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ABSTRACT
Background. Glaesserella parasuis (G. parasuis) is a respiratory pathogen of swine
and the etiological agent of Glässer’s disease. The structural organization of genetic
information, antibiotic resistance genes, potential pathogenicity, and evolutionary
relationships among global G. parasuis strains remain unclear. The aim of this study
was to better understand patterns of genetic variation, antibiotic resistance factors, and
virulence mechanisms of this pathogen.
Methods. The whole-genome sequence of a ST328 isolate from diseased swine in China
was determined using PacbioRS II and IlluminaMiSeq platforms and comparedwith 54
isolates from China sequenced in this study and 39 strains from China and eigtht other
countries sequenced by previously. Patterns of genetic variation, antibiotic resistance,
and virulencemechanisms were investigated in relation to the phylogeny of the isolates.
Electrotransformation experiments were performed to confirm the ability of pYL1—a
plasmid observed in ST328—to confer antibiotic resistance.
Results. The ST328 genome contained a novel Tn6678 transposon harbouring a
unique resistance determinant. It also contained a small broad-host-range plasmid
pYL1 carrying aac(6’)-Ie-aph(2’’)-Ia and blaROB-1; when transferred to Staphylococcus
aureus RN4220 by electroporation, this plasmid was highly stable under kanamycin
selection.Most (85.13–91.74%) of the genetic variation betweenG. parasuis isolates was
observed in the accessory genomes. Phylogenetic analysis revealed twomajor subgroups
distinguished by country of origin, serotype, and multilocus sequence type (MLST).
Novel virulence factors (gigP, malQ, and gmhA) and drug resistance genes (norA, bacA,
ksgA, and bcr) in G. parasuis were identified. Resistance determinants (sul2, aph(3’’)-
Ib, norA, bacA, ksgA, and bcr) were widespread across isolates, regardless of serovar,
isolation source, or geographical location.
Conclusions. Our comparative genomic analysis of worldwide G. parasuis isolates
provides valuable insight into the emergence and transmission of G. parasuis in the
swine industry. The result suggests the importance of transposon-related and/or
plasmid-related gene variations in the evolution of G. parasuis.
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INTRODUCTION
Glaesserella parasuis, a gram-negative bacterium in the family Pasteurellaceae (Dickerman,
Bandara & Inzana, 2020), is a respiratory pathogen that affects swine. It is the etiological
agent of Glässer’s disease, which can lead to pneumonia without signs of systemic disease
(Brockmeier, 2004). As China is one of the world’s largest pork producers, with more
than 463 million pigs accounting for approximately 50% of global population (Zhou
et al., 2013), G. parasuis outbreaks in this country could pose a significant threat to pig
health and economic loss worldwide (Brockmeier et al., 2014). Disease progression and
severity are influenced by virulence and antibiotic resistance, both of which can result
from evolutionary processes including mutation and horizontal gene transfer (Deng et al.,
2019). Although antibiotic resistance may incur fitness costs in terms of virulence, the two
phenomena may also act synergistically (Geisinger & Isberg, 2017).

Antimicrobial agents are widely used to prevent and control G. parasuis infection;
however, overuse of antibiotics for non-therapeutic applications—including promoting
growth in healthy individuals—has resulted in the evolution of antibiotic resistant
G. parasuis in farming environments (Zhao et al., 2018). Antibiotic resistance inG. parasuis
is mainly conferred by a combination of transferable antibiotic resistance genes (ARGs)
and multiple target gene mutations. To date, two β-lactam resistance genes (blaROB−1
and blaTEM), an aminoglycoside-resistance gene (aac (6′)-Ib-cr) and a mutation in the six
copies of the 23S rRNA gene, associated with macrolide resistance, have been reported
in G. parasuis (Doi & Arakawa, 2007; San et al., 2007 ; Guo et al., 2012). G. parasuis strains
often harbour multiple resistance genes and multi-drug resistance phenotypes, thus
deterring clinical treatment.

