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Background: In lung adenocarcinoma (LUAD), the predictive role of immune-related
subgroup classification in immune checkpoint blockade (ICB) therapy remains largely
incomplete.

Methods: Transcriptomics analysis was performed to evaluate the association between
immune landscape and ICB therapy in lung adenocarcinoma and the associated
underlying mechanism. First, the least absolute shrinkage and selection operator
(LASSO) algorithm and K-means algorithm were used to identify immune related
subgroups for LUAD cohort from the Cancer Genome Atlas (TCGA) database (n �
572). Second, the immune associated signatures of the identified subgroups were
characterized by evaluating the status of immune checkpoint associated genes and
the immune cell infiltration. Then, potential responses to ICB therapy based on the
aforementioned immune related subgroup classification were evaluated via tumor
immune dysfunction and exclusion (TIDE) algorithm analysis, and survival analysis and
further Cox proportional hazards regression analysis were also performed for LUAD. In the
end, gene set enrichment analysis (GSEA) was performed to explore the metabolic
mechanism potentially responsible for immune related subgroup clustering.
Additionally, two LUAD cohorts from the Gene Expression Omnibus (GEO) database
were used as validation cohort.

Results: A total of three immune related subgroups with different immune-associated
signatures were identified for LUAD. Among them, subgroup 1 with higher infiltration
scores for effector immune cells and immune checkpoint associated genes exhibited a
potential response to IBC therapy and a better survival, whereas subgroup 3 with lower
scores for immune checkpoint associated genes but higher infiltration scores for
suppressive immune cells tended to be insensitive to ICB therapy and have an
unfavorable prognosis. GSEA revealed that the status of glucometabolic
reprogramming in LUAD was potentially responsible for the immune-related subgroup
classification.
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Conclusion: In summary, immune related subgroup clustering based on distinct immune
associated signatures will enable us to screen potentially responsive LUAD patients for ICB
therapy before treatment, and the discovery of metabolism associated mechanism is
beneficial to comprehensive therapeutic strategies making involving ICB therapy in
combination with metabolism intervention for LUAD.

Keywords: lung adenocarcinoma, immune related subgroups, immune checkpoint blockade therapy,
transcriptomics analysis, glucometabolic reprogramming

INTRODUCTION

Lung cancer is one of the most common type of malignancies
worldwide, and is the leading cause of cancer-related death
among men and women globally (Siegel et al., 2021). Non-
small cell lung cancer (NSCLC), which includes squamous cell
carcinoma, adenocarcinoma and large cell carcinoma, accounts
for more than 80% of all primary lung cancers (Kano et al., 2020).
Within NSCLC, adenocarcinoma is the most common
histological subtype (Zhang et al., 2020). Despite great
improvements in LUAD treatment in recent decades,
particularly molecular-targeted therapeutic strategies, such as
tyrosine kinase inhibitors (TKIs) treatment targeting epidermal
growth factor receptor (EGFR) and/or anaplastic lymphoma
kinase (ALK) (Ge and Shi, 2015), the prognosis for LUAD
patients remains poor with a 5-years survival rate of only 15%
(Siegel et al., 2021). Fortunately, as an emerging therapeutic
approach for tumor, immunotherapy, such as immune
checkpoint blockade (ICB) therapy, is increasingly approved to
be effective for LUAD (Huang et al., 2020a). Cytotoxic
T-lymphocyte antigen 4 (CTLA-4) and programmed cell death
protein 1/programmed cell death ligand 1 (PD-1/PD-L1) are
crucial immune checkpoints to maintain homeostasis for
immune response (Meyers and Banerji, 2020). Actually,
attenuated anti-tumor immune response or induced
immunosuppression in local tumor microenvironment (TME)
partially result from excessive negative immune response
mediated by immune checkpoints (Anichini et al., 2020). ICB
therapy aims to enhance anti-tumor immune response by
inhibiting detrimental immunosuppression induced by
immune checkpoint in TME.

Owing to heterogeneity existing in LUAD and development of
acquired resistance to ICB therapy, the overall performance of ICB
therapy in clinical practice for LUAD is far from satisfactory (Pathak
et al., 2020). As one of the most immunological cancer type,
immunological surveillance, immunoediting and immune escape
play a critical role in LUAD development and progression (Song
et al., 2020). Screening for potentially responsive LUAD patients to
ICB therapy before treatment by using an effective immunoligical
biomarker is beneficial to remarkably improve the outcome of LUAD
patients with ICB therapy (Wu et al., 2020). Tumor-infiltrating
lymphocyte (TIL) score and PD-L1 expression in TME are
previously suggested as potential biomarkers to select potentially
sensitive subpopulation to ICB therapy prior to treatment and to
predict survival for LUADpatients (Gascón et al., 2020; Jin et al., 2020;
Hashemi et al., 2021). However, evaluations for the status of TIL and
PD-L1 are currently non-standardized and limited by tissue samples

availability. A comprehensive analysis of the immune associated
signature in TME enable a further understanding of the interplay
between local immune status and tumor immunotherapy
responsiveness (Park et al., 2020; Wang et al., 2020).

