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Abstract  
Protein quality control involves many processes that jointly act to regulate the expression, localization, 
turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the 
differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular 
chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are 
multifunctional proteins expressed by many cell types, including those of the nervous system, known 
to facilitate protein quality control processes. These molecules exert pleiotropic effects and have 
been implicated as playing important protective roles in a variety of stress conditions, including 
tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review 
of what is currently known about the functions of extracellular chaperones in neuronal repair and 
regeneration and highlight future directions for this important research area. We review what is 
known of four constitutively secreted extracellular chaperones directly implicated in processes of 
neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, 
and propose that investigation into the effects of these and other extracellular chaperones on 
neuronal repair and regeneration has the potential to yield valuable new therapies. 
Key Words: cell viability; clusterin; extracellular chaperones; inflammation; neuroserpin; protein 
misfolding; transthyretin; α2-macroglobulin

Introduction 
Local tissue inflammation and mechanical injury to neurons have been 
associated with the aggregation of misfolded proteins and subsequent 
cell death (Gidalevitz et al., 2011). Relative to mature differentiated cells, 
regenerating cells have higher rates of protein synthesis (Noormohammadi et 
al., 2018), and recent studies have highlighted the critical need for effective 
protein quality control in stem cells during regeneration (Yan et al., 2020). 
Proteomic studies of human mesenchymal stromal stem cells have also shown 
that during regeneration, the secretion of a number of constitutively secreted 
chaperones (e.g. α2-macroglobulin, A2M) is selectively enhanced (Kehl et al., 
2019). Constitutively secreted extracellular chaperones (ECs) are an integral 
part of the systems that act to maintain protein homeostasis (proteostasis) 
(Yerbury et al., 2007; Wyatt et al., 2013) and are almost certain to influence 
the ability of an organism to repair and regenerate cells and tissues. An 
effective protein quality control system ensures the timely recognition, 
refolding, or clearance of misfolded proteins to enhance the survival and 
proper functioning of living organisms (den Brave et al., 2021). 

Regenerating neurons need to communicate with other neurons and 
surrounding cells to generate an effective response to a physiological or 
pathological stimulus, in which both intracellular and extracellular signaling 
mechanisms play an important role (Liu et al., 2021). Our understanding 
of the roles of ECs in neuronal regeneration and repair is currently limited. 
ECs are multifunctional proteins expressed by many cell types in the body 
(including neurons and astrocytes), known to facilitate extracellular protein 
quality control processes. We propose that future studies of ECs in the 
context of neuronal damage and disease have significant potential to lead to 
the development of valuable new therapies. In this article, we have focussed 
on four ECs (transthyretin, clusterin, α2-macroglobulin, and neuroserpin) 
because these proteins are constitutively present in cerebrospinal fluid (CSF) 
and have been directly implicated in neurodegenerative disease and diseases 
associated with neuronal damage and repair (Satapathy and Wilson, 2022).  
We aim to provide a critical review of what is currently known about the 
functions of ECs in neuronal repair and regeneration and highlight outstanding 
questions and future directions for this important research area.  

Database Search Strategy 
The manuscript used peer-reviewed articles chosen from PubMed, PubMed 
Central, Google Scholar and Web of Science (Clarivate) identified using 
individual or combinations of the following keywords: Protein misfolding, 

extracellular chaperones, transthyretin, clusterin, α2-macroglobulin, 
neuroserpin, inflammation, cell viability. The date of the last database search 
is between February 20 and March 30, 2022.

