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Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene
expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial
challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq
single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification
standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total
mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/
split design and find that there are significant differences in expression between individual cells, over and above technical
variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one
enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias
and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison.
Finally, we show that transcriptomes from small pools of 30–100 cells approach the information content and reproducibility
of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and com-
putational path forward for analyzing gene expression in rare cell types and cell states.

[Supplemental material is available for this article.]

Gene expression levels can differ widely between superficially

similar cells. One source of variation is stochastic transcriptional

‘‘bursting’’ (Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al.

2003; Raser and O’Shea 2005; Kaufmann and van Oudenaarden

2007). Those studies mainly used fluorescent protein fusion genes

to monitor the expression of one or a few genes. They revealed

dynamic fluctuations through time that are seen as ‘‘salt-and-

pepper’’ variation across a cell population at any given time. In

addition to this bursting behavior, individual cells are expected

to display controlled and coordinated differences in the expres-

sion of genes engaged in dynamic physiologic processes, such

as cell cycle phase progression, paracrine or autocrine signaling

response, or stress response. Beyond such already appreciated

heterogeneity lie currently unknown cell-to-cell differences with

biological implications for defining cell states, metabolic func-

tion, and, in complex tissues, cell identity.

Measuring RNA transcripts in single cells is now done in

multiple ways, and similar conclusions about variability are emerg-

ing from the higher sensitivity methods. For individual genes,

single molecule RNA fluorescence in situ hybridization (SM-RNA

FISH) is highly informative (Femino et al. 1998; Raj et al. 2008),

and multiplexed versions now enable multiple genes to be mea-

sured in parallel (Lubeck and Cai 2012). In principle, an advan-

tage of SM-RNA FISH is the ability to accurately count the abso-

lute number of transcripts in a cell. A second and older approach

is multiplexed single-cell RT-qPCR (Cornelison and Wold 1997),

which has now been advanced to increasingly high-throughput

formats (White et al. 2011; Sanchez-Freire et al. 2012, Livak et al.

2013). It produces semiquantitative relative comparisons be-

tween individual cells. However, neither SM-RNA FISH nor the

current forms of multiplex RT-qPCR cover the entire transcriptome

or have the single-nucleotide resolution needed to study fine-

structure features of gene expression such as allele specificity,

RNA editing, and alternative splicing.

To address these and other limitations, elegant methods have

recently been developed for performing RNA-seq with very small

amounts of RNA, down to the level of individual cells. These are

broadly referred to as ‘‘single-cell RNA-seq’’ (Tang et al. 2009, 2010,

2011; Ozsolak et al. 2010; Islam et al. 2011; Brouilette et al. 2012;

Cann et al. 2012; Hashimshony et al. 2012; Pan et al. 2012; Qiu

et al. 2012; Ramsköld et al. 2012). Despite these significant ad-

vances, there are substantial shortcomings in these methods,

and a robust method for comprehensive and accurate measure-

ment of the transcriptome of a single cell is not yet available.

A particular challenge for single-cell methods is the efficiency

and uniformity with which each mRNA is copied into cDNA and

ultimately represented in the library. This challenge intersects in

crucial ways with transcriptome structure. Specifically, thou-

sands of genes are expressed in the range of 1 to 30 mRNA copies

per cell, including many essential mRNAs (for example, key

transcription factors) (Zenklusen et al. 2008). Even lower tran-

script levels, averaging <1 mRNA per cell on the population

level, are now being reliably detected by RNA-seq. This raises

questions whether very rare RNAs represent background biological

noise, or alternatively, are functional in only a small fraction of

cells. Single-cell RNA-seq has the potential to address these issues,
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but their resolution depends on how faithfully and efficiently

RNAs are captured and represented in sequencing libraries (re-

ferred to throughout as the ‘‘single-molecule capture efficiency,’’

psmc). In addition, the uniformity of transcript coverage in early

single-cell RNA-seq protocols has typically been heavily biased

toward the 39 end, which affects both gene expression estimates

and the ability to analyze alternative splicing, RNA editing, and

allelic bias.

A second major use for single-cell RNA-seq is the tran-

scriptomic characterization of rare cells. The human body consists

of hundreds of distinct cell types, plus large numbers of neuronal

and transient developmental cell types. Many of these are nu-

merically minor components of complex tissues, making them

inaccessible to standard methods relying on large RNA inputs.

Isolation of single cells based on the cell surface markers or using

microdissection coupled with single-cell RNA-seq could fill this

gap in complex multicellular organisms. However, the feasibility

of this approach also depends on the experimental robustness of

single-cell RNA-seq protocols. Alternatively, single-cell resolution

may not be absolutely required for this purpose, and small pools of

cells may be sufficient to characterize rare cell-type transcriptomes.

An open unresolved question is how small such pools can be to

adequately meet that goal.

In this study, we address the issues highlighted above. We

used the SMART-seq protocol (Ramsköld et al. 2012) to measure

the transcriptome of single cells and small cell pools from the

GM12878 lymphoblastoid cell line. This line is derived from the

NA12878 individual, for which a fully sequenced genome with

completely phased heterozygous single nucleotide polymorphisms

(SNPs) and indels is available (The 1000 Genomes Project Con-

sortium 2012). GM12878 cells have also been the subject of an

extensive functional genomic characterization by the ENCODE

Consortium (The ENCODE Project Consortium 2011, 2012) and

have been used in prior population-level studies of allele-biased

gene expression and transcription factor occupancy (Rozowsky

et al. 2011; Reddy et al. 2012).

Using spike-in quantification standards of known abun-

dance (Mortazavi et al. 2008), we derive estimates for the absolute

number of transcript copies for each gene in each cell and directly

measure the average value of psmc. ‘‘Pool/split’’ experiments (con-

sisting of pooling RNA from multiple single cells, splitting the pool

into the same number of separate reactions and building libraries

from them) allowed us to measure the extent of and control for

technical variation. We find that the psmc value is quite low: ;0.1.

An analysis framework accounting for technical stochasticity is

described and used to assess variability in gene expression, allelic

bias, and alternative splicing between single cells. Distinct from

prior studies, our approach allowed us to parse findings into

those that are just as likely to be of technical origins and those

that are more likely to be of biological interest.