PCR-based studies ofG. parasuis strains have identified ARGs including tetB, aph(3′)-Ib,
aph(6)-Id, floR, sul1, and sul2 (Wissing, Nicolet & Boerlin, 2001; San et al., 2007; Zhao et al.,
2018), and virulence factors including the haemolysin operon (hhdBA), iron acquisition
genes (cirA, tbpA/B and fhuA), the restrictionmodification system hsdS, and genes involved
in sialic acid utilization (neuraminidase nanH and sialyltransferase genes neuA, siaB and
lsgB) (Martinez-Moliner et al., 2012; Costa-Hurtado & Aragon, 2013). Recently, whole-
genome sequencing (WGS) has emerged as a powerful tool for predicting antibiotic
resistance and pathogenic potential in G. parasuis. For instance, Li et al. (2013) reported
two G. parasuis strains with potential resistance towards the antibiotics ciprofloxacin,
trimethoprim, and penicillin, based on the presence of associated resistance genes;
Nicholson et al. (2018) reported genomic differences in the toxin-antitoxin systems between
phenotypically distinct G. parasuis strains from Japan and Sweden; and Bello-Orti et al.
(2014) noted the role of mobile genetic elements and strain-specific accessory genes in
fostering high genomic diversity between pathogenic strains of the same serovar from
diseased pigs in Japan, China, and the USA.

Though significant effort has been focused on exploring ARGs, virulence factors and
other genetic characteristics of various G. parasuis strains, the structural organization
of genetic information, ARGs, potential pathogenicity determinants, and evolutionary
relationships among global G. parasuis strains remain unclear. In this study, we sequenced
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a multidrug-resistant isolate from diseased swine in Dongguan, China, then compared
this genome sequence with those of 54 isolates from China sequenced by us and 39 strains
from China and eight other countries sequenced by other researchers in order to improve
our understanding of genomic diversity in G. parasuis and provide information for gaining
better control to treat these infections.

MATERIALS & METHODS
Isolates
The multidrug-resistant G. parasuis isolate HPS-1 examined in this study belongs to
serotype 4 and was originally isolated from the lungs of a pig suffering from Glässer’s
disease in a commercial pig farm in Dongguan city, Guangdong province, China, in 2017.
Susceptibility to 19 antimicrobial agents was determined by the disc agar diffusion method
and the broth microdilution method (Pruller et al., 2017). The isolate was determined
to be resistant to β-lactams, aminoglycosides, macrolides, quinolones, lincomycin, and
sulfonamides (Table S1).

The other 54 G. parasuis isolates were obtained from diseased pigs from more than
20 geographically dispersed farms in China between November 2007 and May 2017
(Table S2). Bacteria species were identified by biochemical tests and 16S diagnostic PCR
(Oliveira, Galina & Pijoan, 2001; De la Fuente et al., 2007). All 55 G. parasuis isolates were
characterised using serotyping and MLST as previously described (Wang et al., 2016; Jia et
al., 2017).

Genome sequencing, assembly, and bioinformatics analysis
Isolates were cultured on tryptic soy agar or in tryptic soy broth (Oxoid, Hampshire, UK)
supplemented with 10 mg/mL nicotinamide adenine dinucleotide and 5% bovine serum
at 37 ◦C in 5% CO2 for 24 h. Total genomic DNA was extracted using the DNeasy DNA
extraction kit (Axygen, Union City, CA, USA).

Among the 55 isolates, one multidrug-resistant isolate (HPS-1) and one sensitive isolate
(HPS-2) from diseased swine in Guangdong were randomly selected for WGS using the
PacBio RSII (Pacific Biosciences, MenloPark, CA, USA) and Illumina MiSeq (Illumina,
San Diego, CA, USA) platforms as previously described (Zheng et al., 2017). The genome
assemblies of HPS-1 generated in this study were deposited in GenBank under accession
number CP040243. The plasmid pYL1 and transposon Tn6678 of HPS-1 were submitted to
GenBank under accession number MK182379 and and MK994978, respectively. Genomic
libraries of the other 53 genomes were generated and sequenced using the Illumina
HiSeq 4000 system (Illumina, San Diego, CA, USA) as previously described (Soge et al.,
2016). WGS data were assembled using SOAPdenovo v1.05 software (assembly statistics
available in Table S3). Gene prediction was performed using GeneMarkS (Besemer,
Lomsadze & Borodovsky, 2001), and a whole-genome BLAST (Altschul et al., 1990) searches
(E-value ≤ 1e−5, minimal alignment length percentage ≥ 80%) against 6 databases: Kyoto
Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG),
NCBI non-redundant protein database (NR), Swiss-Prot, Gene Ontology (GO), and
TrEMBL.
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Phylogenetic and clustering analyses
Two phylogenetic trees were constructed to assess the relatedness of the 55 G. parasuis
strains and 39 previously published genome sequences using single-copy core orthologs
and single nucleotide polymorphisms (SNPs) (Table S2). Phylogenetic inference was
conducted using a maximum-likelihood optimality criterion as implemented in PhyML
v3.0 (Guindon et al., 2010). TheWAGamino acid substitutionmatrixwas used for inference
of the single-copy core ortholog tree, and the HKY85 nucleotide substitution model was
used for inference of the SNP tree. The SNP tree was rooted using Glaesserella sp.15-184 as
an outgroup. The gene contents of all 94 isolates were compared using CD-HIT (v 4.6.1)
software to generate non-paralogous gene clusters (identity ≥ 0.8, ≥ 80% the length of the
longest cluster).