Current Knowledge of the Role of Extracellular 
Chaperones in Neuronal Repair and 
Regeneration 
A major role of chaperones is to protect organisms from the consequences of 
inappropriate protein aggregation and toxicity. As a result of age or ongoing 
chemical or physical stresses, proteins can misfold to form aggregates that 
are either amorphous or amyloid (fibrillar) in structure, some of which are 
cytotoxic (Gidalevitz et al., 2011; Hidalgo San Jose et al., 2020). ECs have an 
ATP-independent action and are best-known for their abilities to (a) inhibit 
the aggregation of misfolded or damaged proteins, (b) maintain aggregating 
proteins in a soluble state, and (c) form stable complexes with aggregating 
extracellular proteins to facilitate their clearance from the extracellular space 
and subsequent safe disposal by intracellular degradation (Wyatt et al., 2011). 
ECs are abundant in human body fluids such as plasma and CSF (Prikrylova 
Vranova et al., 2016), saliva (Pallardo-Fernández et al., 2020), urine (Musiał et 
al., 2020), and semen (Saleh et al., 2020). In addition, these multifunctional 
proteins have roles that include suppressing inflammation, inhibiting 
apoptosis, promoting cell proliferation and survival, modulating ECM 
composition and organization, and acting as immune modulators (Satapathy 
and Wilson, 2022). Many of the biological functions of ECs outlined above 
have been proposed to play critical roles in the regeneration of mature cells, 
including neuronal cells (Guerin et al., 2021). Further investigation into the 
effects of ECs present in CSF on neuronal repair and regeneration has the 
potential to lead to the development of new therapies. 

Transthyretin
Transthyretin (TTR) is an amyloid-specific EC (West et al., 2021) present at 
~15.5 μg/mL in the CSF of healthy human adults (Maetzler et al., 2012). TTR 
in complex with retinol-binding protein (RBP) transports retinoic acid (RA, 
a growth factor) to sites of neuronal growth, thereby promoting neuronal 
regeneration (Vancamp et al., 2019; Eira et al., 2021), differentiation, 
and patterning under physiological (Wilson et al., 2004) and pathological 
conditions (Ikeda et al., 2005). RA carried by the TTR:RBP complex also 
induces the differentiation of neural stem cells into neurons and glial cells 
(Nonaka et al., 2004). 
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T TR  has  a l so  been  sug gested  to  p lay  a  cy toprotect ive  ro le  in 
neurodegeneration and acute neuronal injury cases. A decrease in the level 
of TTR in the CSF has been associated with Alzheimer’s disease (AD; Gião et 
al., 2021). TTR has been shown to (a) inhibit amyloid (but not amorphous) 
protein aggregation both in vitro (West et al., 2021) and in vivo (Schwarzman 
et al., 1994), (b) proteolytically cleave the amyloid beta peptide in vitro (Costa 
et al., 2008), and (c) rescue a mouse model of AD from cognitive and motor 
impairment (Buxbaum et al., 2008). TTR has been proposed to facilitate the 
safe disposal of aggregating proteins from the neuronal extracellular space 
(Buxbaum et al., 2008; Santos et al., 2010). Similarly, increased CSF TTR levels 
have been shown to confer cytoprotection against cerebral ischemia (Santos 
et al., 2010), promote axonal and neurite growth, and facilitate cytoskeletal 
reorganization following sciatic nerve injury (Eira et al., 2021). Collectively, 
this preliminary evidence suggests that TTR has the potential to act as a 
therapeutic agent to reduce inflammation, and promote the survival, repair, 
and regeneration of neurons. 

Clusterin 
Clusterin (CLU) is the best-studied EC found at ~2 μg/mL in the CSF of healthy 
human adults (Polihronis et al., 1993). It has been shown to promote the 
in vitro and in vivo proliferation and regeneration of damaged (a) epithelial 
cells of the cornea (Okada et al., 2011) and intestine (Liu and Chen, 2020), 
(b) renal cells (Gobe et al., 1995), and (c) hair and cochlear cells (Zhao et al., 
2021). CLU inhibits the aggregation of proteins that form either amyloid or 
amorphous aggregates in vitro (West et al., 2021), and has been implicated as 
performing a cytoprotective role in neurodegenerative diseases and neuronal 
injuries. For example, increased levels of CLU are detected in the CSF of 
AD (Nilselid et al., 2006) and Parkinson’s disease (PD) patients, and in the 
conditioned medium of human neuronal (SHSY5Y) (Gregory et al., 2017) and 
rat primary hippocampal and glial cells (Cascella et al., 2013) that have been 
exposed to chemical or proteotoxic stress. Rare non-synonymous mutations in 
the CLU gene are associated with the progression and severity of AD (Bettens 
et al., 2015) and PD (Ma et al., 2011), and CLU is often found co-localized with 
amyloid fibrils or plaques surrounding both neurons and glial cells in these 
diseases (Thambisetty et al., 2010). Furthermore, in mice with transected 
hypoglossal nerves (a model system for paralysis), reduced levels of CLU in the 
plasma inhibited the regeneration of sensory neurons (Wicher et al., 2008; 
Wright et al., 2014).

