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The classification of sleep stages is the first and an important step in the quantitative
analysis of polysomnographic recordings. Sleep stage scoring relies heavily on visual
pattern recognition by a human expert and is time consuming and subjective. Thus,
there is a need for automatic classification. In this work we developed machine learning
algorithms for sleep classification: random forest (RF) classification based on features
and artificial neural networks (ANNs) working both with features and raw data. We
tested our methods in healthy subjects and in patients. Most algorithms yielded good
results comparable to human interrater agreement. Our study revealed that deep neural
networks (DNNs) working with raw data performed better than feature-based methods.
We also demonstrated that taking the local temporal structure of sleep into account
a priori is important. Our results demonstrate the utility of neural network architectures
for the classification of sleep.

Keywords: deep learning, sleep, EEG, automatic scoring, random forest, artificial neural networks, features, raw
data

INTRODUCTION

Problem Statement
Visual scoring of the sleep stages is the gold standard in sleep research and medicine. Sleep
scoring is performed visually based on the following signals: (1) electrical activity of the brain –
electroencephalogram (EEG), (2) electrical activity resulting from the movement of the eyes and
eyelids – electrooculogram (EOG) and (3) muscle tone recorded under the chin (submental) –
electromyogram (EMG).

Sleep scoring is usually performed according to standardized scoring rules: Rechtschaffen and
Kales (1968) or the American Association of Sleep Medicine (AASM) (Iber et al., 2007). According
to the AASM rules (Iber et al., 2007) an expert visually classifies consecutive 30-s epochs of
polysomnographic (PSG) data (EEG, EOG and EMG) into wake, rapid eye movement (REM) sleep,
and non-REM (NREM) sleep (stages N1–N3). If scoring is performed according to Rechtschaffen
and Kales (1968), 20- or 30-s epochs are scored and NREM sleep is subdivided into stages 1–4 with
stages 3–4 considered as slow wave sleep (SWS, deep sleep, corresponding to N3). Furthermore,
Rechtschaffen and Kales (1968) defined movement time as a separate stage.
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The plot of a sequence of sleep stages is called a hypnogram
(see Figure 1). Human sleep starts generally with a stage 1 (N1),
which usually lasts only up to a few min and is a very light
sleep. Slow rolling eye movements are a feature of stage 1 and
contractions of the muscles, hypnagogic jerks may occur.

Next follows stage 2 (N2), a deeper state of sleep than
stage 1, characterized by the occurrence of sleep spindles and
K-complexes and an intermediate muscle tone.

Stage 2 usually precedes deep sleep – stages 3 and 4 (SWS,
N3). The main characteristic of deep sleep is the presence of slow
oscillations (<1 Hz) and delta waves (1–4 Hz) in the EEG for at
least 20% of the epoch duration. The muscle tone is low.

Rapid eye movement sleep occurs periodically throughout the
night and is characterized by rapid eye movements, fast low-
amplitude EEG activity like the wake EEG, and a low muscle tone
(atonia).

The progression of the different stages is not random,
but rather follows a cyclic alternation of NREM and REM
sleep (Achermann and Tarokh, 2014) with a cycle duration of
approximately 90 min (see Figure 1 for a typical structure).
Healthy sleep consists of approximately 3–5 sleep cycles.

Visual scoring by an expert is time consuming and subjective.
Several studies addressed the interrater reliability and revealed
that correspondence between scorers is far from ideal (Danker-
Hopfe et al., 2004; Penzel et al., 2013; Rosenberg and Van Hout,
2013; Younes et al., 2016, 2018).

Several measures can be used to compare two experts or
an algorithm with an expert. The simplest one is accuracy, the
proportion of epochs which were assigned the same sleep stage.
The F1 score (Dice, 1945; Sørensen, 1948) is a measure computed
per class and it is widely used in the field of machine learning, and
was also applied to assess performance in automatic sleep scoring
(Tsinalis et al., 2016; Supratak et al., 2017; Chambon et al., 2018).

It was argued that F1 score has certain disadvantages by
Powers (2014). Cohen’s kappa (Cohen, 1960) is a metric
accounting for the agreement by chance and thus for imbalanced
proportions of different classes and is commonly used in biology
and in sleep research. Values higher than 0.8 are considered to
reflect excellent agreement (Mchugh, 2012). We also applied this
metric in our study.

Cohen’s kappa values in the study by Danker-Hopfe et al.
(2009) showed good agreement for REM sleep, minimal
agreement for stage 1 and moderate agreement for the other
stages.

Shortly after a sleep scoring standard was established in 1968
(Rechtschaffen and Kales, 1968), attempts were made to develop
algorithms for automated sleep staging (Itil et al., 1969; Larsen
and Walter, 1970; Smith and Karacan, 1971; Martin et al., 1972;
Gaillard and Tissot, 1973; Gevins and Rémond, 1987).

Related Work
Martin et al. (1972) applied a simple decision tree using EEG and
EOG data for scoring. A decision tree like algorithm was also
used by Louis et al. (2004). Stanus et al. (1987) developed and
compared two methods for automatic sleep scoring: one based on
an autoregressive model and another one based on spectral bands
and Bayesian decision theory. Both methods used one EEG, two

EOG and an EMG channel. The EOG was needed to detect eye
movements and the EMG to assess the muscle tone. Fell et al.
(1996) examined automatic sleep scoring using additional non-
linear features (correlation dimension, Kolmogorov entropy,
Lyapunov exponent) and concluded that such measures carry
additional information not captured with spectral features. Park
et al. (2000) built a hybrid rule- and case- based system and
reported high agreement with human scorers. They also claimed
that such a system works well to score patients with sleep
disorders.

One of the commercially successful attempts to perform
automatic scoring evolved from the SIESTA project (Klosh et al.,
2001). The corresponding software of the SIESTA group was
named Somnolyzer 24x7. It includes a quality check of the data
based on histograms. The software extracts features based on a
single EEG channel, two EOG channels and one EMG channel
and predicts sleep stages using a decision tree (Anderer et al.,
2005). The software was validated on a database containing 90
patients with various sleep disorders and ∼200 controls. Several
experts scored sleep in the database and Somnolyzer 24x7 showed
good agreement with consent scoring (Anderer et al., 2005).

