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Silver Nanowire/Colorless-
Polyimide Composite Electrode: 
Application in Flexible and 
Transparent Resistive Switching 
Memory
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Changhwan Shin   3, Byeong-Kwon Ju1 & Jong-Woong Kim2

Improving the performance of resistive switching memories, while providing high transparency and 
excellent mechanical stability, has been of great interest because of the emerging need for electronic 
wearable devices. However, it remains a great challenge to fabricate fully flexible and transparent 
resistive switching memories because not enough research on flexible and transparent electrodes, 
for their application in resistive switching memories, has been conducted. Therefore, it has not 
been possible to obtain a nonvolatile memory with commercial applications. Recently, an electrode 
composed of a networked structure of Ag nanowires (AgNWs) embedded in a polymer, such as colorless 
polyimide (cPI), has been attracting increasing attention because of its high electrical, optical, and 
mechanical stability. However, for an intended use as a transparent electrode and substrate for resistive 
switching memories, it still has the crucial disadvantage of having a limited surface coverage of 
conductive pathways. Here, we introduce a novel approach to obtain a AgNWs/cPI composite electrode 
with a high figure-of-merit, mechanical stability, surface smoothness, and abundant surface coverage 
of conductive networks. By employing the fabricated electrodes, a flexible and transparent resistive 
memory could be successfully fabricated.

The confrontation between current conventional silicon-based memory technologies and the limits of minia-
turization has given rise to the development of emerging memory technologies such as ferroelectric random 
access memories (FRAMs), magnetic RAMs (MRAMs), phase-change RAMs (PRAMs), and resistive RAMs 
(RRAMs)1–4. These emerging memories store information based on the bistability of materials by taking advan-
tage of changes in their physical properties. Among these memories, RRAMs are considered one of the best 
candidates for the development of next-generation nonvolatile memory devices due to their fast switching speed, 
low energy consumption, excellent endurance, long retention, and simple metal-insulator-metal structure1, 2.

Resistive switching in RRAMs can be achieved through the formation and rupture of a conductive filament 
formed in their insulation layer, resulting in low and high resistance states. The switching process is caused by the 
motion of charged ions, which can be driven by an applied electric field and the ionic species present. Based on 
the polarities of the charges, two mechanisms are suggested to explain the ionic motion: the first one is through 
cation migration, which is found in some chalcogenides, oxides, amorphous Si, and organic materials1, 3; and the 
other is through anion migration (e.g. oxygen vacancies)1, 4. A cation migration-based RRAM is usually fabricated 
using an electrochemically active electrode such as Ag or Cu, and an electrochemically inert counter electrode 
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such as Pt, Au, or W. Cation migration-based RRAMs have several advantages such as fast switching, low power 
consumption, high scalability, and superior switching endurance when compared with anion migration-based 
RRAMs5. In general, solid electrolytes have been used in cation-based RRAMs due to their high cation mobility.

Recently, the memory with low power consumption, low cost and fast speed is no longer the only standard 
for emerging technological needs. The memory with sophisticated functionalities such as flexibility and trans-
parent has tremendous advantages and additional value in different areas for the future electronics applications. 
In particular, for fully integrated electronic systems, the functional memory unit is one of the most essential 
and fundamental components for information storage and process in numerous products. In order to fabricate 
highly transparent RRAM devices, wide band-gap resistance change materials sandwiched between transparent 
conductive electrodes are necessary6–9. In this respect, TiO2-based RRAMs have attracted attention because of 
their excellent electrical performance, transparent characteristics in the visible-light spectrum, as well as supe-
rior mechanical flexibility10, 11. These properties have prompted their use in flexible and transparent RRAMs 
(FT-RRAMs).