The cytoprotective role of CLU is further supported by its ability to inhibit 
(a) local tissue inflammation (Pucci et al., 2019; De Miguel et al., 2021), (b) 
oxidative stress (Tarquini et al., 2020), and (c) cell death via apoptosis (Cunin 
et al., 2016). CLU can also influence the composition of the extracellular 

matrix by inhibiting matrix metalloproteinases MMP9 (Jeong et al., 2012) and 
MMP25 (Matsuda et al., 2003), and preserving neuronal function at synapses 
(Chen et al., 2021). All of these findings point toward the potential use of 
CLU as a therapeutic agent to promote the repair and regeneration of injured 
neurons.

α2-Macroglobulin
α2-Macroglobulin (A2M) is a broad-range protease-inhibitor and well-studied 
EC normally present at ~1.5 μg/mL in CSF (Suzuki et al., 2019). A2M inhibits 
proteases associated with local tissue inflammation and is known to promote 
the regeneration of (a) stem cells including hematopoietic and lymphopoietic 
cells in an irradiated mouse model, and (b) mature cells such as retinal 
epithelial cells (Jaldín-Fincati et al., 2019) and skin epithelial cells, to promote 
wound healing (Bakhtyar et al., 2018). Similar to CLU, increased levels of A2M 
have been reported in the CSF of AD (Varma et al., 2017) and PD (Gupta et al., 
2019) patients, and correlate with the increased detection of neuronal injury 
markers such as tau and phosphorylated tau proteins (Varma et al., 2017).

Furthermore, A2M transports inflammatory cytokines (e.g. tumor necrosis 
factor α and interleukins-6 and -1β; Marino-Puertas et al., 2019), growth 
factors (e.g. transforming growth factor β; LaMarre et al., 1991) and 
neurotrophin (a secreted protein that acts as a growth factor and promotes 
neuronal cell survival and function; Wolf and Gonias, 1994) to sites of tissue 
inflammation. Therefore, A2M has been suggested to play a key role in 
suppressing inflammation and promoting neuronal repair and regeneration 
in neurons subject to mechanical injury (Garcia-Fernandez et al., 2021) or 
exposure to misfolded protein aggregates (Guan et al., 2021). This trafficking 
of regulatory molecules may involve the interaction of A2M with the cell 
surface receptor LRP1 (low-density lipoprotein receptor-related protein-1) 
(Galliano et al., 2008). A2M also influences extracellular matrix remodeling 
by inhibiting the protease activity of MMP-2 (Kim et al., 2017) and MMP-
9 (Serifova et al., 2020). The A2M-MMP interaction has been suggested to 
inhibit inflammation and promote the survival of neurons in humans treated 
with methotrexate (a model for blood-brain barrier damage) (Cucullo et 
al., 2003). Taken together, the existing evidence supports a role for A2M in 
enhancing neuronal survival, repair, and regeneration following mechanical 
injury or neurodegeneration.

