrix
The spontaneous L-events in our network model have useful mathematical properties that allowed

us to derive an analytical expression for the elements of the input correlation matrix Q. The locality

and periodicity of L-events and the long-term averaging of their stationary dynamics generate a sym-

metric and circulant matrix Q (Gray, 2005). In a circulant matrix, each row is rotated one element to

the right relative to the preceding row, and thus Q can be completely defined by a vector.

Let ‘ be the fixed size of an L-event between 0 and Nu. By computing the correlations among all

the possible L-events of size ‘, we can write the elements of the vector q‘k ¼ ½q‘1; q‘2; . . . ; q‘Nu
�, which

completely defines Q, as:

q‘k ¼
‘�min min Nu � k� 1;k� 1ð Þ;min Nu � ‘; ‘ð Þð Þ

Nu

; (19)

where minða;bÞ returns the minimum of a and b. Since we wanted to explore the dependence of

refinement on the size of L-events, defined by the minimum (‘min) and maximum (‘max) number of

cells they activate in the input layer, we average over the size of a given event:

qk ¼
1

ð‘max� ‘minÞ

X

‘max

‘¼‘min

‘�min min Nu � k� 1;k� 1ð Þ;min Nu� ‘; ‘ð Þð Þ

Nu

: (20)

Finally, using the emergent symmetry of Q, we can simplify the elements of this vector as follows:

qk ¼ q�min k� 1;Nu� kþ 1ð Þdq; for all k¼ 1;2; . . . ;Nu; (21)

with q¼ ð‘max þ ‘minÞ=2Nu and dq ¼ 1=Nu.

Since Cð�uÞ and C0ð�uÞ are defined in terms of Q minus a constant, both are circulant matrices as

well.

Fixed point of the weight dynamics
The fixed point of the weight dynamics under L- and H-events is obtained by setting Equation 16 to

zero and solving the resulting equation for w�:

w� ¼ hRHi�uC
0ð�uÞ

�1
n; (22)

where n is a vector of ones. To study the nature of the fixed point w�, we need to investigate the

eigenvalues of the circulant matrix C0ð�uÞ
�1 (the inverse of a circulant matrix is also a circulant matrix).

A circulant matrix has the property that its eigenvectors can be written in terms of roots of unity.

The eigenvalues are real and can be written as the discrete Fourier transforms of any row of the

matrix (Gray, 2005). In particular, one of the eigenvalues is the sum of the elements of any row of

the matrix, with a corresponding eigenvector that is a constant. We call this special eigenvalue the

‘row-sum eigenvalue’. All eigenvalues except for the row-sum are non-negative.

We can write the fixed point as w� ¼ ðl�Þ�1�uhRHin, where l� is the row-sum eigenvalue of C0ð�uÞ.

It is clear that if only L-events are present, hRHi ¼ 0, the fixed point is always at the origin, w� ¼ 0.

Consequently, adding H-events in the cortical layer moves the location of the fixed point along the

diagonal of the phase plane, that is, equally in all directions. The fixed point will be positive (nega-

tive) when l� is positive (negative). Furthermore, it will be an unstable fixed point for l�>0, since all

the eigenvalues of the dynamical system are positive. The fixed point is a saddle node when l�<0

since the other eigenvalues are positive.

Calculation of receptive field size
The Hebbian covariance rule on its own does not have a mechanism to prevent the weights to grow

infinitely large or negative. Thus, to generate receptive fields we imposed a lower bound at 0 and an

upper bound at wmax. This enabled us to calculate the size of the receptive field, n, as a function of

L-event properties and the input threshold, �u in the absence of H-events. Because the cortical cells

are not recurrently connected, here we examine the weight vector onto a single cortical neuron.

Assuming the dynamical system has reached steady state, to get a receptive field of size n<Nu for
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this cortical neuron, we can write the fixed point weight vector as w� ¼ ðwmax; . . . ;wmax; 0; . . . ; 0Þ
>
,

where n of the weights have reached the upper bound wmax, while the remaining weights the lower

bound 0. The specific weight identity reaching the upper bound is not important, as long as they are

topographically near each other. To achieve this fixed point:

_wijw¼w� ¼
� 0; 1� i� n

<0; i>n:

�

(23)

Using the structure of our circulant correlation matrix (Equation 21), we can rewrite Equation 16

(note that in the absence of H-events hRHi ¼ 0) as:

t w

_w1

..