We report evidence of significant variability in the total

number of mRNA molecules per cell, and identify biologically

coherent modules of coexpressed genes specifically expressed in

individual cells or groups of cells. These include expected varia-

tion associated with cell cycle phases, and an unexpected module

enriched for mRNA processing and splicing genes. We observe

evidence of higher levels of autosomal allelic exclusion on the

single-cell level, potentially associated with transcription bursts;

however, it is at present difficult to confidently distinguish from

technical variability. In contrast, we find much stronger evidence

for widespread major splice site usage switches between individ-

ual cells. Finally, our analysis of similarly constructed small cell

pools (30–100 cells) reveals a high robustness and reproducibility,

approaching that of bulk RNA measurements. This presents a reli-

able path forward toward the future comprehensive transcriptomic

characterization of rare cell types.

Results

In silico examination of major variables affecting
informativeness of single-cell and small cell-pool RNA-seq

We began this study with two goals: first, to study gene expression

heterogeneity in GM12878 cells on the single-cell level, and sec-

ond, to determine the minimal optimal size of a cell pool that

is informative of the characteristics of the larger cell population,

with the goal of applying that approach to rare cell types in future

studies. How well these goals are achieved depends on several

parameters affecting biological and technical stochasticity and

detection sensitivity, the values of which were unknown. To un-

derstand their influence, we carried out a simulation of single-cell

and cell-pool transcriptomes (see Supplemental Methods for de-

tails) by varying the following parameters:

1. Single-molecule capture efficiency psmc. In contrast to bulk

RNA-seq libraries, an individual cell contains a very limited total

number of mRNA molecules. Individual genes can be present

in single-digit transcript numbers. If only a fraction of mRNAs

are successfully represented in a library, a technical stochasticity

component is introduced. Depending on its magnitude, data

interpretability can be significantly affected due to false nega-

tives and a distortion of relative gene abundance estimates. The

psmc parameter is the probability that any given original RNA

molecule is captured in the final library. We examined the effect

on expression quantification of psmc ranging from 0.01 to 1.

2. Total number of mRNA molecules per cell. The impact of low

psmc on expression measurements will be more severe if fewer

mRNA molecules are present in a cell. The average total number

of mRNA molecules in a single cell is not known for most cell

types, but it is expected to vary with cell size, metabolic status,

and even cell cycle phase. This means that single-cell expression

measurements in some cell types are likely to be more robust to

technical noise than in others. We varied the total number of

mRNAs from 50,000 to 1,000,000 (while keeping the number of

genes expressed constant).

3. Frequency of expression of individual genes in single cells. From

prior studies we expect that some genes will be expressed in

all or most cells, while others will be expressed in only a subset

of cells. Genes detected at lower levels in bulk RNA-seq are the

most obvious candidates to be expressed in a subset of cells in

a population, although we do not know what fraction of low-

abundance RNAs behave in such a way. This is particularly rel-

evant to cell pools: a gene expressed at 50 copies per cell but

only in 10% of cells would still be stochastically represented

in a pool of 10 cells even if psmc is high. In the absence of reliable

data on this, we modeled the probability of expression in a

given single cell with a distribution centered around very high

values for genes highly expressed in bulk RNA-seq measure-

ments, and progressively lower values with decreasing expres-

sion levels (details in Supplemental Methods).

The simulation results are summarized in Figure 1, A–C and

Supplemental Figures 1–25. As expected, low psmc has a profoundly

negative impact on gene expression quantification accuracy and

reliability, leading to frequent false negatives (Fig. 1A; Supplemental
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Fig. 1), and to poor estimates of expression levels. For example, in

a single cell with 100,000 mRNAs, psmc = 0.1 results in only 40% of

genes expressed at 100 FPKM receiving FPKMs within 20% of the

true value (Supplemental Fig. 1C), but this fraction rises to nearly

100% if psmc = 0.8 (Supplemental Fig. 1G). The quantification of

relative expression levels is similarly affected, with only the most

highly expressed genes being consistently well-quantified relative

to each other at low psmc (Supplemental Figs. 12–25).

In contrast, our simulation results indicate that cell pools are

much more robust to technical noise, with 90% of genes expressed

at 10 FPKM receiving FPKM estimates within 20% of their true

value (Supplemental Fig. 1C) at psmc = 0.1 in a pool of 100 cells.

They also represent the expression profiles of the general pop-

ulation reasonably well (Supplemental Fig. 1), even at low psmc,

starting from a size of ;30 cells (10-cell pools seem not to be suf-

ficient to achieve this). Finally, as expected, the larger the number

of total mRNA molecules per cell, the greater is the buffer against

technical noise, resulting in more robust quantification (Sup-

plemental Figs. 2–11).

Transcriptome measurements of individual single cells
and companion pool/splits

The simulation results informed our experimental design, which

aimed to gain a firm grasp on technical stochasticity in two ways

(Fig. 1D). First, we generated single-cell RNA-seq libraries and in

parallel carried out ‘‘pool/split’’ experiments. In a pool/split, mul-

tiple cells are pooled and lysed together, then split into the same

number of reactions, from which libraries are built. Variation be-

tween these libraries should be purely technical (with stochastic

splitting possibly playing a role at the low end). Variation observed

at similar levels in both single cells and pool/splits cannot be

confidently attributed to biological differences, although the

stringency of this criterion may cause some true biological vari-

ation to be obscured. However, variation above the pool/split

level can be identified and ascribed to biological sources with

high confidence.

We generated single-cell RNA-seq libraries from 15 single

GM12878 cells and from two pairs of 10-cell pool/split experi-

ments. We also sequenced replicates of pools of multiple cells (10,

30, and 100 cells), as well as 100-pg and 10-ng samples of bulk

RNA (corresponding to ;10 and ;1000 cells), to assess the stability

of measurements as a function of the amount of starting material.

We used the SMART-seq protocol (Supplemental Fig. 12;

Ramsköld et al. 2012) to generate our libraries. A detailed de-

scription of the protocol, as we implemented it, is presented in

Supplemental Methods. We obtained nearly uniform full-length

transcript coverage (Fig. 1E; Supplemental Fig. 29). Uniformity of

coverage, which depends on the intactness of RNAs and the suc-

cessful copying of full-length molecules, is highly desirable for

several reasons. First, RNA-seq data quantification using the

RPKM/FPKM metric (Mortazavi et al. 2008; Trapnell et al. 2010)

makes an implicit assumption of full coverage. Second, it enables

the analysis of alternative splicing and allelic bias, as read cov-

erage of 59-proximal splice sites and heterozygous positions is

ensured.