Newer and more sophisticated approaches were based on
artificial neural networks (ANNs). Schaltenbrand et al. (1993)
for example applied ANNs for sleep stage classification using 17
features extracted from PSG signals and reported an accuracy
close to 90%. Pardey et al. (1996) combined ANNs with fuzzy
logic and Längkvist et al. (2012) applied restricted Boltzmann
machines to solve the sleep classification problem, to mention just
a few approaches.

The methods mentioned above require carefully engineered
features. It is possible to avoid this step using novel deep learning
methods. ANNs in the form of convolutional neural networks
(CNNs) were recently applied to the raw sleep EEG by Tsinalis
et al. (2016). CNNs are especially promising because they can
learn complex patterns and ‘look’ at the data in a similar way as
a ‘real brain’ (Fukushima and Miyake, 1982). However, working
with raw data requires a huge amount of training data and
computational resources.

Sequences of epochs are considered by a human expert
according to the scoring manuals. Therefore, we assume that
learning local temporal structures are an important aspect in
automatic sleep scoring. Temporal patterns have previously
been addressed by applying a hidden Markov model (HMM)
(Doroshenkov et al., 2007; Pan et al., 2012). In the last few
years, recurrent neural networks (RNNs) have demonstrated
better performance than “classical” machine learning methods
on datasets with a temporal structure (Mikolov et al., 2010;
Graves et al., 2013; Karpathy and Fei-Fei, 2015). One of the
most common and well-studied RNNs is the Long-Short Term
Memory (LSTM) neural network (Hochreiter and Schmidhuber,
1997). Such networks have been successfully applied to EEG data
in general (Davidson et al., 2006) as well as to sleep data (Supratak
et al., 2017).

Artificial neural networks using raw data revealed comparable
performance as the best ANNs using engineered features and the
best classical machine learning methods (Davidson et al., 2006;
Tsinalis et al., 2016; Supratak et al., 2017; Chambon et al., 2018;
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FIGURE 1 | Example of automatic sleep scoring trained on healthy subjects (dataset 1; example from validation set). Panel 1: hypnogram (W, waking; R, REM sleep,
1–3: NREM sleep stages N1–N3) scored by a human expert. Panel 2: hypnogram resulting from RF classification based on features followed by temporal smoothing
with HMM. Panel 3: hypnogram resulting from classification with 3-layer bidirectional LSTM network with 8 LSTM neurons in each layer based on features, sequence
length eight epochs (i.e., 160 s). Panel 4: hypnogram resulting from a CNN-LSTM network with 11 convolutional layers and 2-layer bidirectional LSTM with 32 LSTM
neurons in each layer. Input comprised of raw data (1 EEG and 2 EOG) and EMG power (1 value per epoch). Bottom panel: spectrogram (power density spectra of
20-s epochs color-coded on a logarithmic scale [0 dB = 1 µV2/Hz; –10 dB 20 dB]) of EEG derivation C3A2. See Supplementary Material for the
naming conventions of the algorithms.

Phan et al., 2018; Sors et al., 2018). See Section “Discussion” for
more details.

The above-mentioned approaches were based on supervised
learning. There have also been several attempts to perform
unsupervised automatic sleep scoring in humans (Gath and Geva,
1989; Agarwal and Gotman, 2001; Grube et al., 2002) and in
animals (Sunagawa et al., 2013; Libourel et al., 2015).

Our Contribution
We implemented different machine learning algorithms, random
forests (RF), feature based networks (LSTM networks) and raw-
data based networks (CNN-LSTM networks) and trained and
tested them in healthy participants and patients. We report all
the Cohen’s kappa values (Cohen, 1960) of the different stages for
the comparison of the performance the algorithms.

All our algorithms yielded high values of Cohen’s kappa of
the data of healthy subjects. Performance on data recorded in
patients was lower, but less so for ANNs. Including part of
the patient data into the training improved performance on
the patient data. This suggests that we would need even larger
and diverse datasets to train an algorithm which can be applied

reliably in practice. DNNs performed well even using only a single
EEG channel, an interesting observation of our work.

MATERIALS AND METHODS

Polysomnographic (PSG) Data
We trained and tested automatic sleep stage scoring algorithms
on two datasets from two different laboratories.

The first dataset was comprised of 54 whole night sleep
recordings of healthy participants. The second dataset consisted
of 22 whole night sleep recordings and 21 recordings of a multiple
sleep latency test (MSLT) in patients. The MSLT is routinely
used to evaluate daytime sleepiness of patients. During this
test a subject has four or five 20-min nap opportunities, which
are separated by 1.5-h long intervals. An example of an MSLT
hypnogram can be seen in Figure 2. Usually, only naps are
recorded, but in our dataset, recordings were continuous over
approximately 9 h and occasionally we observed sleep episodes
in addition to the scheduled naps. In a standard setting these
sleep episodes would have been missed. EEG channel C3A2,
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FIGURE 2 | Example of automatic sleep scoring of MSLT data trained on a mixture of data of healthy participants and patients data (datasets 1 and 2; example of
test set). Figure structure and abbreviations are analogous to Figure 1. Yellow background represents lights on.

one myographic and two oculographic channels were used for
analysis and classification.

Dataset 1: Healthy Subjects
Polysomnographic (PSG) recordings from a study investigating
the effect of vestibular stimulation (Omlin et al., 2018). In total
18 healthy young males (20–28 years; mean: 23.7 years) were
recorded. Three nights of sleep (8 h) were recorded in each
subject. Two nights with motion (bed was rocked till sleep
onset or for the first 2 h after lights off), and a control night
without movement. Data were composed of 12 EEG channels,
applied according to the 10–20 system, 2 EOG derivations, 1
submental EMG derivation, 1 ECG derivation and respiration
signals (chest and abdomen). Recordings were performed with
a polygraphic amplifier (Artisan, Micromed, Mogliano, Veneto,
Italy). Sampling rate was equal to 256 Hz (Rembrandt DataLab;
Version 8.0; Embla Systems, Broom Field, CO, United States).
A high pass filter (EEG: −3 dB at 0.16 Hz; EMG: 10 Hz; ECG:
1 Hz) and an anti-aliasing filter (−3 dB at 67.4 Hz) were applied
to the analog signals. The EEG derivations were re-referenced to
the contra-lateral mastoids (A1, A2). Sleep stages (20-s epochs)
were scored according to the AASM criteria (Iber et al., 2007).
The study was performed in the sleep laboratory of the Institute
of Pharmacology and Toxicology at the University of Zurich and
was approved by the Institutional Review Board of the Swiss
Federal Institute of Technology in Zurich (ETH Zurich).