.

_wn

_wnþ1

..

.

_wNu

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

¼

q1 �hui�u . . . qn �hui�u qnþ1 �hui�u . . . qNu
�hui�u

..

. ..
. ..

. ..
.

qn �hui�u . . . q1 �hui�u q2�hui�u . . . qnþ1 �hui�u

qnþ1 �hui�u . . . q2 �hui�u q1�hui�u . . . qnþ2 �hui�u

..

. ..
. ..

. ..
.

q2 �hui�u . . . qnþ1 �hui�u qnþ2 �hui�u . . . q1�hui�u

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

wmax

..

.

wmax

0

..

.

0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

: (24)

Now, we study the conditions to guarantee that Equation 23 is satisfied. Computing each equa-

tion explicitly, we obtain:

t w _w1 ¼ ðq1 þ . . .þ qnÞwmax � nhui�uwmax

..

.

t w _wn ¼ ðqn þ . . .þ q1Þwmax � nhui�uwmax

t w _wnþ1 ¼ ðqnþ1 þ . . .þ q2Þwmax� nhui�uwmax

..

.

t w _wNu
¼ ðq2 þ . . .þ qnþ1Þwmax� nhui�uwmax:

(25)

And finally, using Equation 21 and after some manipulations this can be written as:

t u _wi ¼ nq�
iði� 1Þ

2
þ
ðn� iÞðn� iþ 1Þ

2

� �

dq � nhui�u

� �

wmax; i¼ 1;2; . . . ;Nu: (26)

To determine the input threshold �u in Equation 25 that yields a receptive field of size n, we

assume that _wijw¼w� ¼ 0 for i¼ n; this implies that _wijw¼w�>0 for i<n and _wijw¼w�<0 for i>n. We write �u
as a linear combination of q and dq:

�u ¼ aqþbdq: (27)

Using this ansatz in Equation 26 and setting it to zero for i¼ n (since wmax>0), we find that a¼

1=hui and b¼�ðn� 1Þ=ð2huiÞ. Therefore, only in the presence of L-events, we derive the input

threshold at which the resulting receptive field size is n:

�nu ¼
q� ðn�1Þ

2
dq

hui
: (28)

Plugging this threshold into Equation 26 for all i, we get a quadratic polynomial in i:

t w _wi ¼ �i2 þðnþ 1Þi� n
� �

dqwmax; i¼ 1;2; . . . ;Nu: (29)

Since dq;wmax>0, indeed 1� i� n results in _wi � 0 while i>n yields _wi<0, thus, satisfying

Equation 23.

In the absence of H-events, we computed the average size of receptive fields using Equation 28

for a range of input thresholds �u and maximum participation rates of L-events, while keeping the

minimum participation rate at 20% (Appendix 1–figure 1A, contour lines). We verified our analytical

predictions with Monte Carlo simulations for the same range of parameters (Appendix 1–figure

1A). We confirmed that the size of L-events, which depends on the range of participation rates, has
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a direct impact on receptive field size, with larger L-events resulting in larger receptive fields for a

fixed input threshold (Appendix 1–figure 1B). Low input thresholds generate refined receptive fields

only if the size of spontaneous events is small.
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Appendix 1—figure 1. Receptive field size depends on L-event properties and learning rule input

threshold in the absence of H-events. (A) Receptive field sizes from 500 Monte Carlo simulations for

combinations of L-event maximum participation rate and input threshold, �u. For all simulations, the

L-event minimum participation rate was fixed at 20%. The contour plots of receptive field sizes were

obtained using the analytical approach (Equation 23). (B) Example receptive fields for different

L-event maximum participation rates and �u ¼ 0:5. Smaller events recruiting only 20–40% of the

input neurons generate very refined receptive fields. As the upper bound of the participation rate

progressively increases from 40% to 80%, receptive fields get larger.