We added spike-in quantification standards of known abun-

dance (in absolute number of RNA copies) (Supplemental Table 2)

at the very beginning of cDNA synthesis. This allows us to, first,

estimate psmc, and second, derive gene expression estimates in

absolute numbers of copies per cell. The latter is important because

while FPKM is useful for comparing expression levels within a li-

brary, it can only be used to compare directly across different li-

braries when the total amount of RNA in each starting sample is

roughly the same (Anders and Huber 2010). This assumption is

usually only mildly violated when working with bulk samples, but

when single cells are compared, it becomes significantly more

problematic as the variation in the total amount of RNA in each

cell is expected to be much larger.

Figures 1 and 2 summarize the technical characterization of

the SMART-seq protocol applied to GM12878 cells. In addition to

the mostly complete coverage along transcript length, sequencing

libraries were also highly enriched for exonic sequences (Supple-

mental Fig. 28), indicating a high efficiency of enrichment for

polyadenylated molecules.

Gene detection in single cells versus pools of varied sizes

We compared single-cell and pool/split libraries, as well as cell

pools, with bulk RNA samples from GM12878 cells (Fig. 1F). In

bulk RNA libraries, we detect about 12,000 genes expressed at

more than 0.1 FPKM. A lower number of genes, between 4000 and

5000, is detected in both single-cell and pool/split libraries. These

differences between single cells and bulk libraries are due mostly

to genes expressed at low levels. Genes expressed at more than

100 FPKM in 10-ng bulk RNA samples are detected in almost all

libraries, while only ;30% of genes expressed at ;10 FPKM and

10% of genes expressed at ;1 FPKM were detected in any given

single-cell library (Fig. 1G). Notably, the number of genes detected

in both 100-cell and 30-cell pools was similar to that detected in

the 10-ng libraries (;11,000). In contrast, in the 10-cell pools and

100-pg libraries, lower numbers of genes were detected, between

Figure 1. Simulated and measured transcriptome profiles from individual cells and small cell pools. (A) Number of detected genes in simulated data sets
as a function of the number of cells pooled and the single molecule capture efficiency (psmc) (assuming 100,000 mRNA molecules per cell). See Sup-
plemental Figure 1 for full details. (B,C) Accuracy of gene expression estimation as a function of the number of cells pooled and the single molecule capture
efficiency; psmc = 0.1 in B and psmc = 0.8 in C, 100,000 mRNA molecules per cell assumed. Shown is the fraction of genes at the indicated expression levels
in FPKM, whose estimated expression level in FPKM in simulated libraries was within 20% of their true value, after modeling the stochasticity due to the
single-molecule capture efficiency of the library-building protocol. See the Methods section and Supplemental Figures 2–11 for full details. Note that the
simulation is intended to illuminate the relative effects of the various parameters studied, and the absolute numbers of genes should not be directly
compared to the real-life data shown in G. (D) Experimental design. Single cells are combined with spike-in quantification standards and SMART-seq
libraries are generated. In parallel, multiple single cells are pooled together and combined with spikes, then lysed and split into the same number of
reactions and converted into SMART-seq libraries. Libraries are then sequenced, data processed computationally, and estimates for the absolute number of
copies per cell are derived based on the spikes. Variation in pool/split experiments is due to technical stochasticity, while variation in single-cell libraries is
a combination of biological variation and technical noise. (E) Uniformity of transcript coverage. Shown is the average coverage along the length of an
mRNA for single cells and pool/split experiments. Only mRNAs longer than 1 kb from genes with a single annotated isoform in the RefSeq annotation
set were included. See Supplemental Figure 29 for more details. (F) Number of detected protein-coding genes for libraries built from 10 ng and 100 pg
of poly(A) RNA, pools of 100, 30, and 10 cells, representative pool/split experiments (individually and summed across all libraries), and representative
single cells (individually and summed across all libraries). (G) Fraction of genes from 100-ng bulk poly(A)+ RNA libraries that were detected in pools of 100,
30, or 10 cells, 100 pg of poly(A)+ RNA, pools/split experiments, and single cells. FPKM is shown on the x-axis.
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6000 and 7000. This is consistent with simulation results sug-

gesting that 30 cells is the lower limit of cell number at which the

transcriptome library complexity begins to approach that of the

larger cell population. This is corroborated by the correlation be-

tween the expression levels of replicate measurements (Fig. 2A;

Supplemental Fig. 50). In contrast, a sizable population of genes

present at high levels in one replicate and at very low levels or

completely absent in the other appears in 10-cell pools (Fig. 2B)

and especially in pool/split libraries (Fig. 2C). Finally, union sets

of genes detected in all individual cell libraries and in all pool/

split libraries was ;10,000, which was in the range seen for 30- to

100-cell pools.

Pool/splits measure technical variation and reveal biological
variation among single cells

The observed variations in gene expression levels and detection

can be explained as a combination of some genes not being

expressed in each and every cell and low psmc resulting in large

numbers of false negatives. We calculated the average psmc across

all libraries based on the detection of spike-ins (details in Methods).

This number is in our estimates: ;0.1. We also estimate that for

GM12878 single cells, one transcript copy corresponds to ;10

FPKM on average. This agrees well with the observation that de-

tection of genes becomes unstable below ;100 FPKM (Fig. 2B,C),

which is also consistent with previous observations (Ramsköld

et al. 2012).

We next compared expression measurements in single-cell

and pool/split libraries. Hierarchical clustering of each group is

shown in Figure 2, D and E (with two independent biological

replicate pool/split experiments shown in Fig. 2E). The distances

between the expression profiles within the same pool/split ex-

periment were significantly smaller than those for individual sin-

gle cells (branch lengths in Fig. 2D,E), and average correlations

between single cells were, accordingly, lower than those between

libraries from the same pool/split (Fig. 2F,G; Supplemental Fig. 32).

A notable feature of the data is small clusters of genes present at

high levels in only one library. These are more prominent in

single cells than in pool/splits, yet they are clearly present in all

samples. In single cells, this is due to a mixture of stochastic

capture effects and real biological variation. In pool/splits, sto-

chastic capture is the predominant source. It is important to note

that given the low psmc, it is difficult to determine the cause of

variation for any given gene. Nevertheless, the major conclusion

at the transcriptome level is that there are biological differences

between single cells because the technical stochasticity in pool/

splits is significantly less than variation across single cells.