Neuroserpin
Neuroserpin (NS) is a constitutively expressed neuronal protein found at 
relatively low abundance in normal CSF (~7 ng/mL) (Nielsen et al., 2007). 
NS is a serine protease inhibitor that inhibits the activity of tissue-type 
plasminogen activator (tPA) (Hastings et al., 1997). Like TTR, NS acts as an 
amyloid-specific EC (West et al., 2021). Several studies have suggested that 
NS protects regenerating neurons from injury and neurodegeneration. For 
example, in a mouse model of cerebral hypoxia, a decrease in the CSF NS 
level has been suggested to result in an increased expression of tPA in brain 
neurons, ultimately resulting in neuronal cell death (Tsirka et al., 1995; 
D’Acunto et al., 2021). Furthermore, in a rat model of stroke, the level of NS 
protein in brain neurons was significantly increased as early as 6 hours post-
stroke and remained high for 1 week after the stroke (Yepes et al., 2000). 
In the same study, direct injection of NS protein into the brain resulted in 
a ~64% reduction in the stroke volume when compared with rats injected 
with a placebo (Yepes et al., 2000). These observations suggest that the 
cytoprotective potential of NS makes it an attractive candidate for exploration 
as a therapeutic agent to promote neuronal repair and regeneration.

Concluding Hypothesis and Future Directions
ECs are (i) abundantly found in CSF, and their levels increase following 
neuronal injury or neurodegenerative stress, and (ii) known to regulate 
multiple biological processes including those that are important for the repair 
and regeneration of cells, such as cell proliferation, apoptosis, inflammation, 
and interactions with the ECM. Based on these observations we propose 
that ECs are key players in neuronal repair and regeneration and that future 
studies to better characterize their effects in this specific context has the 
potential to lead to the development of valuable new therapies for neuronal 
damage and diseases. We suggest that a focus in future studies on the 
following outstanding questions in the field would bring us closer to being 
able to harness the therapeutic potential of ECs to treat neuronal damage 
and disease:
1. In neuronal culture systems, what are the effects on receptor expression 
and neuronal cell viability of (i) exogenous supplementation of ECs, and (ii) 
silencing of the expression of one or multiple ECs using CRISPR-mediated 
gene editing (Bock et al., 2022)?
2. Is the level of expression of cell surface receptors known to be important 
in neuronal growth and regeneration (e.g. LRP1, integrins, and neurotrophic 
receptors) affected by the expression of ECs in injured and healthy neurons?
3. Does the level of expression of ECs affect (a) the expression of other 
intracellular or secreted proteins known to be important for cell repair and 
regeneration and/or (b) the differentiation of neural stem cells?

Author contributions: SS and MRW contributed equally to the design and the 
writing of the manuscript and data search and analysis, and approved the 
final version of the manuscript.

Figure 1 ｜ Proposed model for the roles of ECs in the repair and regeneration of 
neurons. 
Mature neurons (comprising of cell body, axon surrounded by the protective myelin 
sheath, and dendrites) exhibit cell damage and death following neuronal injury or 
during neurodegeneration (McGinley et al., 2016; Qian and Zhou, 2020). Neuronal 
repair and regeneration are inhibited by increased local tissue inflammation, elevated 
immune reactivity due to increased levels of complement proteins, cell death associated 
with the presence of reactive astrocytes and glial cells, increased activity of matrix 
metalloproteinases (MMP), and local accumulation of misfolded protein aggregates 
in the extracellular space (McGinley et al., 2016; Qian and Zhou, 2020). ECs such as 
transthyretin (TTR), clusterin (CLU), α2-macroglobulin (A2M), and neuroserpin (NS) are 
constitutively expressed by neurons under both physiological and pathological conditions 
and are secreted into the cerebrospinal fluid (CSF) at increased levels in response to 
neuronal injury and/or neurodegeneration (Satapathy and Wilson, 2022). By inhibiting 
the accumulation of misfolded proteins, inflammation, MMPs, and apoptosis, the 
increased expression of ECs is likely to inhibit neuronal injury and/or degeneration and 
promote neuronal repair and regeneration. Red dashed arrows indicate the biological 
outcomes of neuronal injury/degeneration. Green dashed lines indicate the biological 
outcomes of increased levels of ECs (arrowheads indicate a positive effect, the solid line 
indicates inhibition). ECs: Extracellular chaperones.
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