Comparison of antimicrobial resistance and virulence genes
A whole-genome BLAST search (E-value ≤ 1e−5, minimal alignment length percentage ≥
80%) was performed against four databases for pathogenicity and drug resistance analysis:
Pathogen Host Interactions (PHI), Virulence Factors of Pathogenic Bacteria (VFDB),
Carbohydrate-Active enZYmes Database (CAZy), and Integrated Antibiotic Resistance
Genes Database (IARDB).

Features of the novel Tn 6678 transposon in HPS-1
Based on the results of the BLASTn search, genomic characteristics were compared
among four isolates that harboured a transposon Tn6678-like structure. BLASTn searches
were performed to identify genes homologous to bcr, encoding the multidrug efflux
system BCR/CflA, The homologuous sequences were aligned using MUSCLE algorithm
in MEGA 7.0.26 (Kumar, Stecher & Tamura, 2016) and manually adjusted, yielding 92
candidate genes. The default parameter for gap opening and gap extension were used. The
phylogenetic tree was generated using MEGA 7.0.26 software using the neighbour-joining
method (Kumar, Stecher & Tamura, 2016) with the Kimura 2-parameter substitution
model; branch support was assessed using 1,000 bootstrap replicates.

Electrotransformation and plasmid stability test
Plasmid pYL1 harboring two antimicrobial resistance genes, blaROB−1 and aac(6′)-Ie-
aph(2′′)-Ia, which confer to β-lactams and aminoglycosides resistance. To determine the
contributions of pYL1 to penicillin and aminoglycoside antibiotic resistance, electro-
transformation experiments were performed using Staphylococcus aureus RN4220 as the
recipient as previously described (Wang et al., 2015). Transformants were selected on brain-
heart infusion (BHI) agar supplemented with kanamycin (25 µg/mL) for colony growth at
37 ◦C for 16 h. Transformation efficiency was calculated based on the ratio of transformants
to the total number of viable cells. The presence of the aac(6′)-Ie-aph(2′′)-Ia and bla ROB−1

genes in transformants was confirmed by PCR amplification followed by DNA sequence
analysis. The primers for blaROB−1 (494 bp) were 5′-CGCTTTGCTTATGCGTCCAC-
3′ (forward) and 5′-ACTTTCCACGATGTTGGCGT-3′. The primers for aac(6′)-Ie-
aph(2′′)-Ia (412 bp) were 5′-AGAGCCTTGGGAAGATGAAGTT-3′ (forward) and 5′-
TGCCTTAACATTTGTGGCATT-3′ (reverse). The primers were designed using NCBI
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Primer-BLAST. The PCR conditions were as follows: initial denaturation at 95 ◦C for 5
min, 30 cycles of amplification (30 s at 95 ◦C, 30 s at 58◦C, and 90 s at 72 ◦C), followed by
extension at 72 ◦C for 10 min. The PCR products were purified and sequenced byMajorbio
Company (Shanghai, China). The MICs of S. aureus RN4220 and five transformants were
determined by Etest (Liofilchems.r.l.) according to the manufacturer’s instructions.

The stability of plasmids carrying aac(6′)-Ie-aph(2′′)-Ia and blaROB−1 was determined by
serial passages for 15 consecutive days at 1:1000 dilutions into fresh BHI, with or without
antibiotic (kanamycin) pressure. Serially diluted cultures were spread on BHI agar plates
with or without kanamycin (8 µg/mL), and the resistance retention rate was determined
by randomly picking at least 50 colonies from the BHI plates, spotting them onto new BHI
plates with kanamycin (8 µg/mL), and calculating the ratio of resistant to total colonies.
Both the resistant and susceptible colonies from the plates were randomly picked and
subjected to PCR for detection of blaROB−1 and aac(6′)-Ie-aph(2′′)-Ia.