In order to achieve the successful fabrication of FT-RRAMs, a flexible transparent electrode needs to be devel-
oped that fully satisfies the following requirements: (1) it should be transparent and have electrical conductive 
properties comparable to indium tin oxide (ITO) deposited on glass; (2) it needs to be mechanically stable, so 
that it can resist severe mechanical deformations; (3) the surface should be sufficiently smooth to prevent the 
formation of leakages through the thin TiO2 layer; and (4) the electrode should have physical contact with the 
overlapping TiO2 layer, through abundant pathways, to bring up the advantages of TiO2-based RRAMs12–24. 
A percolated network of silver nanowires (AgNWs) have been reported as a powerful choice for flexible elec-
trodes, mainly because of its high figure-of-merit (the electrical to optical conductivity ratio) and high intrinsic 
flexibility25–28. For instance, recent works by Park et al.25 and Yang et al.26 employed the AgNWs, and treated 
with flash light to induce the self-limited plasmonic welding. The plasmonically welded network of AgNWs was 
highly conductive, transparent, mechanically stable and can have abundant physical contact with the overly-
ing layer. According to Xiong et al., highly conductive and air-stable AgNW electrodes could be achieved by 
electroless-welding of AgNW network with an overcoating of an iongel layer27. Wu et al. fabricated polyester/
AgNW/graphene core-shell nanocomposites to achieve the transparent electronic textile that can be used in 
wearable electricity generator, but most importantly28, all those studies did not resolve the issue with the rough 
surface of the AgNW-based electrodes25–28.

AgNW networks embedded in the surface of colorless polyimide (cPI) was considered a good candidate for 
flexible and transparent electrode of FT-RRAMs due mainly to high figure-of-merit, high mechanical stability 
even under an extreme bending sequence, and smooth surface comparable to that of ITO on glass29, 30. However, a 
single issue remains, in that the surface coverage of the AgNWs is quite small, and thin layers of the cPI cover the 
AgNWs embedded in the surface of the composite electrode. In our previous study, although a plasma treatment 
of the AgNWs/cPI surface was revealed to be effective in enlarging the conductive pathways to the overlying 
layers, the electrode’s surface was being roughened by anisotropic polymer etching, which can induce leakage 
current29. A new approach is essentially needed so that the AgNWs/cPI composite electrode can be used as a 
FT-RRAMs transparent electrode, without deteriorating its smooth surface.

Herein, we propose a new approach to fabricate a AgNWs/cPI composite electrode that concurrently has a 
high figure-of-merit, mechanical stability, smooth surface, and abundant coverage of AgNWs at its surface. For 
this, a simple plasma treatment was applied to the AgNWs, which had been previously deposited on a glass sub-
strate, before embedding them in the surface of the cPI, which was found to enlarge the contact areas between the 
nanowires and the glass. An inverted layer-processing method with an additional solvent treatment was used to 
embed the treated AgNWs in the cPI surface. The fabricated composite electrode was used to make a FT-RRAM, 
which comprised of a simple configuration of Pt/TiO2/AgNWs/cPI. In conventional method, organic materials 
were generally used for achieving the flexible resistive switching due to flexibility, easy-to-fabrication, lightweight, 
and large-area processibility, therefore, a number of researches about organic-based resistive switching memory 
have been performed by various groups31–34. Compared with these organic-based resistive switching memory, our 
devices showed very competitive characteristics for flexible and transparent electronics, in that the average low 
operation voltage31–34, on-off ratio33, and retention time34 were measured to be 1 V for the SET process and −0.6 V 
for the RESET process, about 200 at −0.2 V, and longer than 106 s, respectively.

Methods
Fabrication of the FT-RRAM device.  The fabrication procedure of the FT-RRAMs is schematically illus-
trated in Fig. 1. Two separate procedures were employed to prepare the AgNWs-based electrodes: the first one 
being the inverted layer processing procedure shown in Fig. 1a, and the other a normal electrode processing 
approach summarized in Fig. 1b. For the inverted layer processing, a solution of AgNWs dispersed in isopro-
panol (Nanopyxis Ltd., Korea) was first spin-coated on a glass substrate, followed by infrared (IR) irradiation for 
10 min to remove the remaining solvent. The average diameter and length of the nanowires were around 35 nm 
and 30 μm, respectively. A treatment with Ar plasma was employed for 10 min at a power density of 8 W/cm2 to 
collapse the nanowires onto the glass by causing their partial melting. For the plasma treatment, the gas flow rate 
and gas pressure were controlled to be 40 ml/min and 20 Pa, respectively. A cPI varnish (Kolon Industries, INC., 
Korea) was spin-coated onto the glass/AgNWs, and the system was subsequently cured at 200 °C for 1 h to form 
a cPI film with a thickness of about 20 μm. To enhance the wettability of the cPI varnish, the electrode was first 
treated with N-Methyl-2-pyrrolidone (NMP) before being coated with the varnish. Once the cPI film was formed 
on the composite electrode, the sample was soaked in water for 10 min to induce hygroscopic swelling of the cPI 
film, so as to allow the film to be safely peeled off from the supporting glass. For the normal coating approach, 
the processing sequence of the AgNW dispersion and cPI varnish coat were switched, so that the AgNWs would 
be deposited onto the cPI film, as shown in Fig. 1b. To investigate the exposure of nanowires on the composite 