Estimating absolute transcript levels in single cells

Absolute transcript counts are the biologically relevant values

ideally obtained from a single-cell gene expression profiling ex-

periment because, as discussed above, FPKM is a poor metric for

comparing gene expression levels between individual cells if the

total amount of RNA varies substantially. We derive transcript

number estimates for each gene based on the FPKM values of spike-

ins. We observed good agreement between the input number of

spike-in RNA copies and the corresponding FPKM values in the

final libraries (Supplemental Figs. 30, 31).

We use the transcripts-per-cell estimates for all subsequent

analyses. Previous studies have reported that genes can be sepa-

rated into two distinct groups based on their expression levels—

one group expressed at high (>1 FPKM) levels and one at very low

(<<1 FPKM) levels (Hebenstreit et al. 2011). We examined the

distribution of estimated copies per cell in single cells and in

pool/splits (Fig. 3A). We find that in individual cells, most protein-

coding genes are expressed at levels between 1 and ;50 copies

per cell. The distribution suggests a roughly equal number of

genes at each level except for a larger group of transcripts with

fractional transcript-per-cell values. Obviously, single-cell determi-

nations are constrained in a way that population level measure-

ments cannot be: One transcript per cell is the minimum nonzero

value possible. The lower values likely represent a combination of

mapping artifacts (due to high sequence homology of paralogs)

and RNAs that were present at low levels to begin with and then

poorly represented in the final library (due, for example, to the

fragmentation of a single original RNA molecule resulting in

artificially low FPKMs as a result of coverage only at the 39 end).

The distribution of estimated copies in pool/split libraries exhibited

a more linear decrease in the number of more highly expressed

genes, consistent with averaging of variation between cells.

We also examined the distribution of the expression levels

of long noncoding RNAs (lncRNAs) (Guttman et al. 2009). Con-

sistent with previous observations (Ramsköld et al. 2009; Guttman

et al. 2010; Djebali et al. 2012), lncRNAs have generally much lower

expression levels compared to protein-coding genes (Fig. 3B).

We were also able to directly assess the total number of

mRNAs present in each cell (Fig. 3C,D). Based on the average

mass of RNA in each cell (derived from bulk RNA samples from

a known number of cells) and the average length of mRNAs in

the human genome, we estimated that each GM12878 cell con-

tains, on average, ;80,000 mRNAs. However, we observed strik-

ing cell-to-cell differences in the total transcript number of single

cells, with some cells expressing <50,000 mRNAs and others al-

most 300,000. In contrast, pool/split experiments exhibited re-

markable uniformity (between 50,000 and 100,000 transcripts)

and agree well with prior expectations. It is therefore unlikely

that the observed cell-to-cell variability is due to technical noise.

Because transcriptional regulators play a crucial role in de-

fining the gene expression state of cells, we examined the expres-

sion of several well-known general transcription factors as well as

major regulators of B-cell differentiation (Fig. 3E). Remarkably,

except for IRF4, which was usually expressed at several dozen

copies, most factors were detected at <10 copies per cell, and were

often not detected at all. We stress that this does not mean that

they are not expressed. Given the 10% psmc of the protocol, these

Figure 2. Technical and biological variation in single-cell RNA-seq measurements of gene expression. (A) Correlation between expression levels (in
FPKM) between two pools of 100 cells. (B) Correlation between expression levels (in FPKM) between two pools of 10 cells. (C ) Correlation between
expression levels (in FPKM) between two representative pool/split libraries. A pseudocount of 0.001 was added to each data point in the scatter plots
for visualization purposes. (D,E) Hierarchical clustering of estimated copies-per-cell values for protein-coding genes in single-cell (D) and pool/split
(E) libraries. Pearson correlation was used as a distance metric, and only genes expressed at a level of at least one estimated copy in at least one library were
included. (F,G) Correlation between estimated copies-per-cell values for protein-coding genes in single-cell libraries (F) and pool/split libraries (G). Two
sets of pool/split experiments (1 and 2) are shown and ‘‘1-2’’ in the boxplot refers to correlations between the two sets, while ‘‘1’’ and ‘‘2’’ refer to
correlation within each experiment. Similar plots, but using the Spearman correlation, are shown in Supplemental Figure 32.
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observations are consistent with simple technical failure to detect

them. It is also possible that there are no mRNA copies in some

cells at the moment of harvest, especially if they are infrequently

transcribed. Extending these observations to other functional

groups, we assessed proteins involved in translation (as a major

group of genes with housekeeping functions) (Fig. 3F), splicing

regulators (Fig. 3G), and all transcription factors (Fig. 3H). The

median number of copies per cell was ;100 for translation pro-

teins, ;10 for splicing regulators, and strikingly, only ;3 for

transcription factors. Beyond their biological interest, these large

expression differences between functional gene categories mean

that quantification is inherently less robust and less informative

for some biological functions than it is for others.

Identification of modules of coexpressed genes

Cell-to-cell gene expression variability may occur on the level of

individual genes, but it can also occur in a coordinated fashion.

A well-studied example is cell cycle phase-specific gene expres-

sion. In an asynchronous culture, groups of genes expressed

highly at specific times during the cell cycle should be present in

a fraction of cells that is roughly proportional to the time cells

spend in each identified phase. Population data do not, however,

predict that most cells will be in a ‘‘pure’’ phase state nor that they

will express phase-class genes at peak levels.

To test whether we are able to identify cell cycle-associated

variation, and to search for any novel functional modules, we

carried out weighted gene coexpression network analysis (WCGNA)

(Zhang and Horvath 2005) using the copies per cell estimates for

single cells and removing genes that were highly variant in pool/

split libraries in order to minimize technical noise (see Methods;

Supplemental Figs. 33, 34). We identified 19 coexpression modules

containing $10 genes each (Supplemental Fig. 35). The expression

patterns of these modules were mostly well-differentiated among

single cells and were absent from pool/split libraries (Fig. 4B; Sup-

plemental Fig. 34).