Dataset 2: Patients
Data were recorded in patients with narcolepsy (23 patients)
and hypersomnia (five patients) during a night of sleep
(approximately 8 h) and during a MSLT (continuous recordings
over approximately 9 h). We had to exclude some recordings
due to bad signal quality. Thus, some patients contributed only
with a night or a MSLT recording (Hypersomnia: 5 MSLT, 4
nights; Narcolepsy: 16 MSLT, 18 nights). Data were comprised
of 6 EEG, 2 EMG, 2 EOG derivations and 1 ECG. Signals were
recorded at a sampling rate of 200 Hz (polygraphic amplifier
Grass Technologies AURA PSG). A high pass filter (EEG: −3 dB
at 0.5 Hz) and an anti-aliasing filter (−3 dB at 50 Hz) were applied
to the analog signals. Sleep stages (30-s epochs) were scored
according to Rechtschaffen and Kales (1968). Movement time was
not scored. To make sleep stages compatible with the first dataset,
we merged sleep stages 3 and 4. Recordings were performed at the
Sleep Disorders Center, Department of Clinical Neurophysiology,
Institute of Psychiatry and Neurology in Warsaw, Warsaw,
Poland. The study was approved by the Institutional Review
Board of Institute of Psychiatry and Neurology.

Data in the two laboratories were recorded with different
recording devices which resulted in different sampling rates and
filter settings. Signals were resampled at 128 Hz (with applying
appropriate anti-aliasing filters thus, leading to a similar low-
pass filtering of the data) to accommodate data recorded at
different sampling rates. We did not adjust the high-pass filtering
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because we did not expect it to have a big impact on classification
performance. Another reason was that we consider it is important
that our methods work with data recorded with equipment that
differs between laboratories.

Machine Learning: Classification
Machine Learning is a branch of computer science, which allows
to learn properties of the data and solve problems without
direct programming of the decision rules. The main approaches
in machine learning are supervised and unsupervised learning
(Bishop, 2016). In this work we used a supervised approach
in order to solve the problem of classification (Bishop, 2016).
Classification algorithms solve the problem of assigning labels
to the data. They are trained with labeled data, the training
set, to learn properties of the data and the corresponding labels
[supervised machine learning (Bishop, 2016)].

In this work, we solved the classification problem by applying
supervised machine learning algorithms. We followed two
approaches, (1) classification based on features (RF and ANNs)
and (2) classification based on raw data (ANNs).

Classification Based on Features
Polysomnographic signals are very complex, but they reveal
certain patterns crucial for scoring by an expert. For example,
waves of certain frequencies: sleep spindles (12–14 Hz), slow
waves (0.5–4 Hz), alpha waves (8–12 Hz), theta oscillations
(4–8 Hz) are very important to distinguish the different sleep
stages. These measures can be easily quantified in the frequency
domain. We applied classical spectral analysis (Welch, 1967)
but also a multi-taper approach (Babadi and Brown, 2014)
might be considered in particular when spectrograms are used
as features. Other important markers of sleep stages such as
rapid and slow eye movements, eye blinks and muscle tone
can also be quantified. Such measures are called features and
the process of their definition is called feature engineering.
Using carefully engineered domain-specific features for machine
learning systems has a lot of advantages: it requires a small
amount of training data, is fast and the results are interpretable.
Another approach based on deep learning, working with raw
data, is described later.

Preprocessing and feature extraction
In a first step, we used spectrograms of the EEG instead of
using the raw signal. It is well known that spectra capture the
major properties of the sleep EEG and this way we were able to
significantly reduce the dimensionality of our data. Power density
spectra were calculated for 20-s epochs (30-s for patient data)
using the Welch function in MATLAB (FFT; average of four or six
5-s windows; Hanning windows; no overlap; frequency resolution
0.2 Hz). Spectra were plotted and color-coded on a logarithmic
scale (Figures 1, 2). Spectrograms were limited to the range of
0.8–40 Hz to reduce the dimensionality of the data matrix.

We used a set of 20 engineered features for the classification
(see Supplementary Material for their definitions). They include
among others power in different frequency bands and their
ratios, eye movements, and muscle tone. We did not exclude
any epochs (i.e., included artifacts), because we wanted to have

a system, which is ready to work with the data with a minimal
requirement of manual pre-processing. Moreover, epochs with
artifacts contain useful information: wakefulness is almost always
accompanied by movement artifacts and a movement is often
followed by a transition into stage 1. Quantitative analysis,
however, such as the calculation of average power density spectra
requires exclusion of artifacts which can be achieved using simple
algorithms (Malafeev et al., 2018).

We used two different approaches for the classification based
on features: RF and ANNs.

Random forest (RF)
One of the classical methods to solve classification problems is
based on decision trees (Morgan and Sonquist, 1963; Hunt et al.,
1966; Breiman et al., 1984). Every node of a tree corresponds to a
feature and a corresponding a threshold value. For a data vector
which has to be classified, we traverse the tree by comparing a
corresponding feature to the threshold of the node. Depending
on the outcome of the comparison, we go to the left or to the
right branch. Once we have traversed the tree, we end up in a leaf
that determines to which class the data point belongs to.

Decision trees have certain limitations (e.g., overfitting)
(Safavian and Landgrebe, 1991; Mitchell, 1997). Overfitting
means that an algorithm learns something very specific of the
training data and the classifier can no longer predict new data.

A way to overcome these limitations is to create an ensemble
of trees: i.e., to build many trees, each based on a random subset
of the training data (Ho, 1995; Breiman, 2001). A data point is
classified by all trees and we can compute the probability of a data
point belonging to a particular class by the fraction of trees which
“voted” for this class. RF classifiers and similar recent tree-based
technique demonstrated state-of-the-art results on a variety of
problems (Laptev and Buhmann, 2014, 2015; Chen and Guestrin,
2016).