“Omics” techniques which are characterized by high-throughput
interfaces are able to investigate complex biological systems in order to
identify molecular signatures responsible for the complicated
biological phenotype (Gillette et al., 2020; Lazarou et al., 2020). In
the present investigation, bioinformatics analyses based on ribonucleic
acid (RNA) sequencing (RNA-seq) data and clinical information from
Cancer Genome Atlas (TCGA) database were performed to
comprehensively explore the predictive role of immune associated
signature in therapeutic responsiveness to ICB therapy for LUAD.

FIGURE 1 | Theworkflow of this study. Briefly, immune related subgroup
clustering was performed by using LASSO algorithm and K-means algorithm.
After characterization of the immune associated signatures of the identified
subgroups, TIDE algorithm analysis was performed to predict the
potential sensitivities to ICB therapy. Meanwhile, survival analysis and further
Cox proportional hazards regression analysis were also performed for LUAD.
In the end, GSEA was performed to explore the metabolic mechanism
potentially responsible for immune related subgroup clustering.
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First, immune related subgroup clusteringwas performed by using the
least absolute shrinkage and selection operator (LASSO) algorithm
and K-means algorithm. Second, the immune associated signatures of
the identified subgroups were characterized by evaluating the status of
immune checkpoint associated genes and the immune cells
infiltration. Then, potential responses to ICB therapy were
predicted via tumor immune dysfunction and exclusion (TIDE)
algorithm analysis, and the relationship between the immune
associated signature based on the aforementioned immune related
subgroup classification and potential sensitivities to ICB therapy were
determined. Additionally, survival analysis and further Cox
proportional hazards regression analysis were also performed for
LUAD, and gene set enrichment analysis (GSEA) was performed
to explore the metabolic mechanism potentially responsible for
immune related subgroup clustering. In the end, two microarray
data sets from the Gene Expression Omnibus (GEO) database were
used as validation cohorts in the study. The work flow of this study
was shown in Figure 1.

Transcriptomics analysis of the association between immune
associated signature and ICB therapy in LUAD not only explains
for the heterogeneity in the reactivity to ICB therapy partially from an
immunological perspective, but also provide potentially promising
biomarker or target to direct sensitive LUAD patients screening prior
to ICB therapy and combination therapy strategy making involving
ICB therapy in combination with metabolism intervention.

MATERIALS AND METHODS

Data Acquisition
The RNA-seq data sequenced on the Illumina RNA sequencing
platform for LUAD samples from TCGA samples were download
from the Cancer Genomics Browser of the University of California

Santa Cruz (UCSC) Xena (https://xena.ucsc.edu/public) (Cline et al.,
2013). Then, log2 (x+1) transformed HT-seq counts data and
Fragments Per Kilobase Million (FPKM) data were selected for
further analysis. The corresponding phenotype and survival
information were also downloaded from the UCSC Xena. The
latest gene ID annotation file (gencode.v32. annotation.gtf) was
downloaded from the GENCODE database (http://www.
gencodegenes.org) (Frankish et al., 2019) for Entrez gene ID and
Ensembl gene ID transformation. Finally, after matching the TCGA
sample ID in RNA-seq with the corresponding phenotype and
survival information, a total of 572 LUAD samples in TCGA
database were included in the study. Meanwhile, a total of 824
genes directly involved in immunological processes were collected
using the Immunome database (Breuer et al., 2013). In addition,
Microarray data for 398 LUAD samples in GSE72094 and 442 LUAD
samples in GSE68465 were also acquired from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The corresponding gene chip
annotation messages and clinical messages of this two data sets were
downloaded using the R package GEOquery (Davis and Meltzer,
2007). The clinicopathological characteristics of LUAD patients from
the training and validation sets were summarized in Table 1.

Data Preprocessing and Immune Related
Subgroup Clustering
RNA-seq data and microarray data for LUAD from public database
were first standardized for further analysis. “Combat” algorithm
(Johnson et al., 2007) of R package sva (Leek et al., 2012) was
employed to reduce the batch effect which may lead to deviations
and bias to unrelated biological or scientific differences between
subgroups (Leek et al., 2010). To filter out the missing values,
intersective genes were selected from the TCGA cohort, GSE72094
cohort, GSE68465 cohort and Immunome database in the current
study. Based on the expression of intersective genes for LUAD cohort
from the TCGA database, LASSO algorithm and 10-fold cross
validation method in R package glmnet (Friedman et al., 2010)
were used to select the optimal gene set of the immune associated
genes for immune related subgroup clustering. The total within sum
of square and average silhouette width were calculated using R
package factoextra to identify the best number of clustering.
K-means algorithm, a classical unsupervised learning algorithm of
artificial intelligence, was used for sample clustering in R software
version 3.6.0 (https://www.r-project.org/) by 10 iterations with at least
30 samples for each subgroup. Moreover, consensus matrix analysis
was performed in each data set to validate the clustering number, and
consensus matrices were generated using the R package
ConsensusClusterPlus (Wilkerson and Hayes, 2010). The principal
component analysis (PCA) plot of the clustered samples were also
drawn in the present study.