We then determined the Gene Ontology (GO) category en-

richment of each module. The largest module (module 1) was

highly enriched for GO categories relating to housekeeping and

anabolic gene functions (Table 1; Supplemental Table 3). This in-

cluded some enrichment for the G1- and S-phase GO terms, and

also contained most genes that are generally highly expressed

(Fig. 4A). Module 6 was enriched for genes involved in the M phase

of the cell cycle. A single cell from the sample of 15 showed strong

coordinated expression of genes from the M-phase GO categories

enriched in this module. Transcripts from these M-phase genes

were not similarly coordinated in other individual cells or in

pool/split samples. We measured the fraction of unsynchronized

GM12878 cells in the G0 + G1, S, and M phases of the cell cycle

using flow cytometry (Fig. 4B). About 14% of cells were in M phase,

and the probability of capturing exactly one such cell out of 15 is

0.25; that is, these observations are consistent with this cell being

in the peak of M phase.

A more surprising observation was that the second largest

module (module 2) was enriched for genes involved in splicing

and mRNA processing. It is driven by an individual cell and two

additional cells with a somewhat similar expression profile. The

signature cell, however, was not an outlier when splice site usage

patterns were compared between individual cells (data not shown).

A simple interpretation of these observations is a general up-

regulation of splicing and mRNA processing factors in that cell

that does not result in a distinctive alternative splicing program.

Module 3 was enriched for metabolic cofactor and iron-sulfur

cluster binding proteins, including proteins involved in mito-

chondrial respiratory chains. This is an intriguing observation,

as module 3 was mostly driven by the two cells exhibiting the

highest total number of mRNA molecules per cell (Fig. 3C; fourth

and fifth columns in clustergram in Fig. 4A), consistent with a

generally elevated metabolic state.

We also carried out a mirrored WCGNA analysis in which the

pool/splits were treated as single cells and vice versa. We did not

observe significant GO enrichment beyond a few trivial terms in

the largest modules (Supplemental Fig. 54; Supplemental Table 4).

This is in contrast to the much more specific GO enrichment seen

in single cells.

In addition to the coexpression analysis, we also examined

the relationship between the expression variability of genes and

various genomic data about their promoters, including long-range

chromatin interactions, DNA methylation status, histone marks,

transcription start site sequence elements, and CpG islands. No

robust explanatory correlation was evident (Supplemental Figs.

46–-50), and we expect that data with less technical stochasticity

will be needed to illuminate relationships of this kind.

Allele-biased expression at the single-cell level

Allele-specific gene expression (either monoallelic or highly biased

toward one autosomal allele) has been previously reported to be

widespread (Gimelbrant et al. 2007; Zhang and Borevitz 2009;

McManus et al. 2010; Pickrell et al. 2010; Rozowsky et al. 2011;

Reddy et al. 2012). An intriguing phenomenon observed for hun-

dreds of genes in clonal lymphoblastoid cell lines (Gimelbrant

et al. 2007; Chess 2012) is the random monoallelic expression

of autosomal genes. However, those studies were conducted on

large pools of cells, producing a snapshot of average allelic bias in

the population, and leaving open the possibility that monoallelic

expression is even more widespread on the single-cell level.

GM12878 cells are a good system for addressing this issue,

as the fully phased heterozygous NA12878 genome sequence is

available (The 1000 Genomes Project Consortium 2012). We aligned

Figure 3. Absolute expression levels at the single-cell level. FPKM values converted to estimated copies per cell using the spike-in quantification
standards are shown. (A) Distribution of expression levels of RefSeq protein-coding genes in estimated copies per cell in single cells and pool/split
experiments. (B) Distribution of expression levels of GENCODE v13 lncRNA protein-coding genes in estimated copies per cell in single cells and pool/split
experiments. (C ) Total number of mRNA copies per cell in single cells. (D) Total number of mRNA copies in pool/split experiments. (E) Expression levels of
housekeeping and highly expressed genes (GAPDH, CD74, left panel), and general (CTCF, REST, YY1) and B-cell regulatory (PAX5, EBF1, BCL11A, ETS1, IRF4,
IKZF1, PBX3, POU2F2, RUNX3, TCF3, TCF12) transcription factors (right panel). Upper and middle panels show the estimated copies-per-cell numbers for
single cells and pool/splits, respectively. The lower panel shows FPKM values for cell pools and bulk RNA libraries. (F–H) Distribution of absolute expression
levels in copies per cell in single cells for translation initiation, elongation, and termination proteins (F), splicing regulators (G), and transcription factors (H).
The list of translation proteins was retrieved from the corresponding GO category annotations downloaded from FuncAssociate 2.0 (Berriz et al. 2009). The
list of splicing regulators was obtained from the SpliceAid-F database of human splicing factors (Giulietti et al. 2013). The list of transcription factors used
was the one from Vaquerizas et al. (2009). Note that only values $0.1 estimated copies per cell were included in these plots, i.e., libraries in which the
genes were not detected were excluded.
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RNA-seq reads in an allele-specific manner to the heterozygous

GM12878 transcriptome and calculated allelic bias for each gene

as the fraction of reads mapping to the maternal allele. As detailed

in the Methods and Supplemental Methods, we applied very

stringent criteria for determining statistically significant allele-

biased expression events based on the absolute transcript number

estimates and taking into account the challenges presented by the

nature of single-cell RNA-seq data. We observed good reproducibility

of allelic bias profiles in 10-ng bulk RNA libraries (Supplemental

Fig. 37A), with most genes being expressed from both alleles

(Supplemental Fig. 37D). Allelic bias was also highly reproduc-

ible in 30-cell and 100-cell pools (Supplemental Fig. 51). In

contrast, allelic bias profiles of single cells correlated poorly

with each other, and a large fraction of genes were apparently

monoallelically expressed from different alleles in different cells

(Supplemental Fig. 37B). The majority of highly expressed genes

($100 copies per cell) exhibited biallelic expression, while most

genes at low expression levels were measured as monoallelically

expressed (Supplemental Fig. 37F). We then compared allelic

bias variability for individual genes across individual single cells,

focusing only on cells in which statistically significant allelic

bias was observed, and observed frequent ‘‘switching’’ between the

two alleles (Supplemental Figs. 37G, 38A).

These observations can be explained as a combination of bi-

ological and technical factors. First, it has been previously reported

that allelic bias at the population level is more common among

genes expressed at low levels (Gimelbrant et al. 2007, Reddy et al.

2012). A second explanation is the phenomenon of ‘‘transcrip-

tional bursting’’ (Raj and van Oudenaarden 2008; Dar et al. 2012).