RESULTS
G. parasuis core and unique genes
Compilation of the 94 genomes covering all serovars and disease- and non-disease-causing
backgrounds from nine geographic locations (Table S4) demonstrated expansion of
the pan-genome, whereas the number of core genes remained relatively stable with the
addition of new strains (Fig. 1A). This result suggests the presence of an open pan-genome
experiencing frequent evolutionary changes through gene gains and losses or lateral gene
transfer. The size of the pan-genome was 5,243 genes, including ∼3.34% core genes
shared among the 94 isolates mainly from China (Fig. 1B). Meanwhile, accessory genomes
occupied a large fraction (85.13–91.74%) of the G. parasuis gene content compared with
the core genomes and the number of unique genes ranged from 0 to 103 indicating that
0–4.6% of the genome consists of strain-specific accessory genes (Table S2).

Clusters of Orthologous Groups classification indicated that core genes were significantly
enriched in defense mechanisms and inorganic ion transport and metabolism, whereas
unique genes were significantly enriched in unknown function, nucleotide transport and
metabolism, and carbohydrate transport and metabolism (Fig. 1C).

Phylogenetic analysis of G. parasuis isolates
A phylogenetic tree based on single-copy core genes of our isolates and reference isolates
resolved two well-supported lineages, lineages I and II, exhibiting association with country,
serotypes, and MLST types (Fig. 2). Lineages I and II comprised eight and two countries,
respectively. Serovars 5, 12, and 14 were identified predominantly in lineage I, while
serovars 2 and 10 were mostly found in lineage II. For serovars 3, 8, 9, and 11, the numbers
of isolates were too low to draw conclusions about phylogenetic patterns. The remainder
of the serovars were found in both clades.

MLST analysis assigned the 39 isolates in GenBank to 20 different STs, including six new
STs, with 13 isolates not determined. The 55 isolates obtained in our study belonged to 49
different STs, including 39 new STs (Table S2). Most strains of the same STs formed single
clades (Fig. 2). The SNP-based tree with and without an outgroup (Figs. S1 and S2) was
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Figure 1 Analysis of the core and pan-genome ofG. parasuis isolates. (A) Core and pan-genomic cal-
culations in G. parasuis isolates. Each green point represents the number of genes conserved between
genomes. All of the points are plotted as a function of the strain number (x). The deduced pan-genome
size: P(x)= 2483.54x0.18− 461.72. The height of the curve continues to increase because the pan-genome
of G. parasuis is open. (B) Genes missing or present in G. parasuis isolates. The heat map illustrates the
distribution of core and accessory genes across the G. parasuis strains. The columns represent G. parasuis
isolates. The rows represent genes. The red and black regions represent the presence or absence of genes
in a particular genome, respectively. The black regions indicate features missing in that strain but present
in one or more of the other G. parasuis strains. (C) The distribution of all, core, and specific genes accord-
ing to the COG classification. The y-axis indicates the percentage of genes in various COG categories. A,
RNAprocessing and modification. C, Energy production and conversion. D, Cell cycle control, cell di-
vision, chromosome partitioning. E:Amino acid transport and metabolism. F, Nucleotide transport and
metabolism. G: Carbohydrate transport and metabolism. H, Coenzyme transport and metabolism. I, Lipid
transport and metabolism. J, Translation, ribosomal structure and biogenesis. K, Transcription. L, Repli-
cation, recombination and repair. M, Cell wall/membrane/envelope biogenesis. N, Cell motility. O, Post-
translational modification, protein turnover, chaperones. P, Inorganic ion transport and metabolism. Q,
Secondary metabolites biosynthesis, transport and catabolism. R, General function prediction only. S,
Function unknown. T, Signal transduction mechanisms. U, Intracellular trafficking, secretion, and vesicu-
lar transport. V, Defense mechanisms.

Full-size DOI: 10.7717/peerj.9293/fig-1

consistent with the phylogenetic analysis based on single-copy core orthologs. The number
of whole-genome SNP differences among the 94 isolates ranged from 8,603 to 8,730.