The eigenspace of C0ð�uÞ
To gain intuition for the weight dynamics in Equation 16, we first investigated the eigenspace of

C0ð�uÞ, the vector space spanned by the eigenvectors of C0ð�uÞ. Specifically, we focused on the condi-

tions that enabled the robust formation of cortical receptive fields.

Using the fact that Q and C0ð�uÞ are circulant matrices (Appendix 1–figure 2A, B), we identified

two input thresholds, �� and ���, that define three dynamical regions that the row-sum eigenvalue of

C0ð�uÞ, l
�, can occupy (Appendix 1–figure 2C). To obtain the first critical input threshold �� that

characterizes the transition from region (i) to region (ii), we set, for any row j, the row-sum eigen-

value to the largest (fixed) eigenvalue of C0ð�uÞ:

X

Nu

i¼1

Qji�Nu�
�hui ¼ l1; (30)

and for the input statistics of experimentally measured L-events (Table 1), we obtained �� ¼ 0:414.

Similarly, the transition from region (ii) to region (iii) is achieved when the row-sum eigenvalue is set

to zero:

X

Nu

i¼1

Qji �Nu�
��hui ¼ 0; (31)

and the second critical input threshold is obtained as ��� ¼ 0:564.
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Appendix 1—figure 2. Eigenvalues and eigenvectors of weight dynamics predict receptive field

refinement. (A) The input correlation matrix Q ¼ huu>i. (B) The modified covariance matrices C0ð�uÞ ¼

Q� hui�u for different input thresholds, �u. (C) Two thresholds, �� ¼ 0:414 and ��� ¼ 0:564, define

three different dynamical regions in the spectrum of C0ð�uÞ, delineated by the horizontal red dashed

lines: (i) 0<�u<�
�, (ii) ��<�u<�

��, and (iii) ���<�u<1. The row-sum eigenvalue l� in each case is given by

the yellow star, while the remaining eigenvalues are shown as gray circles. (D) Dominant

eigenvectors corresponding to each region in C. Inset: fixed points corresponding to each region:

(i), (ii) unstable node (open circles); (iii) saddle node (half-open circle).

In region (i), 0<�u<�
� and l�>0 is the dominant (largest) eigenvalue of C0ð�uÞ. The eigenvector cor-

responding to it is a constant (Appendix 1–figure 2D, (i)). This predicts that all synaptic weights to a

given cortical cell will potentiate preventing the formation of a localized receptive field. Since all

eigenvalues are non-negative, the fixed point is an unstable node of the linear dynamical system

(Equation 16).

In region (ii), ��<�u<�
�� and l�>0. However, l� is no longer the dominant eigenvalue. In this set-

ting, there is a pair of dominant eigenvalues with the corresponding eigenvectors taking the form of

out-of-sync sine waves with positive and negative elements. The sign of these elements predicts that

some weights will potentiate while others depress, thus enabling the formation of receptive fields

(Appendix 1–figure 2D, (ii)). All eigenvalues in this second region remain non-negative and the fixed

point is still an unstable node of the dynamical system.

Finally, in region (iii), ���<�u<1 and l�<0. While the dominant eigenvectors are similar to those in

region (ii), enabling the formation of localized receptive fields (Appendix 1–figure 2D, (iii)), the

dynamics of the dynamical system are different because the fixed point is now a saddle node.

Analysis of the weight dynamics in two dimensions
We reduced the dimension of the weight dynamics by defining two distinct sets of weights. The first

set, wRF, corresponds to the n weights which correspond to the topographically biased locations of

the receptive field. The complementary set wC contains the remaining weights. To classify the

weights into wRF and wC, first we solved Equation 16 with the biased initial condition and limited

the sum to the dominant eigenvalues and respective eigenvectors. In the case of selectivity, the

eigenvectors have half the elements positive and half negative. Therefore, if the receptive field size

is n<Nu=2 we needed to subsample the potentiating weights to achieve the smaller receptive field

size. We did it by keeping only the n largest positive elements in wRF and moving the remaining

ones to wC. If n>Nu=2, we downsampled wC by moving the n� Nu=2 less-negative weights to wRF.