A single transcription burst produces several mRNA molecules

from a single allele. If all mRNAs from a gene in a given cell at a given

moment are the product of one or a linked series of such bursts, all

Figure 4. Gene coexpression modules derived from single GM12878 cells. Weighted gene correlation networks were constructed using the WCGNA R
package (Langfelder and Horvath 2008). (A) Expression levels and hierarchical clustering of genes within modules (modules are sorted by number, which
corresponds to their size) in single cells and pool/split experiments. Only genes are clustered (dendrograms on the left), and the identity of the cells and
pool/split experiments is the same in each column (two right panels). The absolute expression values of genes belonging to representative GO categories
associated with cell cycle phases (modules 1 and 6) and mRNA processing and splicing (module 2) are also shown. (B) Distribution of cell cycle states in
a representative GM12878 cell population, in growth media (GM), and picking media (PM). The fraction of cells in M phase is consistent with one such cell
being picked in a sample of 15.

Marinov et al.

504 Genome Research
www.genome.org



copies would originate from one allele. Finally, stochastic effects due

to the low single-molecule capture efficiency of the protocol un-

doubtedly play a role. The fewer founder molecules are captured, the

more likely it is that they come from only one allele. To help parse

these sources of variation, we performed the same analyses on pool/

split libraries and observed a broadly similar (although always lower)

fraction of genes passing all significance tests for allelic bias (Sup-

plemental Figs. 37C,E, 38). The quantitative trend within the pool/

split comparison suggests there is a component of allelic RNA bias

between cells that is biological in origin but that there is also a large

technical variation component. The widespread occurrence of ran-

dom monoallelic expression at the single-cell level should therefore

be viewed as a provisional conclusion.

Alternative splicing at the single-cell level

Previous studies have suggested that most genes in mammalian

genomes undergo some alternative splicing (Mortazavi et al. 2008;

Wang et al. 2008; Djebali et al. 2012). At present, however, the

biological relevance of the majority of these alternative isoforms is

still uncertain, and stochastic noise in the splicing machinery is

one explanation (Sorek et al. 2004; Melamud and Moult 2009).

Characterizing alternative splicing at the single-cell level should

bring clarity to the population-based observations, and perhaps

offer clues about the mechanistic origin of the multiple isoforms

observed within cell types.

We quantified alternative splicing using the intron-centric

splice inclusion c score approach (Pervouchine et al. 2013). Details

of our mapping and analysis pipeline are described in the Sup-

plemental Methods. For reasons given there, we adopted a con-

servative approach and only analyzed novel splice junctions for

which at least one of the donor or acceptor sites has already been

annotated in GENCODE v13 (Harrow et al. 2012), thus avoiding

library-building artifacts.

We detected between 200 and 2000 novel splice junctions

satisfying these criteria in each individual cell (Supplemental

Fig. 43). This number is certainly an underestimate, given the low

psmc. About 35% of novel junctions connected two annotated

exons (Fig. 5A); most of these represent novel exon skipping

events. In another 60%, the unannotated donor or acceptor site

was internal to the gene. These were concentrated close to al-

ready annotated splice sites (Supplemental Fig. 40B,C). In par-

ticular, novel acceptor sites peaked at the +3 and �3 position

downstream from annotated sites representing mostly instances

of NAGNAG tandem acceptor sites (Hiller et al. 2004; Bradley

et al. 2012). Novel 59 donor sites were fewer in number and

peaked at +4 and �4 positions relative to annotated donor sites,

thus shifting the coding frame of the transcript. This is a phe-

nomenon we have previously also observed in bulk RNA-seq data

(observations of the present study’s authors), the significance of

which is at present not clear. The proportions observed were in-

dependent of the read coverage and estimated number of copies

per cell thresholds applied (Supplemental Fig. 40A).

We also examined the distribution of unannotated splices

across individual single cells and found that the majority were

detected in only a single cell, with <10% found in two cells, and

very few in three or more cells (Fig. 5B). While this result could be

greatly affected by psmc issues, it was independent of the read and

estimated transcript copies threshold used (Supplemental Fig. 40),

suggesting that most novel splices are indeed only present in a

small fraction of cells.

We asked how often multiple alternative splice sites are used

at individual single cells. In bulk RNA-seq at a threshold of 15

distinct read fragments, a numeric minority of c scores was equal

to 1 (i.e., exclusive use of only one donor-acceptor pair). The

presence of alternative splice sites is thus widespread in the cell

population. Nevertheless, in most cases, c was close to 1, suggesting

quantitative dominance of one isoform. The vast majority of novel

splices received very low inclusion scores (Fig. 5C) and would

generally be considered to be the result of biological noise in the

splicing system. In contrast, in single cells, one dominant splice

site was the norm for annotated junctions, except for very highly

expressed genes ($100 copies per cell), for which a wide diversity

of splice site usage was seen (Fig. 5D; details in Supplemental Fig.

42). As this observation was true even for genes expressed at $50

copies per cell, we believe it is not a psmc artifact. It is an interesting

and open question why very highly expressed genes (enriched for

genes with housekeeping function) exhibit very high levels of al-

ternative splicing in single cells. These results differ significantly

from the same analysis carried out on novel splice junctions (Fig.

5E; Supplemental Fig. 43). Somewhat surprisingly, we found that

Table 1. Representative Gene Ontology categories enriched in
coexpressed gene modules

Adjusted
P-value GO attrib ID Attrib name

Module 1
<0.001 GO:0006415 Translational termination
<0.001 GO:0006414 Translational elongation
<0.001 GO:0070469 Respiratory chain
<0.001 GO:0071845 Cellular component disassembly

at cellular level
<0.001 GO:0004129 Cytochrome-c oxidase activity
<0.001 GO:0022904 Respiratory electron transport chain
<0.001 GO:0030964 NADH dehydrogenase complex
<0.001 GO:0072413 Signal transduction involved in mitotic cell

cycle checkpoint
0.019 GO:0006626 Protein targeting to mitochondrion

<0.001 GO:0048002 Antigen processing and presentation
of peptide antigen

<0.001 GO:0010467 Gene expression
<0.001 GO:0006839 Mitochondrial transport
0.007 GO:0006458 De novo protein folding