Biological features of G. parasuis isolates
Variation in virulence and stress resistance genes was observed among G. parasuis lineages
and subgroups (Fig. 3). All 94 G. parasuis isolates harboured more than five types of
pathogenic factors. The virulence factors gigP, malQ, and gmhA were carried by all the
tested G. parasuis isolates. Moreover, other virulence factors including the rfa cluster,
encoding enzymes for lipopolysaccharide (LPS) core biosynthesis, and galU and galE,
resulting in impaired biofilm formation, were universally present in the G. parasuis
isolates.
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Figure 2 Maximum-likelihood phylogeny of 94Glaesserella parasuis isolates based on 93 single-copy
core genes. The tree was constructed with MEGA 7 with 1,000 bootstrap replicates. The annotation rings
surrounding the tree, from outside to inside, depict (1) geographic region, (2) year of sample collection,
(3) site of sample, and (4) serotype. The different colors of the branches represent lineages, lineage in pink
and lineage in green.

Full-size DOI: 10.7717/peerj.9293/fig-2

Figure 3 Virulence and resistance profiles across the phylogeny of the 94G. parasuis isolates. Cluster
analysis based on single-copy core orthologs. Pattern of gene presence (colored line) or absence (white).

Full-size DOI: 10.7717/peerj.9293/fig-3
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ThemainARGs associatedwith resistance inG. parasuis, including theβ-lactam-resistant
gene bla ROB−1, tetracycline resistance genes tetB, aminoglycoside resistance genes aph(3′)-
Ib and aac(6′)-Ie-aph(2′′)-Ia, fluoroquinolone resistance gene norA, chloramphenicol
resistance genes catIII and floR, sulfonamide resistance gene sul2 were discovered (Fig.
3). Among all of these genes, the genes sul2 and aph(3′)-Ib, and β-lactam-resistant genes
pbp1a and pbp3awere universally present in theG. parasuis isolates (Fig. 3). Three different
serotype isolates (H82, H92, and H313) obtained from different sites in different years that
clustered closely in one branch all harboured the lincosamide antibiotic resistance factor
lunC (Fig. 3). Moreover, 91.5% of the isolates had bcr, 90.42% of the isolates had bacA,
100% of the isolates had ksgA, but five isolates had norA.

Genomic features of G. parasuis HPS-1
Following sequencing and assembly, a 2,326,414-bp chromosome with an average G+C
content of 40.03%, and a 7,777-bp small plasmid sequence (pYL1) with an average
G+C content of 33.32% were identified in strain HPS-1 (Fig. S3 and Fig. 4). HPS-1
exhibited a novel ST (ST328) with undescribed MLST alleles or previously unreported
allelic combinations. This ST328 genome harbored resistance genes against several types
of antibiotics, including sulfonamides (sul2), aminoglycosides (aph(3′)-Ib, aac(6′)-Ie-
aph(2′′)-Ia), and β-lactam (blaROB−1) (Table S1). Further, this genome contained efflux
pump-related genes that confer resistance to sulfonamides (bcr) and multidrug resistance
(acrB).

We also identified a novel transposon in the ST328 isolate, designated Tn6678 in the Tn
Number Registry (https://transposon.lstmed.ac.uk/). This transposon harbours two 966-bp
IS110 family transposases at both ends, two toxin genes pilT and phd, two genes associated
with the two-component signal transduction system cpxA and cpxR, one efflux pump-
associated gene bcr, and four genes encoding hypothetical proteins with unknown function
(Fig. 5). Genome analysis revealed that Tn6678 was inserted between the molybdopterin
molybdotransferase MoeA encoded by moeA and 3-isopropylmalate dehydratase large
subunit encoded by leuC. A LacI family transcriptional regulator and a bifunctional tRNA
(5-methylaminomethyl-2-thiouridine)(34)-methyltransferase MnmD/FAD-dependent
5-carboxymethylaminomethyl-2-thiouridine (34) oxidoreductase MnmC flanked the
transposon to the right and left, respectively.

Through BLASTN searches, highly conserved homologous sequences to Tn6678 (>97%
nucleotide sequence similarity) were identified in fourG. parasuis strains [29755 (GenBank
accession number CP021644, USA), SH0165 (CP001321, China), ZJ0906 (CP005384,
China), and str. Nagasaki (NZ_APBT00000000, Japan)]. The only differences in these
five chromosomes were in the transposases, but transposon Tn6678 had two complete
inverted repeats of IS110 transposases flanked by 32-bp inverted repeats of ISNme5 at both
ends (Fig. 5), suggesting mobility potential. The bcr-containing Tn6678 also contained an
antibiotic resistance gene cassette, suggesting its potential to transfer antibiotic resistance
genes.