Due to the topographically biased initial conditions, wRF always contained the weights potentiating

along the diagonal wRF ¼ wC.

We then regularly sampled initial conditions in ½0;wmax� � ½0;wmax�. For a given receptive field size

n, we set �u ¼ �nu according to Equation 27. If wRFð0Þ>wCð0Þ, wRF contains the n weights that form

the receptive field by potentiating to the upper bound wmax, while wC contains the remaining Nu � n

weights that depress to 0. Similarly, if wRFð0Þ<wCð0Þ, wC contains the n weights that potentiate to

the upper bound, while wRF contains the remaining Nu � n weights that depress to 0. At each initial

Wosniack et al. eLife 2021;10:e61619. DOI: https://doi.org/10.7554/eLife.61619 31 of 35

Research article Neuroscience

https://doi.org/10.7554/eLife.61619


condition, we solved the weight evolution (Equation 16) for each weight, and averaged the weights

in wRF and wC for a small time interval to obtain the direction of the phase plane arrows. We com-

puted the evolution trajectory by solving Equation 16 with a topographically biased initial condition.

Analytical solution of the two-dimensional weight dynamics with only
L-events in the Hebbian covariance rule
We first examined the weight dynamics in the reduced two-dimensional phase plane wRF � wC for

only L-events (hRHi ¼ 0 in Equation 16). The phase plane is symmetric about the diagonal wRF ¼ wC

due to the symmetry of the dominant eigenvectors (Appendix 1–figure 3A). As predicted by the

eigenvectors (Appendix 1–figure 2D), in region (i) both wRF and wC converge to the upper bound

and the fixed point, which is located in the origin, is an unstable node (Appendix 1–figure 3A, left).

Therefore, all weights potentiate and no receptive field can be formed. In regions (ii) and (iii), the

eigenvectors predict the formation of receptive fields with wRF ! wmax and wC ! 0, respectively

(Appendix 1–figure 3A, middle and right), although the dynamics are different in each case because

the origin is an unstable node or a saddle node, respectively.
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Appendix 1—figure 3. Peripheral L-events generate robust receptive field refinement. (A) The

reduced two-dimensional weight dynamics in the phase plane with the same �u as Appendix 1–

figure 2B and D. For each plane, the red trajectory depicts the weight evolution from an initial

condition where wRFð0Þ>wCð0Þ until the weights’ upper bound (wmax ¼ 0:5). Left: wC ! wmax and

wRF ! wmax, resulting in no selectivity. Middle and right: wC ! 0 and wRF ! wmax, resulting in

selectivity and receptive field refinement. (B) Simulation results for the same input thresholds of

Appendix 1–figure 2B,D for the full 50-dimensional system.

Our analytical predictions of the reduced two-dimensional system with only L-events were con-

firmed in numerical simulations of the full N-dimensional system. In particular, in region (i) all weights

potentiate with each cortical cell receiving input from all thalamic inputs, such that no receptive field

forms (Appendix 1–figure 3B, left). In regions (ii) and (iii), receptive fields form with good topogra-

phy (Appendix 1–figure 3B, middle and right). Therefore, consistent with the analytical prediction

of receptive field size (Appendix 1–figure 1), higher input thresholds resulted in smaller receptive

fields.

Thus, the Hebbian covariance rule can generate receptive fields of size depending on the input

threshold �u in the presence of only L-events originating from the sensory periphery. This result is in

agreement with previous findings of the emergence of other aspects of development including

topographic maps (Willshaw and von der Malsburg, 1976) and ocular dominance (Miller et al.,

1989; Miller, 1994) or other selectivity (Mackay and Miller, 1990; Miller and MacKay, 1994;

Lee et al., 2002) in the presence of correlated activity in the input layer of similar feedforward

Wosniack et al. eLife 2021;10:e61619. DOI: https://doi.org/10.7554/eLife.61619 32 of 35

Research article Neuroscience

https://doi.org/10.7554/eLife.61619


networks. We find that when the only input to the cortex are peripheral L-events, intrinsic properties

of the learning rule, such as the threshold between potentiation and depression, control receptive

field refinement.