<0.001 GO:0016071 mRNA metabolic process
<0.001 GO:0000216 M/G1 transition of mitotic cell cycle
0.014 GO:0000502 Proteasome complex
0.005 GO:0060333 Interferon-gamma-mediated signaling

pathway
<0.001 GO:0000084 S phase of mitotic cell cycle
<0.001 GO:0000082 G1/S transition of mitotic cell cycle
0.005 GO:0000209 Protein polyubiquitination

<0.001 GO:0008380 RNA splicing

Module 2
<0.001 GO:0000398 Nuclear mRNA splicing, via spliceosome
0.017 GO:0005681 Spliceosomal complex

<0.001 GO:0006397 mRNA processing

Module 3
<0.001 GO:0051186 Cofactor metabolic process
0.002 GO:0051539 Four iron, four sulfur cluster binding
0.021 GO:0051536 Iron-sulfur cluster binding

Module 6
0.027 GO:0005680 Anaphase-promoting complex
0.001 GO:0007094 Mitotic cell cycle spindle assembly

checkpoint

Gene Ontology enrichment in modules was assessed using FuncAsso-
ciate2.0 (Berriz et al. 2009). The full list of enriched categories is available
in Supplemental Table 3.
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a significant proportion of novel splices had c scores of 1 in single

cells. This was true, however, only for genes expressed at lower

levels (#50 copies), where psmc artifacts are a likely cause. In con-

trast, in highly expressed genes, no novel junctions received

a dominant ($0.5) c score. However, the scores were still consis-

tently higher than what is observed for novel splices in bulk RNA

samples.

Finally, we evaluated the consistency of splice site usage be-

tween individual cells. We applied a statistical framework similar

to the one used to analyze allelic bias and derived a list of dom-

inant splice junctions in each cell, taking into account the esti-

mated absolute number of copies and the stochastic capture effects.

We asked how often the dominant splice site changes between dif-

ferent cells. We found 282 such genes in single cells, suggesting

the phenomenon may be widespread. The genes involved were

enriched for ribosomal and translation proteins, and also, in-

triguingly, for proteins involved in RNA splicing and processing

(Supplemental Table 6). We tested this single-cell variation against

pool/split experiments, in which we found very few genes with

different dominant splice sites across libraries. (Fig. 5F,G; Supple-

mental Fig. 44). This argues that much alternative splicing vari-

ation is in fact due to biological differences between cells, and is

in agreement with the bimodality of splicing in individual mouse

immune cells reported recently (Shalek et al. 2013).

Discussion
Two major goals for single-cell RNA-seq are to obtain high-reso-

lution transcriptomes for rare cell types or states and to measure

the differences in RNA expression and processing between in-

dividual cells. Here, we showed that the first goal can be achieved

by studying 30- to 100-cell pool samples even in the absence of

perfect capture of each and every individual RNA molecule. Our

conclusion is consistent with independent 80-cell measurements

(Ramsköld et al. 2012). The pools reproduce the expression pro-

files (Supplemental Fig. 53) and allelic-bias patterns (Supplemental

Fig. 51) of the larger population, and similar numbers of genes and

splice junctions are detected in them (Supplemental Figs. 52, 53).

The approach is applicable to cells collected by laser-capture (to be

presented elsewhere), micromanipulation (used here), or cell sorting

based on molecular markers or reporter-gene expression. This de-

fines a general and relatively economical path forward for the

transcriptomic characterization of many previously inaccessible

rare cell types and states, including transient cell types in em-

bryonic development, diverse neuronal types in the brain, and

cells in tumors.

In agreement with previous single-cell RNA-seq studies, we

observed high cell-to-cell variability in gene expression levels in

GM12878 B-cells. We found that some of this variation was attrib-

utable to coordinated differences in the expression of biologically

coherent sets of genes: for example, genes associated with the

M phase of the cell cycle or with mRNA processing and splicing.

Despite good data quality, evidenced by complete and rela-

tively uniform coverage across the mRNA length spectrum, our

results were similar to other published data in displaying sig-

nificant stochasticity. Stochasticity is expected to arise from a

combination of biological variation and technical measurement

variation. We present experimental and analytical approaches for

measuring and accounting for technical stochasticity. We intro-

duced and measured single-molecule capture efficiency, the key

parameter influencing technical stochasticity, and found that

its value was around 0.1 with the current SMART-seq protocol.

This low capture efficiency provides a parsimonious explanation

for the level of variation between single-cell measurements that

is technical in origin. We also measured technical variation by

carrying out pool/split experiments. This empirical test for non-

biological variation in the system is a stringent one, which includes

capture efficiency, PCR effects, and any other unspecified sources.

We then used the pool/split results to help parse biological vari-

ation between cells that is detectable over and above variation in

pool/split measurements.

We observed unexpected levels of cell-to-cell variation in

autosomal allelic expression bias and alternative splicing. The

observation of allele switching between single cells could be

explained as a technical artifact, given that a similar, although al-

ways lower, level of switching was observed in pool/split libraries.

We therefore consider this a provisional result in need of further

investigation with improved experimental protocols. The ob-

served frequency of major splice switching in single cells is a

stronger effect, and based on comparison with pool/split exper-

iments, it is unlikely to be the sole result of technical stochas-

ticity. It has also been independently reported in a different system

(Shalek et al. 2013).

Transcriptional bursting suggests an attractive biological ex-

planation for these observations. If a gene is expressed in a series

of infrequent (relative to the half life of its mRNAs) such bursts, at

any given time the population of mRNAs in the cell is likely to

originate from only one allele. Such bursting could also be the

source of cell-to-cell variation in alternative splicing. It is possible

that the same set of factors influencing splice-site choice maintain

physical association with the gene during a transcriptional burst,

leading to a particular splicing pattern being highly favored locally

in space and time, even if factors supporting a different splice

choice are present within the same nucleus. Alternatively, isoform

choice could be driven by temporal switching of factors and would

operate regardless of bursting behavior. These are testable alter-

natives for future studies.