www.nature.com/scientificreports/

3Scientific Reports | 7: 3438  | DOI:10.1038/s41598-017-03746-1

electrodes, the fabricated AgNWs-based electrode underwent electroless plating for 10 min at 85 °C in a bath 
containing 7 g/L of CuSO4‚ 5H2O, 25 g/L of potassium sodium tartrate, 4.5 g/L of sodium hydroxide, and 9.5 g/L 
of formaldehyde. In order to complete the FT-RRAM, a TiO2 thin film was deposited onto the AgNWs/cPI elec-
trode, to formulate the resistive switching material, by employing an atomic layer deposition (ALD) system. A 
detailed method of the ALD process is explained in the Supplementary Information. Finally, the 100-nm Pt top 
electrode with a diameter of 250 μm was sputtered by a radio frequency (RF) sputtering system.

Characterization of the AgNWs/cPI electrode and FT-RRAM device.  A scanning electron micro-
scope (SEM; S-4800, Hitachi, Japan) was used to investigate the microstructure of the AgNW networks. The opti-
cal transmission was also measured using a UV–visible spectrophotometer (V-560, Jasco, Japan), while the sheet 
resistance (Rs) was measured using a non-contact measurement system (EC-80P, Napson Corporation, Japan). 
The surface morphology was measured using atomic force microscopy (AFM; XE-100TM, Park Systems, USA). 
The mechanical stability of the film was evaluated using an automatic bend-testing machine (Bending tester, Jaeil 
Optical Systems, Korea), whereby a bending radius of 0.5 mm was used to induce a ~2% outward strain. The films 
were bent at a cycle rate of 0.3 Hz, with their resistance being measured during the bending cycles. A tape test was 
performed to investigate adhesion between the AgNWs and the cPI by employing a commercial Kapton tape. For 
characterizing the FT-RRAM devices, the electrical properties of the FT-RRAM were measured by a semicon-
ductor characterization system (4200-SCS, Keithley, USA). During the measurements, a bias was applied to the 
bottom electrode (AgNWs) while the top electrode was grounded. All measurements were performed at 25 °C in 
air with no light conditions. After the measurement, the devices were stored in vacuum container to avoid mois-
ture and oxygen for the best device conditions. One more bending test was conducted to evaluate the flexibility of 
the devices using a bending chuck designed to induce a curvature radius of 10 mm.

Results and Discussion
First, a AgNW dispersion was coated on a glass substrate to form a percolated conductive network as shown in 
Fig. 2a. In that case, the AgNWs were only placed on the surface of the glass substrate, and not firmly adhered to it. 
Some gaps definitely formed, and were observable, at the interface between the AgNWs and the glass. Therefore, 
the nanowires could be easily peeled off or damaged, even by weak external stresses such as bending, rubbing, 
or scratching. In our previous studies, we developed an inverted layer-processing technique to bury the nano-
wires into the surface of a transparent polymer (cPI), resulting in an AgNWs/polymer composite electrode29, 30.  
By this approach, an extremely smooth surface could be obtained, as shown in Fig. 2b, because most of the 
nanowire bundles were buried underneath the surface of the cPI. This perfect embedment originated from the 
fact that the cPI varnish was completely diffused and could infiltrate the nanopores formed between the nano-
wires and glass substrate. High mechanical stability was another powerful merit that could be obtained by this 
method. However, a serious problem with the fabricated electrodes remained: a limited coverage of the conduc-
tive pathways to the overlying layer. In order to investigate the areas of exposed nanowires on the AgNWs/cPI 
composite, we immersed the composite electrodes in a Cu electroless plating solution without employing any 
preprocessing such as forming seed materials on the surface of the samples. Electroless plating is an autocatalytic 
chemical method mainly used to deposit a layer of specific metals, such as Cu, Ni and Au, on a metal or polymer. 
This approach relies on the presence of a reducing agent, which reacts with the metal ions to reduce them and 
deposit the metal. Inevitably, Cu was metallized onto very limited areas on the surface of AgNWs/cPI as shown 
in Fig. 2c, revealing the constrained nanowire-exposure. In our previous study, a plasma treatment onto the elec-
trode proved to be effective for enlarging the nanowire exposure, but in that case, the surface morphology could 
be roughened29.