BLASTn searches for the bcr gene returned a large set of divergently related sequences
using default parameters. These sequences were annotated as bicyclomycin/multidrug

Wan et al. (2020), PeerJ, DOI 10.7717/peerj.9293 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.9293#supp-8
http://dx.doi.org/10.7717/peerj.9293#supp-1
https://transposon.lstmed.ac.uk/
http://www.ncbi.nlm.nih.gov/nuccore/CP021644
http://www.ncbi.nlm.nih.gov/nuccore/CP001321
http://www.ncbi.nlm.nih.gov/nuccore/CP005384
http://dx.doi.org/10.7717/peerj.9293


Figure 4 Schematic map of plasmid pYL1. The circles show, from outside to inside: first and second,
putative open reading frames, the positions and orientations of the genes; third, G+C content (deviation
from the average); and, fourth, G+C skew (green, +; purple,−).

Full-size DOI: 10.7717/peerj.9293/fig-4

efflux system, Bcr/CflA family drug resistance efflux transporter, Bcr/CflA family multidrug
efflux major facilitator superfamily (MFS) transporter or drug resistance transporter, and
Bcr/CflA subfamily. Phylograms revealed that the bcr gene inHPS-1wasmost closely related
to homologs identified in other members of the Pasteurellaceae, particularly G. parasuis,
Actinobacillus indolicus, Bibersteinia trehalosi, Actinobacillus (A. pleuropneumoniae, A.
suis, A. equuli, A. lignieresii, A. indolicus, and A. porcitonsillarum), and Mannheimia (M.
haemolytica andM. varigena), all of which are known causative agents of upper respiratory
tract infections (Fig. 6).

The neighbour-joining phylogenetic tree using 92 bcr genes selected from the BLASTn
searches clearly demonstrated two distinctive clades. The first clade contained bcr genes
of Hemophilus influenzae, which colonizes humans, and other Haemophilus species that
colonize non-human animals.Members of the second clade were divided into four apparent
subclades, including G. parasuis, B. trehalosi, Actinobacillus spp., and Mannheimia spp.
Except for G. parasuis, the chromosomally encoded Bcr/CflA from G. parasuisHPS-1 most
closely clustered with that found in A. indolicus. The phylogenetic tree indicated a divergent
evolutionary pattern between animal-origin Pasteurellaceae bacteria. The bcr gene tree is
consistent with the organismal phylogeny, suggesting that horizontal gene transfer does
not play an important role in the evolution of bcr-mediated resistance.
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Figure 5 Organization of theG. parasuisHPS-1 Tn6678 transposon and comparison with the similar
structure. ORFs are shown as arrows, indicating the transcription direction, and the colors of the arrows
represent different fragments. Gene color code: transposase, purple; toxin genes (pilT and phd), yellow;
resistance genes (cpxA, cpxR and bcr), blue; proteins with other or unknown functions, gray. Homologous
gene clusters in different isolates are shaded in gray (>97%).

Full-size DOI: 10.7717/peerj.9293/fig-5

General features and electrotransformation of the plasmid pYL1
The plasmid pYL1 identified in HPS-1 contained seven ORFs with an average length of 912
bp, with one encoded protein of undetermined function (Fig. 4), and two antimicrobial
resistance genes, blaROB−1 and aac(6′)-Ie-aph(2′′)-Ia. Four ORFs were identified to encode
a 3′-truncated transposase protein ISApl1 (30 amino acids), a Rep-like protein (444 amino
acids) involved in plasmid replication, and two Mob proteins, MobC (144 amino acids)
and MobA (541 amino acids), associated with plasmid mobilization (Fig. 4). Except for
resistance genes, pYL1 had the same backbone and genetic structure and showed 100%
nucleotide identity to four previously-identified plasmids, pFZ51, pFS39, pHN61, and
pHB0503 (Table S5) (Kang et al., 2009; Chen et al., 2010; Yang et al., 2013). In contrast, the
resistance genes and flanking regions in pYL1 exhibited as little as 58% sequence identity
to the other four plasmids (Fig. 7).