We implemented the RF to classify sleep stages based on
feature vectors (20 components). We computed probability
vectors for every epoch (20 or 30 s). Further we considered
the local temporal structure of sleep as described above about
time course learning. We applied a HMM (see Supplementary
Material) and a median filter (MF) with a window of three 20-s
or 30-s epochs to smooth the data.

Artificial neural networks (ANNs)
For a long time, researchers have been trying to build a computer
model of a neuron (Farley and Clark, 1954; Rochester et al., 1956)
and use such models for data classification (Rosenblatt, 1958).
This research resulted in the development of multilayer neural
networks (Ivakhnenko and Lapa, 1967) which are now denoted
ANNs.

Artificial neural networks consist of interconnected neurons.
Every neuron performs multiplication of input signals with
parameters called weights, summed up and sent to the output.
One can train ANNs by adjusting (updating) the weights
(Goodfellow et al., 2016). This process of training is also
called optimization. ANN training requires a function which
quantifies the quality of the classification. Such a function is
called the loss function or cost function. The loss function must
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be differentiable, otherwise it is not possible to compute the
gradients. An example of a loss function is the mean square error.
In our work, we used the cross-entropy loss function (De Boer
et al., 2005). Cross-entropy loss is a good measure of errors of
networks with discrete targets. Targets are the ground truth values
given by an expert, in our case the sleep stages.

Deep Learning With Raw Data
Deep neural networks (DNNs), a specific type of ANNs, can
learn complex models. Moreover, DNNs can automatically learn
features and the feature engineering step can be omitted. Features
can be learned using, for example CNNs (Fukushima and Miyake,
1982; Lecun et al., 1989; Waibel et al., 1989). DNNs usually show
better performance than feature-based methods, but it comes
at the price of an increased computational demand and such
networks require more training data. However, DNNs require
much less manual adjustments than feature-based methods and
thus are easier to implement and maintain.

Convolutional neural networks (CNNs)
A particular type of DNNs are CNNs. They were initially
developed for image recognition (Fukushima and Miyake, 1982;
Lecun et al., 1989; Waibel et al., 1989). The main property of
CNNs is that they perform a convolution of an input with a set of
filters, which have to be learned. They were successfully applied
not only for image recognition, but also in speech recognition
(Abdel-Hamid et al., 2014), text analysis (Dos Santos and Gatti,
2014) and many other areas. Moreover, CNNs have already been
successfully applied to various types of physiological signals,
including wake EEG recordings (Cecotti and Graeser, 2008;
Mirowski et al., 2008). The filters have a certain size. Given the
one-dimensional nature of our data, a filter is a vector of a specific
length. The filter slides with certain step called a stride across the
input data.

Another specific type of layers we used was max-pooling. It
takes the maximal value of the sliding window and helps to
achieve local invariance. The max-pooling layer also has a specific
filter size and a stride.

Residual networks
Residual networks (He et al., 2016) are a special kind of ANNs
where layers are connected not only in sequential order but also
with so-called skip or residual connections which jump over one
or multiple layers. Gradients can vanish when networks have a lot
of layers. Residual connections prevent this problem and make
the training of networks more efficient and make it possible to
train very deep networks with large numbers of layers.

Learning Time Dependencies
Common machine learning algorithms consider every data
sample independent from the previous ones. This is the case
for RF classification and common ANNs. However, experts take
information about previous epochs into account when they
perform sleep scoring. Thus, it would be useful to consider
some temporal information (structure) in the sleep classification
algorithm.

As was mentioned in the introduction, sleep has not only
a local but also a global structure, such as sleep cycles

(Achermann and Tarokh, 2014). However, this global structure
should not be taken into account while scoring (visual or
automatic), as it might be different in pathology or during naps.
Therefore, we limited the temporal memory of our models (see
below), but the information of several previous epochs is still
important to consider for sleep scoring. We assume that if we
learn long sequences, it would bias the algorithm and such models
would perform poorly on recordings where such patterns are not
present, e.g., in the MSLT recordings (short naps of 20 min) or
disturbed sleep.

We implemented the learning of temporal structures of sleep
in two ways. First, we applied a HMM (Stratonovich, 1960) to
smooth the output of the RF classification (see Supplementary
Material for details) and by a MF with a window size of three
epochs, a very simple yet efficient approach to smooth the data
(see Supplementary Material).

As a second approach we implemented RNNs. RNNs receive
their own output of the previous step as additional input
in combination with the new data vector. Thus, RNNs take
into account the temporal structure of the data. One of the
most successful RNNs is the LSTM network (Hochreiter and
Schmidhuber, 1997). RNNs can also use information about future
epochs; in such a case they are called bidirectional RNNs. One of
the main advantages of LSTM networks is its property to avoid
vanishing gradients.

As mentioned above, the length of the input sequences should
be limited to reasonably short time intervals. We limited our
algorithms to learn patterns not longer than 8 (2.8 or 4 min),
32 (10.7 or 16 min), and 128 epochs (42.6 or 64 min). We
dynamically formed batches of sequences: the beginning of each
sequence was chosen randomly (i.e., sequences may intersect).
This way more sequences may be used for training than by just
taking them sequentially. For details about batches and their
processing see Supplementary Material.

Study Setup
Network Architectures
We considered two types of networks:

(1) Networks which used features as input (LSTM networks).
(2) Networks which worked with raw data and used

convolutional layers before the LSTM networks
(CNN-LSTM networks).

LSTM Networks
We implemented a network with three hidden layers (Figure 3).
Each layer consisted of 8, 16, 32, or 128 LSTM units, and we also
applied one- and bi-directional layers resulting in a total of six
network configurations.

CNN-LSTM Networks
We realized networks with 11 convolutional layers followed by
two LSTM layers with 32 units (Figure 4).