Evaluation of Immune Cell Infiltration
Scores and Immune Checkpoint Associated
Genes Scores in Tumor Microenvironment
as the Immune Associated Signature
Immune cell Abundance Identifier (ImmuCellAI) (Miao et al., 2020),
a gene set signature-based method, was used to evaluate the

TABLE 1 | Clinicopathological characteristics of LUAD patients from the training
and validation sets.

Characteristics TCGA GSE68465 GSE72094

Training set Validation set Validation set

Patient numbers 751 443 442
Age 65.2 ± 10.0 64.4 ± 10.1 69.2 ± 9.3
Gender — — —

Male 342 223 202
Female 409 220 240

Tumor stages — — —

Not reported 10 — 28
I 409 — 265
II 176 — 69
III 118 — 63
IV 38 — 17

Race — — —

Not reported 70 129 45
Caucasian 581 295 399
African 84 12 13
Asian 16 7 3

Smoking history — — —

Not reported 22 94 74
Never 108 49 33
Ever 621 300 335
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infiltration scores of immune cells in the TMEof LUAD. ImmuCellAI
is capable of precisely estimating the abundance of 24 types of
immune cell, including 18 T-cell subsets (CD4+, CD8+, CD4+

naïve, CD8+ naïve, central memory T (Tcm), effector memory T
(Tem), Tr1, induced regulatory T cells (iTreg), natural regulatory
T cells (nTreg), Th1, Th2, Th17, Follicular helper T cells (Tfh),
cytotoxic T cells (Tc), mucosal-associated invariant T cells (MAIT),
exhausted T cells (Tex), gamma delta T (γδ T), and natural killer T
(NKT) cells) and six other important immune cells (B cells,
macrophages, monocytes, neutrophils, dendritic cell (DC), and
natural killer (NK) cells). In addition, it was reported that
ImmuCellAI can estimate the abundance of immune cells with
superior accuracy to other methods, especially on many T-cell
subsets. Immune checkpoint associated genes, such as CTLA4,
CD28, CD80, CD86, CD274 (PD-L1) and PD-1 (PDCD1), were
selected from previous relevant studies focusing on the correlation
between these genes and LUAD development, progression and
prognosis.

Prediction of Potential Sensitivity to
Immune Checkpoint Blockades Therapy for
Lung Adenocarcinoma Patients Based on
Immune Related Subgroup Classification
Tumor immune dysfunction and exclusion (TIDE) algorithm (Fu
et al., 2020) was used to calculate the potential possibility to respond to
ICB therapy for LUAD patients based on immune related subgroup
classification. Generally, TIDE analysis mainly consists of scores for
TIDE, immune dysfunction, immune exclusion and several immune
associated cells and effector molecules. Among which, negative score
for TIDE suggests a lack of immune evasion phenotype.Meanwhile, T
dysfunction score shows how a gene interacts with cytotoxic T cells to
influence patient survival outcome, and the T cell exclusion score
assesses the gene expression levels in immunosuppressive cell types
that drive T cell exclusion. Scores for suppressive immune cells, such
as cancer associated fibroblasts (CAF), myeloid-derived suppressor
cell (MDSC), M2 macrophage indicate immune evasion or
immunosuppression, suggesting a low possibility to respond to
ICB therapy. Whereas, scores for effector immune cells, associated
effector molecular and immune checkpoint associated genes, such as
CD8+T cells, interferon-γ (IFN-γ) and PD-L1 (CD274) represent a
potential sensitivity to ICB therapy. Additionally, immune related
subgroup clustering, immune associated cells infiltration, immune
checkpoint associated genes and clinicopathologic parameters, such as
age, gender, pathological TNM stages, tumor stages in LUAD were
also evaluated and analyzed between different immune related
subgroups to perform a Cox proportional hazards regression analysis.

Gene Set Enrichment Analysis (GSEA) to
Explore the Underlying Mechanism
Responsible for the Immune Related
Subgroup Clustering of Lung
Adenocarcinoma
GSEA is a bioinformatics analysis to determine whether a prior
defined set of genes shows statistically significant and concordant
differences between two groups (Sun et al., 2020). GSEA version

4.1.0, was used, the number of permutations was set to 1,000, and
FDR <0.05 was the screening threshold. Given a close
relationship between glucose metabolism reprogramming in
tumor and anti-tumor immunomodulation, glucose
metabolism process associated gene signatures, including the
process of glycolysis, gluconeogenesis, tricarboxylic acid (TCA)
cycle and oxidative phosphorylation (OXPHOS) in mitochondria
were compared between the identified immune related subgroups
(subgroup 1 vs subgroup 3) to explore the underlying mechanism
responsible for the immune related subgroup clustering
of LUAD.