Transformation of pYL1 into S. aureus RN4220 was achieved at a frequency of 10−9 cells
per recipient cell by electroporation, confirming that pYL1 is a mobilizable plasmid with
active mobilization genes. The transformants had increasedMICs for oxacillin, gentamicin,
amikacin, kanamycin, and streptomycin as compared with those of the parental strain
(0.047 to >256 mg/L, 0.094 to 1.5 mg/L, 0.38 to 16 mg/L, 0.38 to 32 mg/L, and <0.25
to 32 mg/L, respectively). This finding indicated that plasmid pYL1 carrying blaROB−1
and aac(6′)-Ie-aph(2′′)-Ia contributed to the penicillin resistance and aminoglycoside
antibiotic resistance in S. aureus RN4220 transformants. Furthermore, the plasmid showed
low stability in S. aureus without antibiotic pressure, as only 52.5%, 30.48%, and 2.68% of
transformants maintained the kanamycin resistance after five, six, and seven subcultures,
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Figure 6 Neighbor-joining phylogenetic tree based on bcr gene sequences obtained from the current
study and downloaded fromNCBI. The tree was constructed using MEGA 7 with 1,000 bootstrap repli-
cates. The different colors of the branches represent lineages. The G. parasuisHPS-1 is indicated by a solid
circle.

Full-size DOI: 10.7717/peerj.9293/fig-6

respectively. However, the plasmid can be conserved in S. aureus cultured with kanamycin,
as 100% of the colonies remained resistant to kanamycin after 10 subcultures, as confirmed
by PCR mapping.

DISCUSSION
In the current study, we observed an open pan-genome. Similar result that the size of
pan-genome was 7,431 genes including 1,049 core genes has been reported (Howell et
al., 2014). This suggested that the G. parasuis pan-genome is vast, and unique genes can
be continuously be identified upon sequencing more G. parasuis genomes. However, the
isolates in this study with ∼3.34% core genes, primarily isolated from China, displayed
further diversity and higher variability than isolates with only ∼14% core genes, primarily
obtained from the UK (Howell et al., 2014). Besides, we identified 54 new STs enriching
the G. parasuis MLST databases and highlight the wide distribution of G. parasuis strains.
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Figure 7 Comparison of the genetic structures of pHN61, pFS39, pYL1, pFZ51 and pHB0503. The ac-
cession numbers and origins of these plasmids are displayed on the left side. Arrows represent putative
open reading frames, the positions and orientations of the genes. Blue arrows indicate Rep-like protein in-
volved in plasmid replication. Green arrows indicate hypothetical protein. Regions with more than 98%
nucleotide sequence identity are shaded yellow.

Full-size DOI: 10.7717/peerj.9293/fig-7

Although most strains of the same STs formed single clades, there was no definitive
association between ST and serotype (Fig. 2), consistent with previous studies (Olvera,
Cerda-Cuellar & Aragon, 2006;Wang et al., 2016).

The pattern of the phylogenetic tree based on single-copy core genes was different from
the population grouping predicted via MLST, which showed six main subgroups (Wang
et al., 2016). Both phylogenetic lineages contain both Asian and North American isolates,
in agreement with previous phylogenetic analyses (Howell et al., 2014; Wang et al., 2016;
Dickerman, Bandara & Inzana, 2020) and supporting the hypothesis of frequent migration
of isolates between geographic regions.

Five types of pathogenic factors gigP, malQ, gmhA, rfa and gal cluster were universally
carried by G. parasuis isolates in this study. The rfaF gene has been linked to
serum resistance, adhesion, and invasion (Zhang et al., 2013); galU plays a role in
autoagglutination and biofilm formation, and galE appears to affect biofilm production
indirectly inG. parasuis (Zou et al., 2013). Serum resistance may play a role in the virulence
of G. parasuis (Cerda-Cuellar & Aragon, 2008). However, lsgB, previously associated with
G. parasuis virulence potential, was predominant in six isolates (29755 and HPS9 from the
USA, Nagasaki from Japan, and KL0318, SH0104, and SH0165 from China), in line with
potentially virulent strains isolated from the nasal cavities of healthy pigs (Amano et al.,
1996; Brockmeier et al., 2013).

The blaROB−1, sul2, aph(3′)-Ib, tetB, tetD, aac(6′)-Ie-aph(2′′)-Ia, catIII, and floR genes
have previously been identified in G. parasuis (Zhao et al., 2018). In the current study, we
identified all of genes mentioned above. This is the first report of genes tetA, tetH and
tetR genes in G. parasuis isolates and needs further study. Tetracycline resistance genes are
often associated with conjugative and mobile genetic elements enabling horizontal transfer
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(Lancashire et al., 2005; Zhao et al., 2018). Moreover, this is the first report describing the
presence of the bcr, bacA, ksgA and norA genes in G. parasuis, to the best of our knowledge.
All of these benefits from the application of whole genome sequencing method. Three
isolates clustered closely in one branch all harboured lunC gene, contained in the ISSag10
sequence of all three isolates. The lunC gene was only identified in plasmid pHN61 of G.
parasuis (Chen et al., 2010). The results suggested that the resistance of these three strains
to lincomycin may be mediated by the plasmid carrying lunC gene.