We also used residual convolutional networks (19 layers) as
outlined before, worked with different input signals (EEG, EOG,
and EMG) and created separate CNN networks (CNN blocks
in Figure 4) for every input (EEG, 2 EOG). The outputs of all
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FIGURE 3 | The structure of the network for feature-based classification. It is composed out of three layers. The size of the layer is 8, 16, 32, or 128 units. Blue
arrows indicate that LSTMs are recurrent. X is the input data matrix – the matrix which contains features in columns and rows correspond to epochs. In case of the
spectrogram as input, it corresponds to a transposed spectrogram. Red circles depict output neurons. Their output is compared to the expert labels (targets). Every
neuron corresponds to certain sleep stage (W, Wake; S1, S2, S3, NREM sleep stages; REM, REM sleep).

blocks were concatenated and fed into the LSTM layers. There
were two bidirectional LSTM layers. Each layer contained 32
LSTM units. There were batch normalization layers (Ioffe and
Szegedy, 2015) before, between and after LSTM layers. Batch
normalization layer rescales the input to make sure that all
the values belong to the same range. We used separate CNN
blocks for the two EOG channels because correlations between
the EOG signals are important to distinguish the different types
of eye movements. In case the EMG was included, only a
single value (EMG power in the 15–30 Hz range) per 20- or
30-s epoch was considered. Thus, three input configurations
were implemented: EEG only, EEG and EOGs, and EEG, EOGs
and EMG (Figure 4) resulting in a total of seven network
configurations.

Optimization
Networks require training which is achieved by optimization.
Optimization procedures have to find minima (in case of ANN
local minima) of a loss function over the parameter space
(weights of the network). Weights are commonly adjusted
according gradients (backpropagation, see Supplementary
Material for details about optimization and regularization).

Networks were implemented using the Keras package
(Chollet, 2015) with Theano (Al-Rfou et al., 2016) and
Tensorflow (Abadi et al., 2016) backends. The Theano backend
was used to train our feature-based LSTM networks and
the Tensorflow backend to train the raw data based CNN-
LSTM networks. We worked with different backends because
we first developed the feature based networks and running
on a desktop computer and later with raw data based
networks. These networks had to be trained on GPUs and
for this only the Tensorflow (Abadi et al., 2016) backend was
available.

Training, Validation, and Testing
To avoid overfitting, we randomly split dataset 1 (healthy
participants) into three parts: training (36 recordings, 70%),

validation (9 recordings, 15%) and testing (9 recordings,
15%). The data were split according to participants, i.e.,
all three recordings of one participant were either in the
training, validation or test set. We computed the cross-
entropy loss and accuracy (De Boer et al., 2005) to assess
convergence of the algorithms. These measures were computed
on every training iteration for training and validation
sets.

The idea was to train all our models using the training
part of the data, then classify the data of the validation part
and select only the best models for further confirmation of
their performance on the test part. However, validation revealed
that performance of the different models was very similar,
thus, it was unclear whether their performance was really
different. Therefore, we estimated the final performance of all
algorithms with both the validation and test set. In addition,
we used the whole second dataset (patients) as a test set,
thus, assessing generalization of the approaches to datasets
from another laboratory and to a different subject population
(patients).

Further, we wanted to study how performance of the
algorithms would benefit from the inclusion of patient data
into the training set. We took the same training set of healthy
subjects (36 recordings) and added patient data (19 recordings)
to it, resulting in a training set of 73 recordings. The remaining
patient data (10 MSLT recordings and 14 sleep recordings)
were used for performance evaluation together with the test
set of the healthy participants (9 recordings; a total of 33
recordings). Again, all data of one patient were assigned to
the training or test set. For further details see Supplementary
Material.

Performance Evaluation
To assess performance of our algorithms, we used Cohen’s kappa
(Cohen, 1960) a metric accounting for the agreement by chance
and thus for imbalanced proportions of different classes. Kappa
is a number ≤ 1 (can be negative), with one reflecting ideal
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FIGURE 4 | Structure of the networks for classification based on raw data. Networks have CNN and LSTM parts. (A) CNN block (11 layers) which is used to process
raw EEG and EOG data. (B) Similar CNN block with residual connections (19 layers). (C,D) Depict the final network structures based on the modules depicted in
(A,B), using only EEG data (C) or EEG and EOG data as input (D, EMG input as dashed line as it did not have a CNN block). The EMG input was a preprocessed
single value (power) per epoch. LSTM networks consisted of 2 bidirectional layers with 32 units each. There were batch normalization layers before, between and
after LSTM layers. Batch normalization rescales inputs to make sure they all are in the similar range. Targets are the classified sleep stages. ReLU, Rectified Linear
Unit, it is an activation function to transform the activation of a neuron.

classification. Values higher than 0.8 are considered to reflect
excellent agreement (Mchugh, 2012).

RESULTS

Convergence of the ANNs
During the process of the training of ANNs we can observe
an increase in the quality of the classification. To ensure that

the network was sufficiently trained and further training would
not bring additional benefit we computed cross-entropy loss and
accuracy (proportion of correctly classified examples; see section
“Materials and Methods” for details). Usually these metrics show
an exponential saturation with increasing training time. After the
accuracy or loss function have reached a plateau we can say that a
network has converged. These types of curves are called learning
curves (Pedregosa et al., 2011). We computed these curves on the
training and validation datasets (50 training iterations in total).
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FIGURE 5 | Cohen’s kappa of selected methods applied to the validation set of dataset 1 (healthy participants). The first 2 groups of bars represent feature-based
classifiers (RF and LSTM network) and the last 2 groups CNN-LSTM networks based on raw data input. See Supplementary Material for the naming conventions
of the algorithms. Mean values and standard deviations are depicted; red dots represent individual Cohen’s kappa values. W, wakefulness; N1–N3, NREM sleep
stages; R, REM sleep.

All our feature-based LSTM networks showed good
convergence when they were trained on the data of healthy
participants (Supplementary Figure S3) and on a mixture of
both datasets (Supplementary Figure S4; see Supplementary
Material for the naming convention of the networks).

Learning curves for the ANN based on the raw data as
input are depicted in Supplementary Figures S5, S6. Most of
the networks showed good convergence (loss monotonously
decreased, and accuracy increased to saturation). Some networks
showed large fluctuations of loss and accuracy on the validation
set: the network which has only a single EEG channel as input
(1p_32u_8ep), the network which had EEG and EOG as input
and eight epoch long sequences (1p2_32u_8ep), and the network
with input comprised of EEG, EOG and EMG and 128 epoch
long sequences (1p2p1_32u_128ep). The least smooth learning
curves were observed in the network with residual connections.
This network had the largest number of parameters and thus,
more data and iterations might be needed to reach convergence.
We expect that such networks to perform better if trained on an
extended dataset.

Classification Performance
The crucial information is how well the algorithms perform. As
mentioned above we used Cohen’s kappa to measure the quality
of the automatic scoring.