Statistical Analysis
The differences of immune associated signatures existed between
immune related subgroups, such as the expression of immune
check point genes and the infiltration scores of immune
associated cells, were evaluated by using Kruskal-Wallis test.
Before that, Shapiro-Wilk test and Tukey’s test were used to
evaluate the status of normal distribution, and F test was used to
perform homogeneity tests of variances. In addition, a survival
analysis (overall survival) using Kaplan-Meier method was
performed for LUAD patients, and the log-rank test was used
to compare the differences of survival existed between the
immune related subgroups aforementioned. Furthermore,
univariate Cox proportional hazards regression analysis was
performed to determine the correlation between survival and a
variety of factors, including clinicopathologic parameters and
immune associated signature factors. Afterwards, significantly
associated factors were selected for further multivariate Cox
proportional hazards regression analysis to determine
independent risk factors. A p-value under 0.05 was considered
to indicate a statistically significant difference. Data was analyzed
using R software version 3.6.0. Multiple testing was corrected
using the Benjamini-Hochberg’s false rediscovery rate (FDR).

RESULTS

Immune-Associated Subgroup Clustering
for Lung Adenocarcinoma From the Cancer
Genome Atlas Database
The LASSO algorithm and 10-fold cross-validation were used to
extract the optimal subsets of immune associated genes based on
Immunome database for immune related subgroup clustering of
LUAD cohort from TCGA database. As shown in Figure 2A, the
optimal λ which have the minimum mean square error was
selected by 10-fold cross validation. LASSO coefficient profile
of the selected subsets of immune associated genes (n � 11) at the
optimal λ for immune related subgroup clustering of LUAD was
depicted in Figure 2B. To optimize the average silhouette width
and the total within sum of square, the optimal number of
clustering was set with k � 3 (Figures 2C,D). Based on this
clustering, LUAD cohort (n � 572) from TCGA was divided into
subgroup 1 (n � 252), subgroup2 (n � 188) and subgroup 3 (n �
132). The consensus matrix and the principal component analysis
(PCA) plots of this immune related subgroup classification when
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k � 3 was shown in Figure 2E and Figure 2F, respectively. The
results about this clustering were further validated in GSE72094
and GSE68465 data sets (Supplementary Figure S1).

Characterization of Immune Associated
Signature Based on Immune Related
Subgroup Clustering of Lung
Adenocarcinoma
In the current investigation, immune checkpoint associated genes
and immune cell infiltration scores were used to represent the
immune associated signature of each of the immune related
subgroups of LUAD. The status of immune checkpoint
associated genes, such as CTLA4, CD28, CD80, CD86, PD-L1
(CD274) and PD-1 (PDCD1), were first evaluated for LUAD
based on the aforementioned immune related subgroup
clustering. As demonstrated in the heatmap (Figure 3A), the
levels of these immune checkpoint associated genes were
significantly different between the three subgroups (p < 0.05).
Box plots were also used to show the differences in each of these

immune checkpoint associated genes between the three
subgroups (Figure 3B). Generally, subgroup 1 tended to have
significantly higher expression levels of immune checkpoint
associated genes in comparison with other subgroups,
particularly with subgroup 3. Next, immune cell infiltration
estimation was performed by using ImmuCellAI. As shown in
Figure 3C, the general infiltration score was higher in subgroup1
in contrast with other subgroups, and a total of 16 immune cell
infiltration scores were found to be statistically different between
the three immune-related subgroups. In detail, the infiltration
scores for effector immune cells, such as CD8+ cells and cytotoxic
cells, were found to be statistically higher in subgroup 1 than that
in other subgroups, whereas CD8 naive cell infiltration score was
relatively lower in subgroup 1 compared to other subgroups.
Meanwhile, the cell infiltration scores for suppressive immune
cells, such as natural regulatory T cells (nTreg) and induced
regulatory T cells (iTreg) were significantly higher in subgroup 3
than that in the other subgroups. (Figure 3D). Similar results
with regard to the characterization of immune associated
signature based on immune related subgroup clustering of

FIGURE 2 | Immune associated subgroup clustering of LUAD by using the LASSO and K-means algorithm. (A) LASSO regression model with 10-cross validation
was used to select the optimal λ (dash line) which have the minimum mean square error (red dots). (B) LASSO coefficient profiles of the selected subsets of immune
associated genes at the optimal λ (grey line) for immune related subgroup clustering of LUAD. (C) The curve of average silhouette width under corresponding cluster
number k, and the maximum of average silhouette width was achieved when k � 3. (D) The curve of total within sum of squared error curve under corresponding
cluster number k, and it reached the “elbow point” when k � 3. (E) The consensus clustering of immune related subgroup of LUAD when k � 3. (F) The PCA plot of
clustered samples in the LUAD, where samples in subgroup-1 (n � 252) are shown in red, subgroup-2 (n � 188) in green and subgroup-3 (n � 132) in blue.
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LUAD were also validated in GSE72094 and GSE68465 data sets
(Supplementary Figure S2 and Supplementary Figure S3).