Many specific biological processes, especially regulatory ones,

involve genes whose transcript levels are in the range highly af-

fected by technical variation, as shown by our survey of tran-

scription factors. While measurements with current methods can

give some important clues about coherent biological variation,

especially when large numbers of individual cells are assayed,

our results argue that considerable improvement in the single-

Figure 5. Alternative splicing at the single-cell level. (A) Classification of new junctions connecting known splice sites. (B) Frequency of detection of
novel splice junctions. Novel junctions for which neither the donor nor acceptor site has been annotated were excluded for reasons described in the main
text in both A and B. A threshold of 10 estimated copies and a coverage of 10 reads was applied, but results are essentially the same, independent of the
thresholds used (Supplemental Fig. 40A). (C ) Distribution of c scores in bulk RNA samples for annotated and novel splice junctions. A threshold of 15 reads
combined for all splice junctions in which a donor or acceptor site participates was applied. Note that for each c1 score there is at least one matching c2 # 1
� c1 score corresponding to the other alternative junction; in some cases, more than two alternative donor or acceptor sites exist; thus the relative height
of the 0 # c # 0.1 bar. (D, upper and lower). Distribution of 59 c scores for annotated splice junctions at two different detection thresholds in single-cell
libraries (see Supplemental Fig. 41 for more detail). (E, upper and lower) Distribution of 59 c scores for novel splice junctions at two different detection
thresholds in single-cell libraries (see Supplemental Fig. 42 for more detail). (F,G) Frequency of major splice site usage switches between individual cells (F)
and individual libraries in a pool/split experiment (G). Note the strong support for major splice site use switching across the collection of single cells.
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molecule capture efficiency would profoundly advance the field.

Based on our simulations and results from pool/split experiments,

we estimate that an increase in psmc from 0.1 to 0.5 would be a

major leap forward, while psmc $ 0.8 would provide sufficient re-

liability for virtually any biological use. We anticipate that this

empirical and analytical framework will be useful for evaluating

future improvements in protocols, such as the recently described

SMART-seq2 protocol (Picelli et al. 2013).

Finally, we found that the amount of mRNA per cell is highly

variable between individual cells. Beyond biological interest, these

differences in mRNA number are important for analysis pipelines.

RPKM-type metrics are not reliable when there are large differences

in total RNA per cell (Lin et al. 2012; Lovén et al. 2012). At present,

the direct relationship between the absolute number of mRNA

copies per cell and the number of sequencing reads in a library is

lost due to the fragmentation of amplified cDNA molecules that is

a common feature of available protocols, resulting in multiple

distinct but overlapping sequencing fragments for each founder

RNA molecule. mRNA copy number can be estimated back from

FPKMs with the help of spike-in sequences. However, this is far

from ideal, as it depends on the accuracy of quantification of the

spike-ins and assumes the absence of systemic differences between

spike-in RNAs and endogenous RNAs. If these assumptions are

wrong, we expect a systematic error in the calculated number of

mRNAs per cell, although the more interesting and important

differences between individual cells versus pool/splits would re-

main. The above considerations make it very clear that a future

ideal single-cell RNA-seq assay would combine a very high single-

molecule capture efficiency with an amplification-free, and pref-

erably also reverse transcription-free, direct RNA sequencing method

to achieve direct counting of intact transcripts. Emerging sequenc-

ing technologies (Branton et al. 2008; Schadt et al. 2010) already

hold promise for such radical improvements.

Methods

Cell growth and single-cell RNA-seq library construction
Individual GM12878 cells grown according to standard ENCODE
protocols were picked with a glass micropipette, deposited into
lysis buffer, and frozen. Cells were later lysed in reaction buffer, and
single-cell SMART cDNA was generated following the SMART-seq
protocol (Ramsköld et al. 2012) with the following modifications:
(1) Carrier yeast tRNA was added in the lysis buffer to reduce
handling losses and help maintain the integrity of the mRNA; (2)
spikes of known copy number were introduced; and (3) the PCR
cycle number was empirically titrated to accommodate the rela-
tively small GM12878 cells. The SMART cDNA was tagmented
using Illumina/Nextera reagents as described in Gertz et al. (2012).
A detailed description of experimental protocols is provided in
the Supplemental Methods.

Sequence alignment and gene expression quantification

Reads were aligned against a combined Bowtie index of the human
genome and spike-in sequences using TopHat (Trapnell et al. 2009,
2012). Gene expression was quantified using Cufflinks (Trapnell
et al. 2010, 2012). FPKMs were converted to copies-per-cell esti-
mates using the input and measured spike-in abundances.

Single-molecule capture efficiency estimation

We estimated the average psmc based on the number of libraries
with 0 FPKM for each spike and the number of input molecules

(accounting for the fact that the number of successful captures is
not known but only the number of complete failures; a detailed
description of the procedure is provided in the Supplemental
Methods). The average psmc for all spikes for which libraries with
0 FPKMs were observed was used, which is ;0.01.

Analysis of allele-biased expression

We used the diploid (May 2011 release) NA12878 genome con-
taining phased SNPs and indels based on the NCBI build 36
(hg18) version of the human genome (downloaded from http://sv.
gersteinlab.org/NA12878_diploid/). Heterozygous transcriptomes
containing two copies of each transcript were built, and reads were
aligned using Bowtie (Langmead et al. 2009) (version 0.12.7) with
zero mismatches allowed. Identical reads were collapsed, and reads
were assigned to an allele if they mapped only to one of the alleles
of a gene. Allele-biased expression was assessed by accounting for
all of the following: (1) significance of allelic bias on the level of
reads; (2) significance of allelic bias on the level of estimated
copies per cell for each allele (derived from the total number of
estimated copies for the gene); this is necessary, as a common
feature of all current single-cell protocols is the production of mul-
tiple overlapping fragments from each original molecule; and (3)
the possibility that the observed allelic bias is due to differential
stochastic capture of the two alleles. A detailed description of the
procedure is provided in the Supplemental Methods.

Alternative splicing analysis

We carried out alternative splicing analysis using the 59 and 39

splicing inclusion c scores described by Pervouchine et al. (2013),
and applying the same statistical procedure we used to assess allelic
expression bias to determine statistically significant splice variant
exclusion. A detailed description of the splicing analysis procedure
is provided in the Supplemental Methods.

Gene expression clustering and weighted correlation
network analysis

We used the WGCNA R package (Langfelder and Horvath 2008) to
carry out the weighted correlation network analysis. Gene Ontol-
ogy enrichment in modules was assessed using FuncAssociate2.0
(Berriz et al. 2009). Gene expression clustering was carried out using
Cluster 3.0 (de Hoon et al. 2004) and visualized using TreeView
(Saldanha 2004).

Data access
BAM files containing aligned and unaligned sequencing reads
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE44618.
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