Figure 1 illustrates the hypnograms obtained with three
selected algorithms (RF, LSTM, and CNN-LSTM) in comparison
with the expert scoring. In general, performance of all algorithms
was good capturing the cyclic structure of sleep. Slight differences
to the human scorer were observed, e.g., longer REM sleep
episodes with the 3-layer bidirectional LSTM network (Figure 1,
panel 3).

Performance of our algorithms was initially assessed with
the F1 score (Dice, 1945; Sørensen, 1948). But afterwards we
switched to Cohen’s kappa (Cohen, 1960) because F1 scores are a
biased measure of classification quality (Powers, 2014), which is a
problem when comparing recordings with a different prevalence
of the classes (sleep and MSLT).

Scoring of Healthy Participants
The Cohen’s kappa computed on the validation part of the
dataset 1 (healthy participants) are illustrated in the Figure 5

(only four selected methods; see Supplementary Tables S1, S2 for
kappa of all algorithms, validation and test data): RF classification
smoothed using HMM, one LSTM network trained on features,
and two CNN-LSTM networks with raw data input, one of them
included residual connections.

All four methods showed high performance for all stages
except for the stage 1 (N1). Kappa of stage 1 was around 0.4 which
we still consider a good result because it is comparable to the low
human interscorer agreement of stage 1 (Danker-Hopfe et al.,
2004; Danker-Hopfe et al., 2009; Penzel et al., 2013; Rosenberg
and Van Hout, 2013).

The Cohen’s kappa of all methods evaluated on the validation
part of dataset 1 are depicted in Supplementary Figure S7
(features) and Supplementary Figure S8 (raw data). Most
networks performed similarly well on the validation set; those
which included only a single EEG derivation as an input
(Supplementary Figure S7, s_8u_8ep, spectrogram as input
and Supplementary Figure S8, 1p_32u_8ep, raw EEG as input)
showed slightly lower performance, probably since the EEG
spectrogram or the raw EEG do not contain information
about eye movements and muscle tone. However, this was
the case in some recordings only, for other recordings the
performance was very good. Interestingly, performance of these
networks on the test set was much better (Supplementary Tables
S1, S2). We assume that the validation set contained some
recordings which were difficult to score using only a single EEG
channel.

The network with input comprised of EEG, EOG, and EMG
and 128 epoch long sequences (1p2p1_32u_128ep) had a low
performance on both, the validation and the test set because of
large random fluctuation of accuracy in the last training iteration.
Ideally, we should have stopped training of this network earlier or
trained it longer.

Networks with 16 and 32 units in a layer were inferior
for the scoring of stage 1 than the network with only 8
units probably due to overfitting, although the difference
was very small. These networks may show a better
performance if trained with larger datasets. One-directional
network predicted REM sleep a bit worse than bidirectional
ones. The advantage of one-directional network is the
possibility to work online. Surprisingly, classification with
RF smoothed with simple MF or HMM worked almost
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FIGURE 6 | Cohen’s kappa scores for the same methods as in Figure 5 applied to the patient dataset. Note that the training did not include patient data. Top panel
represents sleep recordings and the lower one MSLT recordings. Note that during MSLT recordings stage N3 is not always reached; such recordings were not taken
into account when computing average Cohen’s kappa and standard deviations of N3. For details see Figure 5.

FIGURE 7 | Cohen’s kappa for the methods illustrated in Figures 5, 6 trained on a mixture of data of healthy participants and patients data (datasets 1 and 2;
applied to the test part of both datasets). Top: healthy subjects; middle: sleep recordings in patients; bottom: MSLT recordings in patients. For details see
Figures 5, 6.

as good as classification with ANNs (features and raw
data).

Generalization to the Patient Data
We validated our methods on dataset 2 (patients). The kappa
values for selected methods are presented in Figure 6 (only
4 selected methods; see Supplementary Figures S9, S10 and
Supplementary Tables S3, S4 for kappa of all algorithms used
to classify patient data). Note that the data of the patient dataset
were not used for the training at all.

The performance was somewhat lower for all classifiers
applied to the sleep data of patients than in healthy participants
and again lower for the MSLT data and kappa showed a large
variance. Classification performance of stage 1 was worst for the
RF classification in this dataset. Methods using only a single

EEG signal as input (spectrogram or raw EEG channel as input)
performed worse on the patient data.

We observed very low kappa scores in some recordings,
mostly for stages 2, 3 and REM sleep in patients when the
training data did not include patient data. Stage 2 was often
confused with stage 1. We can explain it by different properties
of sleep in patients. Their sleep was much more fragmented and
disturbed. Thus, algorithms not trained with patient recordings
may confuse stages 2 and 1. Kappa of stage 3 was very low
mostly due to the low occurrence of deep sleep in patients,
or its complete absence. Thus, small discrepancies led to low
kappa values. Further, REM sleep was sometimes missed due to
differences between patients and healthy participants. Sometimes
REM sleep was falsely discovered. It happened because patients
sometimes had a low muscle tone in wakefulness. Some of the
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false discovered REM sleep turned out to be true REM sleep
missed by an expert (confirmed by visual inspection).

Algorithms based on the EEG only made most mistakes.
Adding ocular channels to the input resulted in less mistakes
and including included muscle tone also revealed the best
performance.

When the networks were trained also using patient data the
result have improved.

Networks Trained on the Data From Both Datasets
Next, we trained two networks and RF classification with a mixed
training data consisting of healthy subjects (36 recordings) and
part of the patient data (19 recordings; both sleep and MSLT
data). We validated the models on the test part of the mixed
dataset (healthy participant: 9 recordings; patients, 14 sleep and
10 MSLT recordings).

Figure 2 illustrates the hypnograms of a MSLT recording
obtained with three selected algorithms in comparison with the
expert scoring. In general, performance of all algorithms was
good capturing the naps. Performance of four selected methods
are illustrated in Figure 7, and of the other methods applied in
Supplementary Figures S11, S12 and in Supplementary Tables
S5, S6. Note, that we trained only two feature-based networks
with the mixture of the two datasets. Training on the mixed
data resulted in an improved performance on both patient data
and data of healthy participants, kappa values increased and the
variance got smaller.