Estimation of Potential Sensitivity to
Immune Checkpoint Blockades Therapy for
Lung Adenocarcinoma Based on Immune
Related Subgroup Clustering
Tumor immune dysfunction and exclusion (TIDE) algorithmwas
used to evaluate the potential sensitivity to ICB therapy for LUAD
patients included in different immune related subgroups. As
shown in the heatmap (Figure 4A), the TIDE analysis
associated scores were significantly different between the three
subgroups (p < 0.05). Based on the TIDE analysis, a higher
potential sensitivity to ICB therapy was suggested for

subgroup 1 which was with higher scores for TIDE,
dysfunction, CD8+ cells, and interferon-γ (IFN-γ), but with
lower scores for exclusion, M2 macrophage and MDSC in
comparison with that in subgroup 3 (Figure 4B). Similarly,
this TIDE analysis results were also validated in GSE72094
data sets (Supplementary Figure S3). GSE68465 data set was
not used as validation cohort to perform TIDE analysis and
survival analysis because of the lack of information for CD274.

Survival Analysis and Cox Proportional
Hazards Regression Analysis for Lung
Adenocarcinoma
With regard to survival analysis for LUAD, the Kaplan Meier
curves were drawn and the log-rank test was performed in

FIGURE 3 |Characterization of immune associated signatures of the identified immune related subgroups of LUAD. (A) As shown in the gene expression heatmap,
the levels of immune checkpoint associated genes, including CTLA4, CD28, CD80, CD86, CD274 (PD-L1) and PDCD1 (PD-1), were significantly different between the
identified immune related subgroups of LUAD (p < 0.05). (B) Box plots were also shown to demonstrate the differences in each of these included immune checkpoint
associated genes between the three subgroups. Generally, subgroup 1 tended to have higher expression levels of immune checkpoint associated genes in
comparison with other subgroups (p < 0.05). (C) ImmuCellAI was used to evaluate the immune cell infiltration scores in the TME of LUAD. As shown in the heatmap,
immune cell infiltration scores were found to be statistically different between the three immune related subgroups. The general infiltration score was remarkably higher in
subgroup 1 in comparison with other subgroups, particularly with subgroup 3. (D) Box plots were also shown to indicate the differences between the three subgroups
with regard to the infiltration scores of several representative immune cells. The infiltration scores of positive immune response, such as CD8+ cells and cytotoxic cells,
were significantly higher in subgroup 1 than that in the other subgroups. Whereas, the infiltration scores of negative immune response, such as natural regulatory T cells
(nTreg) and induced regulatory T cells (iTreg), were found to be statistically higher in subgroup 3 than that in other subgroups.
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this study. As demonstrated in Figure 4C, subgroup 3 tended
to have an unfavorable prognosis in comparison with that of
subgroup 1. Then, univariate Cox proportional hazards
regression analysis was performed to identify the
significant factors influencing the overall survival (OS) of
LUAD. Among all the included factors, including the
clinicopathologic parameters, immune checkpoint
associated genes, immune cell infiltration scores, TIDE
algorithm scores and immune related subgroup
classification, a total of eight factors were proved to be
significant risk factors influencing survival of LUAD
(Table 2). Afterwards, all the eight factors were included
in further multivariate Cox proportional hazards regression
analysis to identify independent risk factors for LUAD. As
shown in the forest plots (Figure 4D), immune related
subgroup clustering, tumor stage and B cell infiltration
were suggested as potential independent factors influencing
OS of LUAD (p < 0.05). The results of survival analysis and
Cox proportional hazards regression analysis in validation

data set (GSE72094) were also shown in Supplementary
Figure S4.

Potential Metabolism Associated
Mechanism Responsible for Immune
Related Subgroup Clustering of Lung
Adenocarcinoma
Based on the immune related subgroup clustering (subgroup 1 vs
subgroup 3), gene set enrichment analyses (GSEA) was
performed on LUAD data set from the TCGA database using
the gene sets significantly associated with glucose metabolism,
including the process of glycolysis (Figure 5A), tricarboxylic acid
(TCA) cycle (Figure 5B), gluconeogenesis (Figure 5C), oxidative
phosphorylation (OXPHOS) in mitochondria (Figure 5D). FDR
(Q value) < 0.05 was set as the screening threshold. As shown, the
upward parabolas indicated that all the included processes of
glucose metabolism was enhanced in subgroup 1 in contrast with
that in subgroup 3. Glucose metabolic reprogramming was