Analytical solution of the two-dimensional weight dynamics with L- and
H-events in the Hebbian covariance rule
We also studied how the addition of H-events affects network refinements. To investigate the role of

H-events in a systematic way, we repeated our analytical study of the weight-dynamics from Equa-

tion 16, but with hRHi 6¼ 0. In the reduced two-dimensional phase plane, wRF � wC, including sponta-

neous events in the cortical layer moves the fixed point of Equation 16 away from the origin to the

coordinates wRF ¼ wC ¼ ðl�Þ�1�uhRHi. Nevertheless, the different dynamical regimes reported in n

Appendix 1–figure 2C continue to be valid. In region (i), the addition of cortical events moves the

unstable node away from the origin and into the first quadrant (Appendix 1–figure 4A top). As a

result, a small region of selectivity emerges in the plane in which initial conditions generate refined

receptive fields (Appendix 1–figure 4A, top middle). Therefore, the addition of H-events enables

the emergence of weight selectivity but through a different mechanism than the one obtained with

only L-events. Rather than modulating the learning rule through the input threshold, changing the

H-event statistics through the hRHi parameter can generate different receptive field sizes for a fixed

input threshold. However, the strength of H-events has to be fine-tuned to generate refined recep-

tive fields. Within a small range of hRHi the network transitions from no-selectivity (where all weights

potentiate, Appendix 1–figure 4A, top left) to complete decoupling (where all weights depress,

Appendix 1–figure 4A, top right).
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Appendix 1—figure 4. Spontaneous cortical H-events disrupt receptive field refinement. (A) Top:

Phase planes of the reduced two-dimensional system for input threshold �u ¼ 0:4 (region i) and

increasing strength of cortical events hRHi with an example trajectory (red). Selectivity can only be

observed for fine-tuned hRHi. The fixed point (open circle), an unstable node, has moved to the first

Appendix 1—figure 4 continued on next page
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Appendix 1—figure 4 continued

quadrant. Bottom: Simulations of receptive field development with the same parameters where Hint

was progressively reduced (this is the same set of parameters as shown in Figure 3A). (B) Top:

Phase planes for �u ¼ 0:52 (region ii) and increasing hRHi with an example trajectory (red). The

unstable node (open circle) moves from the origin to the first quadrant as hRHi increases. Bottom.

Simulations with the same parameters where Hint was progressively reduced. (C) Top: Phase planes

for �u ¼ 0:6 (region iii) show the transition from selective receptive fields to cortical decoupling in

response to increasing hRHi. The fixed point (half-open circle), now a saddle node because l�<0, has

moved away from the origin to the third quadrant. Bottom: Simulations with the same parameters

with very infrequent H-events where Hint was progressively reduced.

To relate the reduced two-dimensional phase planes to the simulation results, we used Equa-

tion 14 to obtain hRHi by taking into account the simulation parameters in Table 1. We next verified

the predictions of the reduced two-dimensional system in numerical simulations of the full network

with H-events (Appendix 1–figure 4A bottom). To capture the gradual increase of hRHi as in the

reduced two-dimensional system, we decreased the average inter-event interval between H-events,

Hint. As before, only a narrow range of Hint leads to refined receptive fields, albeit with some degree

of decoupling (Appendix 1–figure 4A, bottom middle). Outside of this range, individual cortical

neurons are either non-selective (Appendix 1–figure 4A, bottom left) or nearly completely

decoupled from the thalamus (Appendix 1–figure 4A, bottom right).

In regions (ii) and (iii), the fixed point moves from the origin to the first and third quadrants,

respectively (Appendix 1–figure 4B and Appendix 1–figure 4C). In both cases, only very weak

H-events can sustain finite receptive fields because the high input threshold value already provides

sufficient depression to the network. We confirmed our analytical results in regions (ii) and (iii) with

numerical simulations of the full network (Appendix 1–figure 4B and Appendix 1–figure 4C,

bottom).
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