As mentioned above the performance after training on both
datasets was better than training only on data of healthy
participants, which is not surprising. It is well known that sleep
of the patients (narcolepsy and hypersomnia in our case) is quite
different compared to healthy participants. Again, algorithms
based on EEG, EOG, and EMG revealed reasonable kappa
values for all recordings except for circumstances where some
stages were not present in a recording, or only in very small
amounts. This was often the case for stage 3 in almost all
MSLT recordings and in some sleep recordings of the patients.
Often discrepancies occurred at stage/state transitions. However,
that is where mostly experts also disagree. Multiple expert
scoring of the same recording would be needed to establish
a “ground truth.” Occasionally, the EEG was contaminated by
ECG artifacts leading to a lower classification performance. Thus,
removal of ECG artifacts prior to classification might improve the
performance.

DISCUSSION

Comparison With Human Experts and
Automatic Scoring of Other Groups
All our implemented methods yielded high Cohen’s kappa values
(kappa around 0.8) for all stages when they were trained and
validated on data of the same type of subjects, except for stage 1
(N1; kappa < 0.5). Stage 1 is known as a difficult stage to score.

Common measures of interrater agreement are accuracy and
Cohen’s Kappa (Danker-Hopfe et al., 2004, 2009;Penzel et al.,
2013; Rosenberg and Van Hout, 2013). Kappa values obtained

with our models were comparable to the performance of human
experts. Stage 1 was most difficult to score automatically and
compares with the low interrater agreement (Danker-Hopfe et al.,
2004, 2009; Penzel et al., 2013; Rosenberg and Van Hout, 2013).

Performance of the LSTM networks in our experiments were
similar to the one of a recent study where a CNN was applied
to EEG features (Tsinalis et al., 2016) and to Phan et al. (2018)
who applied CNNs to spectral features of EEG, EOG, and EMG
channels.

Our CNN-LSTM networks performed similar to the ones of
recent studies which employed CNNs for sleep scoring based
on a single EEG derivation (Sors et al., 2018) and on six EEG
channels in conjunction with two EOG and three EMG channels
(Chambon et al., 2018). Sors et al. (2018) used a large database
to train their network. They reported Cohen’s kappa computed
over all classes equal to 0.81. Our values were close to it, however,
it is not possible to compare directly because we looked at each
class separately. We consider it very important to know the kappa
values for wake, NREM and REM sleep separately due to their
unbalanced contribution.

Supratak et al. (2017) used a technique known as residual
sequence learning which might improve the performance. We
did not apply this approach but used residual connections and
different signals as independent inputs in the convolutional part
of the network which were concatenated as input to the LSTM
part. We think this was beneficial for the performance.

Even though automatic scoring algorithms have shown
reasonably high performance there is no consensus yet in the
sleep community that they perform well enough to replace
human scorers.

Automatic Scoring Using Different
Channels
Our study showed that it is possible to score sleep data with high
classification accuracy using only a single EEG channel. We got
slightly better results using 1 EEG, 2 EOG, and 1 EMG channel.

It is difficult to conclude which method works best due to the
small differences in performance. We assume that four channels
(1 EEG, 2 EOG, and 1 EMG) contain more information, but the
risk of the data being noisy is also higher. We observed that a bad
EMG signal reduced the performance of the algorithms. This was
also observed by SIESTA team (Anderer et al., 2005). The authors
reported that in some cases the use of the EMG was not optimal
due to a bad signal quality, and in certain cases they substituted
the EMG with the high frequency content of the EEG and EOG
which increased the performance of their algorithm. Also Phan
et al. (2018) showed that the use of EOG and EMG channels was
beneficial and Chambon et al. (2018) reported that the use of
multiple EEG channels increased the performance of automatic
sleep scoring.

It was surprising to observe that neural networks can classify
sleep, especially REM sleep, with high quality using only a single
EEG channel. It is a very difficult task for a human scorer to
distinguish REM sleep based on the EEG only. Experts rely on eye
movements and muscle tone (Rechtschaffen and Kales, 1968; Iber
et al., 2007). We think that presence of patterns such as sawtooth
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waves (Jouvet et al., 1960; Takahara et al., 2009) are important
markers of REM sleep which help neural network to recognize
this stage.

A note of caution regarding EEG channels: the signal
amplitude is strongly dependent on the referencing and the
scoring of SWS (N3) is dependent on an amplitude criterion
(75 µV peak-to-peak) (Rechtschaffen and Kales, 1968; Iber et al.,
2007). We and others (Chambon et al., 2018; Phan et al., 2018;
Sors et al., 2018) used, as it is standard in the sleep field, EEG
derivations referenced to the contralateral mastoid whereas a
different referencing was used in other studies (Tsinalis et al.,
2016; Supratak et al., 2017). Networks trained with specific
referencing should not be applied to data recorded with a
different reference system as in particular the amount of SWS
(N3) will be affected due to the difference in signal amplitude.

How to Measure Scoring Quality?
It is difficult to determine which method was superior based on
our results. We think this is because most of our methods showed
high performance based on the chosen evaluation metric and
produced results comparable to human experts.

An issue is the fact that with F1 scores (Dice, 1945; Sørensen,
1948) and Cohen’s kappa (Cohen, 1960) we treat epochs
independently not taking the temporal structure of sleep into
account. Thus, we think such metrics are not the optimal way
to assess different aspects of the quality of scoring. For example,
visual inspection of our results has shown that quiet wakefulness
at the beginning of sleep might be confused with REM sleep
and sometimes the first often very subtle and short REM sleep
episodes might be missed. Such misclassification often occurred
when the EMG or EOG signals were corrupt or of bad quality.
It almost does not affect F1 scores and kappa values but affects
the structure of sleep. Thus, novel metrics to quantify the scoring
quality shall be developed that take the temporal structure into
account but not overestimating differences at transitions, e.g., the
start or end of REM sleep episodes.

Which Method Is the Best?
Despite the difficulties to select the best method as the
performance was very similar, we see some trends. Neural
networks of all types detected stage 1 better than RF classifiers.
This was especially evident when we applied the methods to the
second dataset (patients), which indicates a better generalization
of neural networks.

The RF classification with HMM and MF smoothing was
superior to the RF classification without smoothing, and the
networks based on the raw data input tended to be superior to
features based networks, in particular when they were applied
to the data of another laboratory and to a different subject
population.