FIGURE 4 | TIDE analysis and survival analysis for LUAD based on immune related subgroup clustering. (A) TIDE analysis was used to evaluate the potential
sensitivity to ICB therapy for LUAD patients. As shown in the heatmap, the TIDE analysis associated scores were significantly different between the three subgroups (p <
0.05). (B) Based on the TIDE analysis, a higher potential sensitivity to ICB therapy was suggested for subgroup 1 which was with higher scores for TIDE, dysfunction,
CD8+ cells and interferon-γ (IFN-γ), but with lower scores for exclusion, M2 macrophage and MDSC in comparison with that in subgroup 3. (C) Kaplan Meier
analysis was performed to estimate the survival of LUAD. As shown, subgroup 3 tended to have an unfavorable prognosis in comparison with subgroup 1 and subgroup
2. (D) A total of 8 factors were included in further multivariate Cox proportional hazards regression analysis to identify independent risk factors for LUAD after an univariate
Cox proportional hazards regression analysis. As shown in the forest plots, immune associated subgroup clustering, tumor stage and B cells infiltration were suggested
as potential independent factors influencing overall survival (OS) of LUAD (p < 0.05).
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suggested as one of the underlying mechanisms for immune
related subgroup clustering of LUAD. The results of GSEA
analysis in validation data set (GSE72094 and GSE68465) were
also shown in Supplementary Figure S5.

DISCUSSION

As an emerging therapeutic approach for malignancies, tumor
immunotherapy, particularly for ICB therapy, is increasingly
proved to be effective for LUAD patients (Huang et al., 2020a;
Kano et al., 2020). However, a remarkable improvement in overall

response rate and prognosis for LUAD patients is still not achieved
due to the inherent intertumoral and intratumoral heterogeneity and
the development of acquired resistance to ICB therapy (Jin et al., 2020;
Song et al., 2020). To address this issue, a promising biomarker which
is capable of predicting therapeutic efficiency before treatment is
needed to screen potential responsive subpopulation prior to
treatment and monitor the therapeutic efficiency during the
process of treatment (Meyers and Banerji, 2020). Tumor-immune
relationship plays an important role in tumor development and tumor
progression, and tumor immune microenvironment (TIM) is widely
accepted as a significant factor influencing therapeutic efficiency of
ICB therapy (Song et al., 2020;Wang et al., 2020). Specifically, tumor-
infiltrating lymphocytes (TILs) score (Gascón et al., 2020; Hashemi
et al., 2021) and PD-L1 status (Wu et al., 2020) were previously
suggested as potential biomarkers to be applied in clinical practice for
LUAD. However, its translation from bench to bedside is largely
limited by the dependence on tissue sample availability and the non-
standardization for evaluation of TIL score and PD-L1 expression.
Though previous studies tried to use immunophenotypic subtype
classification based on immune signature to address this issue (Song
et al., 2020; Wang et al., 2020; Xu et al., 2020), a systematic and
comprehensive analysis (Seo et al., 2018; Zhang et al., 2020) is still
required to determine the correlation between immune landscape
based on immune related subgroup clustering and therapeutic
reactivity to ICB therapy, and the underlying mechanism is of
necessity to be explored (Huang et al., 2020b; Giannone et al.,
2020). Previous studies from Chen YS. et al. (Xu et al., 2020) and
Chen KX. et al. (Seo et al., 2018) performed immune related subgroup
classification by using computational algorithms, however, an
elaborated immune landscape characterization for distinct immune
related subgroups were inadequate. Even though results from Xing Y.
et al. (Song et al., 2020) and Kim Y. et al. (Xu et al., 2020) suggested a
potential implication of immune subtype classification for ICB
immunotherapy in lung cancer, a comprehensive analysis of the
potential response to ICB immunotherapy for lung cancer, such as
TIDE algorithm, was actually lacked. In the present investigation, we
focused on both the elucidation of different immune signatures and
prediction of potential response to ICB therapy for lung
adenocarcinoma based on immune related subgroup clustering by
using K-means algorithm, a classical unsupervised learning algorithm
of artificial intelligence. More importantly, we conducted GSEA
analysis to explore metabolism associated mechanism potentially
responsible for immune related subgroup clustering of LUAD,
particularly emphasized on the glucometabolic mechanism to shed
light on comprehensive treatment strategy involving ICB
immunotherapy in combination with glucose metabolism
intervention.

Three distinct immune related subgroups were classified for
LUAD in the current study based on RNA-seq data set from
TCGA database (n � 572) by using a K-means algorithm. Among
the classification, subgroup 1 was characterized by higher levels of
immune checkpoint associated genes and higher cell infiltration scores
for immune associated effector cells, and tended to be more sensitive
to ICB therapy and have a favorable prognosis. Whereas, subgroup 3
with lower levels of immune checkpoint associated genes but higher
cell infiltration scores for immune associated suppressive cells was
found to be less responsive to ICB therapy and have a poor prognosis.

TABLE 2 | Univariate Cox proportional hazards regression analysis of the
prognostic factors for overall survival of LUAD.