This is also the first report describing the transoson Tn6678 containing toxin genes pilT
and phd, drug resistance genes cpxA and cpxR, and an efflux pump gene bcr. Association
between the Cpx system and bacterial antimicrobial resistance has been reported in
Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and G. parasuis (Hu et al.,
2011; Srinivasan et al., 2012; Audrain et al., 2013; Kurabayashi et al., 2014; Cao et al., 2018).
CpxR plays essential roles in mediating macrolide (i.e., erythromycin) resistance (Cao et
al., 2018). The Bcr/CflA efflux system was identified as a group of antiporters that confer
resistance to chloramphenicol, florfenicol, and bicyclomycin by actively transporting these
compounds out of the cell (Marklevitz & Harris, 2016). The transposon Tn6678 had two
complete inverted repeats of IS110 transposases flanked by 32-bp inverted repeats of
ISNme5 at both ends suggesting mobility potential and its potential to transfer antibiotic
resistance genes. In G. parasuis, only the efflux pump AcrB, belonging to the resistance-
nodulation division (RND) family, has been analysed to date. Efflux pump AcrB may
play a role in multidrug resistance, and the acrAB gene cluster could affect the efflux of
macrolides in G. parasuis (Feng et al., 2014). However, this is the first description of the
efflux pump Bcr/CflA in G. parasuis, belonging to the MFS. This efflux pump, encoded by
bcr, harbored on a transposon indicated its potential transferability.

To date, two β-lactam resistance genes (bla ROB−1 and blaTEM ) have been reported in G.
parasuis (By (Guo et al., 2012).Aβ-lactam resistance plasmid, pB1000, harbouring blaROB−1
was previously detected in G. parasuis clinical strains isolated from Glässer’s disease
lesions (San et al., 2007). The plasmid pYL1 harboured two antimicrobial resistance genes,
blaROB−1 and aac(6′)-Ie-aph(2′′)-Ia. The ROB-1 of plasmid pYL1 had a typical size of 305
bp, in line with functionally active members of the ROB-1 family from different plasmids
in Pasteurellaceae species. AAC(6′)-Ie-APH(2′)-Ia, the most important aminoglycoside-
resistance enzyme in gram-positive bacteria conferring resistance to almost all known
aminoglycoside antibiotics in clinical use, also had a typical size of 479 amino acids in
this family (Rouch et al., 1987). Although aac(6′)-Ib-cr is considered the most prominent
aminoglycoside-resistance gene in G. parasuis (Doi & Arakawa, 2007; San et al., 2007), the
bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′)-Ia in plasmids is
also reported in GenBank for G. parasuis strains. Comparing with other four previously-
identified plasmids which have similar structure with pYL1 suggested more rapid evolution
among the resistance-associated components of these small plasmids. The transposase gene
of ISApl1 in pYL1 had an internal deletion of 659 bp, but intact 3′ and 5′ ends. The truncated
ISApl1 linked with blaROB−1 suggested that ISApl1 played a key role in transposition of
blaROB−1, facilitating the horizontal transfer of β-lactam and aminoglycoside resistance
among G. parasuis isolates. These results are consistent with a previous study presenting
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evidence for spread of β-lactam resistance (Yang et al., 2013). A similar occurrence was also
identified in A. porcitonsillarum or G. parasuis plasmids pFJS5863, pQY431, and pFS39,
suggesting a more widespread role and highlighting that the function of ISApl1 requires
further investigation.

CONCLUSIONS
In summary, our results shed new light on the importance of genomic variations, especially
transposon-related and/or plasmid-related gene variations, in the evolution of G. parasuis.
This comparative analysis identified potentially novel virulence factors (gigP, malQ, and
gmhA) and drug resistance genes (norA, bacA, ksgA, and bcr) in G. parasuis. Resistance
determinants (sul2, aph(3′)-Ib, norA, bacA, ksgA, and bcr) were widespread across isolates,
regardless of serovar, isolation source, or geographical location. Future research focused
on a larger sample of G. parasuis isolates worldwide will further increase understanding of
the rapid development of antibiotic resistance associated with mobile genetic elements in
this important animal pathogen.
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