Given that our results and those of other groups (Tsinalis
et al., 2016; Supratak et al., 2017; Chambon et al., 2018; Phan
et al., 2018; Sors et al., 2018) are very close to the performance of
the human expert we think that future evaluations of automatic
scoring shall be performed using the multiple expert scoring and
some other metric than F1 score or Cohen’s kappa. An ideal
metric shall take the temporal structure of sleep into account

and treat sleep not as a set of epochs but as a set of sleep
episodes. For example, a short REM sleep episode at the sleep
onset does not affect F1 scores and kappa much, but might be of
clinical significance. A good metric shall penalize such mistakes
in scoring.

Importance of the Training Data
An improvement of performance was achieved when the training
was performed on a mixture of the two datasets, which suggests
that one should train on as diverse data as possible to reach
best performance. However, the models trained only on the
first dataset (healthy participants) performed reasonably well
on the second “unfamiliar” dataset (patients) showing a good
generalization.

In case an electrode has high impedance, the signal might
become very noisy. For example, as neural nets learned that a low
muscle tone is required to score REM sleep, noisy, or bad EMG
signals may deteriorate the performance considerably. The same
holds for the EOG: if the signal quality is bad, then the algorithms
may not be able to detect eye movements properly. These
problems can be addressed by visual inspection of the signals
before applying an algorithm and selecting the one working best
with the available signals. It is also possible to develop tools
for automatic examination of data quality and the subsequent
selection of a corresponding algorithm.

Sometimes our models mistakenly classified epochs close to
sleep onset as REM sleep, which is unlikely to occur in healthy
subjects. A human expert most likely would not make such a
mistake. This can be partially explained by the fact that we never
presented the whole night to our neural networks and they could
thus not learn that REM sleep is unlikely to occur at the beginning
of sleep. Human scorers, however, have this knowledge. Some
groups of patients, for example, those suffering from narcolepsy,
often have REM sleep at the sleep onset, called sleep onset REM
(SOREM) sleep episodes. Thus, it is important to be able to detect
SOREM sleep episodes. They may occur also in healthy people in
the early morning due to the circadian regulation of REM sleep
(Sharpley et al., 1996; Mayers and Baldwin, 2005; Mccarley, 2007)
or by experimental manipulation (Tinguely et al., 2014). They
further may occur in sleep-deprived subjects, and in depressed
patients, which are withdrawn from selective serotonin reuptake
inhibitor (SSRI) medication (Sharpley et al., 1996; Mayers and
Baldwin, 2005; Mccarley, 2007). Therefore, we did not introduce
any priors preventing our algorithms from classifying epochs at
sleep onset as REM sleep.

The main question, however, is how representative are the
training data. We trained on healthy young participants and
specific patients (narcolepsy, hypersomnia). Thus, it does not
represent the entire spectrum of healthy subjects (form infancy
to old age) and the patient population.

Effect of the Length of the Sequence
We limited the length of the training sequences to 8 epochs
but also tested the effect of 32 and 128-epoch long sequences.
Networks trained on 128 epoch long sequences did not
perform well when presented with unfamiliar datasets, i.e., they
generalized worse. It might be the networks learned more global
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structures of sleep and thus did not perform well on recordings
with different structures (MSLT, disturbed sleep, patients, etc.).
We noticed that longer sequences led to less stage changes, i.e.,
more consolidated sleep stages than scored by experts. Thus, we
think it is better to keep the length of the training sequence short
(eight epochs).

Room for Further Improvement
We see a lot of room for further improvement. The sleep
scoring manual was first developed for the scoring of healthy
sleep, and is also being used for sleep in different kind of
patients and people under the influence of medication or
drugs. The wake EEG can also be affected by substances
(Von Rotz et al., 2017). Thus, we recommend extending the
training data including data from different laboratories, different
pathologies, age groups and so on. One can also try to
use data augmentation to increase the robustness of neural
networks.

A major limitation of our study was the expert scoring: it
was performed by a single expert although different ones. We
suppose, that performance would have increased if several scorers
would have scored the same data and consensus scoring would
have been used for the training of the models. Also, human
scorers have difficulties with ambiguous data and interscorer
variability results in part due epochs that are difficult to score with
confidence (Younes et al., 2016).

We showed that our algorithms had a good generalization
capability to the patient population, but the performance
was not as good as with healthy subjects. One possible
reason might be the different scoring epoch length. We
used the conversion procedure which worked well for most
epochs, but certain discrepancies may show up at transition
phases. We think this might have limited the performance,
especially when these data were used for training. It was
a compromise we had to make. Ideally all the data would
be scored with the same epoch length. Phan et al. (2018)
used a different approach and converted 20-s epochs to
30-s epochs by including the 5 s before and after a 20-s
epoch.

Another aspect concerns movement time resulting in an
artifact. In our datasets it was not scored, and in the AASM
manual (Iber et al., 2007) scoring of movement time was
abolished, which in our opinion is not optimal. Movement time
basically results in EEG artifacts and it is thus difficult to assign
a particular sleep stage. We suspect that the performance of the
algorithms would improve if movement artifacts would have been
scored as a separate class. Similarly, every artifact scored as some
stage of sleep causes problems as artifacts do not look like sleep
and thus such issues are equivalent to mistakes in the labels
presented to the machine learning algorithm.

Recent work with automatic scoring on a large dataset (Sun
et al., 2017) revealed that increasing the size of the dataset
improved the performance. In the case of Sun et al. (2017)
saturation occurred at approximately 300 recordings in the
training set. However, their approach was feature based. We
expect that saturation will occur at much larger numbers of

recordings in the training set in case of DNNs working with raw
data.

We demonstrated that it is possible to reliably score sleep
automatically in polysomnographic recordings using modern
deep learning approaches. It was also possible to identify stage
1 and REM sleep as reliable as human experts. In general,
our models provided high quality of scoring, comparable to
human experts, and worked with data of different laboratories
and in healthy participants and patients. Furthermore, it
was possible to successfully score MSLT recordings with
a different structure than night time sleep recordings. We
demonstrated that the local temporal structure in the data is
important for sleep scoring. Some of our methods may also
be applied for the on-line detection of sleep and could thus
be used with mobile devices or to detect sleep in a driving
simulator.
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