Characteristics HR 95% CI P Value

Clinical features — — —

Gender 1.05 0.79–1.41 0.72
Pathologic_T 1.18 1.09–1.27 < 0.01*
Pathologic_N 1.36 1.2–1.55 < 0.01*
Pathologic_M 0.98 0.9–1.07 0.68
Age 1.01 0.99–1.02 0.30
Tumor_stage 1.24 1.17–1.32 < 0.01*

Immune_subgroups 1.24 1.03–1.48 0.02*
Gene mutation — — —

TP53 1.21 0.91–1.63 0.19
EGFR 1.4 0.94–2.1 0.10
KRAS 1.13 0.82–1.56 0.46

TIDE — — —

TIDE 1.03 0.74–1.45 0.84
IFNG 1.13 0.84–1.52 0.42
CD274 1.16 0.85–1.57 0.35
CD8 0.72 0.54–0.97 0.02*
Dysfunction 0.85 0.63–1.14 0.26
Exclusion 1.31 0.98–1.77 0.07
CAF 1.11 0.83–1.49 0.47
TAM.M2 0.97 0.72–1.31 0.86

ImmuCellAI — — —

CD4_naive 0.81 0.52–1.25 0.33
CD8_naive 0.9 0.67–1.21 0.49
Cytotoxic 0.92 0.69–1.23 0.58
Exhausted 0.92 0.68–1.23 0.55
Tr1 0.8 0.59–1.07 0.12
nTreg 1.18 0.88–1.58 0.26
iTreg 1 0.75–1.34 0.99
Th1 7.42 0.69–79.79 0.09
Th2 1.24 0.92–1.65 0.15
Th17 1.36 1.02–1.83 0.03*
Tfh 0.67 0.5–0.9 < 0.01*
Central_memory 1.11 0.83–1.5 0.47
Effector_memory 1.16 0.71–1.89 0.54
NKT 0.85 0.63–1.14 0.27
MAIT 0.93 0.7–1.25 0.63
DC 0.94 0.7–1.26 0.66
B_cell 0.6 0.45–0.82 < 0.01*
Monocyte 6.25 0.84–46.22 0.07
Macrophage 0.9 0.37–2.18 0.82
NK 1.04 0.78–1.39 0.78
Neutrophil 1.2 0.9–1.6 0.22
Gamma_delta 1 0.74–1.33 0.98
CD4_T 0.8 0.59–1.07 0.12
CD8_T 0.81 0.6–1.08 0.15
InfiltrationScore 0.82 0.62–1.1 0.19

Bold value indicates that the differences between groups were statistically significant.
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Presumedly, subgroup 1 represented an immune-hot or with an
immunocompetent TME with a higher infiltration score and an
immunocompetent subtype which was possibly associated with a
potential response to ICB therapy and a favorable prognosis.Whereas,
subgroup 3 was considered as an immunodeficient or
immunosuppressive landscape with a lower infiltration score or
with an immunosuppressive subtype, suggesting a potential
resistance to ICB therapy and an unfavorable prognosis. With
respect to subgroup 2, a median subtype with a mixture of
characteristics of subgroup 1 and subgroup 3 was considered.
After Kaplan Meier analysis and Cox proportional hazards
regression analysis, the immune related subgroup clustering was
found to be an independent risk factor influencing the OS of
LUAD patients. In the end, the GSEA analysis revealed that the
metabolic reprogramming status in LUAD is potentially one of the
underlyingmechanisms for the distinct immune associated signatures
based on the immune related subgroup clustering (Hensley et al.,
2016; Faubert et al., 2017; Smolle et al., 2020). The enhanced glucose

metabolism in subgroup 1 was consistent with the immune-hot
landscape and a relatively immunocompetent subtype, whereas the
decreased glucose metabolism in subgroup 3 suggested an
immunodeficient landscape and/or an immunosuppressive subtype.
Validation LUADcohorts from external GEOdatabasewere also used
to confirm the aforementioned results. To sum up, the present
investigation provided a deep understanding of the interaction
between tumor cells and surrounding immune cells (Kareva and
Hahnfeldt, 2013; Speiser et al., 2016) and shed light on an
improvement in ICB therapy or derived combination treatment
for LUAD involving ICB therapy and metabolism intervention
treatment.

As we know that, metabolic reprogramming and
immunomodulation are two hallmarks of tumor (Hanahan and
Weinberg, 2011). From a metabolic perspective, both tumorigenesis
and immunoregulation are intricately associated with metabolic
reprogramming. Specifically, the metabolic interplay between tumor
cells and infiltrating immune cells significantly contributes to tumor

FIGURE 5 | Glucose metabolic reprogramming was suggested as one of the underlying mechanisms for immune related subgroup clustering of LUAD. Based on
the immune related subgroup clustering (subgroup 1 vs subgroup 3), GSEA was performed by using the gene sets significantly associated with glucose metabolism,
including processes of (A) glycolysis (Normalized Enrichment Score (NES) � 2.29, p < 0.01, Q < 0.05), (B) tricarboxylic acid (TCA) cycle (NES � 1.86, p < 0.01, Q < 0.05),
(C) gluconeogenesis (NES � 1.74, p < 0.01, Q < 0.05) and (D) oxidative phosphorylation (OXPHOS) in mitochondria (NES � 1.98, p < 0.01, Q < 0.05) (NES � 1.98,
p < 0.01, Q < 0.05). FDR <0.05 was set as the screening threshold. An upward parabola indicated that the indicated process was enhanced in subgroup 1 in contrast
with subgroup 3. The barcode plot indicates the position of the genes in each gene set; red and blue colors represent positive and negative Pearson’s correlation with
subgroup classification.
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progression and tumor immunosuppression. As reported previously,
metabolic competition between tumor cells and surrounding immune
cells (Chang et al., 2015) and an accumulation of a variety ofmetabolite
caused by metabolic reprogramming (Feng et al., 2017) in TME are
partially responsible for immune landscape remodeling. Even though
improvement in ICB therapy for LUAD in recent decades, a potential
marker for effective stratification of LUAD patients before treatment
and a promising target for associated molecular targeted therapy in
combination with ICB therapy are expected to bring out breakthrough
to clinical management for LUAD. The heterogeneity in metabolism
status of LUAD was previously described (Hensley et al., 2016) and
further confirmed by metabonomics analysis by investigation from
others (Lazarou et al., 2020; Zhao et al., 2020). Additionally, multi-
omics analysis based on single cell sequencing data also recovered a
close correlation between immune status and metabolic
reprogramming (Kim et al., 2020; Xiao et al., 2020; Zhong et al.,
2021). Therefore, ICB therapy combinedwithmetabolism intervention
is expected to improve the prospect of LUAD treatment.

In spite of the innovation and valuable results mentioned above
with respect to this study, a few limitations existing in the current
investigation is noteworthy. First, the TCGA database mainly
comprises Caucasian population, while validation cohort from
GEO database mostly consists of Asian patients, thus racial bias
was not inevitable in this study. To attenuate this bias, two external
validation cohorts from GEO database were used to validate the
results. Then, as actual sensitivity to ICB therapy for LUAD was not
available in this study because the clinical information regarding to
ICB therapy was mostly not provided in TCGA and GEO databases,
only potential reactivity to ICB therapy for LUADwas evaluated based
on TIDE analysis. In the end, the correlation between immune
associated signature and sensitivity to ICB therapy and underlying
metabolic reprogramming-associated mechanism were not further
validated by basic research in vitro and clinical investigation in vivo,
which is what we aim to do in future.

CONCLUSION

In the current investigation, a novel immune related subgroup
clustering by an unsupervised learning model was identified for
LUAD. Distinct immune associated landscape based on this

clustering was significantly correlated with potential sensitivity
to ICB therapy and prognosis for LUAD. GSEA analysis revealed
that the heterogeneity in metabolic reprogramming is potentially
one of the underlying mechanisms responsible for the correlation
between immune landscape and potential reactivity to ICB
therapy for LUAD. The immune related subgroup clustering
based on the transcriptomics analysis will enable us to screen
potentially responsive LUAD patients to ICB therapy.
Additionally, metabolism intervention is a promising approach
to improve the therapeutic efficiency of ICB therapy for LUAD.
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GLOSSARY

ANN artificial neural network

ALK anaplastic lymphoma kinase

CTLA-4 cytotoxic T-lymphocyte antigen 4

CLP common lymphoid progenitor

CAF cancer-associated fibroblast

DC dendritic cell

DBSCAN density-based spatial clustering of applications with noise

EGFR epidermal growth factor receptor

FDR false rediscovery rate

GEO Gene Expression Omnibus

GSEA single-sample gene set enrichment analysis

HR hazard ratio

ICBs immune checkpoint blockades

IFN-γ interferon-γ

ImmuCellAI Immune cell abundance identifier

LASSO least absolute shrinkage and selection operator

LUAD lung adenocarcinoma

MAIT mucosal-associated invariant T

MDSC myeloid-derived suppressor cell

NK natural killer

NKT natural killer T

NSCLC non-small cell lung cancer (NSCLC)

OS Overall survival

OXPHOS oxidative phosphorylation

PD-1/PD-L1 programmed cell death protein 1/programmed cell death
ligand 1

PCA principal components analysis

RNA-seq RNA sequencing

SVM support vector machine

TCA tricarboxylic acid

Tc cytotoxic T

TCGA the Cancer Genome Atlas

Tex exhausted T cells

TIDE tumor immune dysfunction and exclusion

TIL tumor-infiltrating lymphocyte

TIM tumor immune microenvironment

TKIs tyrosine kinase inhibitors

TME tumor microenvironment

Treg Regulatory T
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