Here, we applied the Ar plasma treatment for 10 min, in a different sequence, onto the nanowires that had 
been deposited on the glass substrate (shown in Fig. 2a) to collapse them. The treatment significantly changed 
the morphology of the AgNW networks as shown in Fig. 2d, as if they had been melted by the treatment. It is 
interesting to note that the nanowires were not seriously damaged by the excessive melting in terms of their inter-
connection. The pores that existed at the interface between the AgNWs and glass substrate were not observed 

Figure 1.  Schematic of the fabrication procedure for AgNWs/cPI-based FT-RRAMs: (a) inverted layer 
processing and (b) normal processing.
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after the plasma treatment, implying that the contact areas between them were enlarged by the treatment, possibly 
owing to their partial melting and wetting to the substrate. This is noteworthy because an enlarged contact area 
should provide abundant exposure of the nanowires for better contact with the overlying layer. The nanowires 
would then be embedded in the surface of the polymer by first coating them with the polymer, followed by curing 
and peeling-off (Fig. 1a). In a precedent work from our group, an analysis with X-ray photoelectron spectroscopy 
(XPS) revealed that a thin insulation layer of polyvinylpyrrolidone (PVP) could be successfully removed by the Ar 
plasma treatment35. In this study, we could also investigate that the Rs of the AgNW electrode decreased by about 
30% after the Ar plasma treatment. Unfortunately, overcoating the treated AgNWs with cPI, followed by curing, 
did not lead to their perfect embedment. Around 5 nm of roughness in root mean square (RRMS) was measured 
on the surface of the electrode, which is larger than that of sputter-derived commercial ITOs deposited on a glass 
substrate, or the one shown in Fig. 2b. In the no-treatment case, the carbonyl groups of PVP surrounding the 
AgNWs presumably form hydrogen bonds with the carboxylic and amide groups of the cPI, which could enhance 
their adhesion and wettability. The absence of PVP caused the incomplete infiltration of the cPI varnish into the 
plasma treated nanowire intersections and narrowed gaps between the AgNWs and glass substrate.

To resolve this issue, the plasma treated AgNWs in Fig. 2d were treated with DMA, which is a solvent of the 
cPI varnish. An interesting finding from this treatment was that the wettability of the cPI varnish to the electrode 
was significantly enhanced, presumably due to an effect of the pretreatment. The wetting of the highly viscous 
varnish could be improved by pretreating it with a low viscosity solvent, resulting in the perfect infiltration of 
the cPI varnish into the pores between the AgNWs and glass substrate. A study to reveal the mechanism for this 
improvement is currently ongoing. The smoothened surface of the embedded electrodes is shown in Fig. 2e, 
which is comparable to that of the non-treated electrodes in Fig. 2b. The main effect of the plasma treatment is 
shown in Fig. 2f, in that the Cu was very densely plated on the exposed AgNWs after the electrode was immersed 
in the Cu plating solution, proving the enlargement of the nanowire exposure. This implies that extremely smooth 
surfaces and abundant nanowire coverage could be simultaneously achieved by this simple approach.

Figure 3a shows the transmittance and haziness (i.e. the ratio of diffused to total transmission) of the compos-
ite electrode, which was optimized to have an Rs of approximately 5.5 ohm/sq. Over a very broad spectral range of 
420–700 nm, the electrode exhibited a high transmittance of more than 80%, which implies that its performance 
is better than that of the commercially available ITO deposited on polyethylene terephthalate (PET). Additionally, 
the haziness of the electrode was less than 3% over the spectral range, implying that the electrode is optically clear. 
The mechanical stability of the electrodes was evaluated by employing various tests such as bending, taping, and 
ultra-sonication. For comparison, the AgNWs that were directly deposited on the cPI, produced using the proce-
dure in Fig. 1b, were tested as well. First, a cyclic bending test was evaluated by producing a tensile strain of about 
2%. Figure 3b shows the change in resistance (%) as a function of the number of bending cycles. The resistance 
of the embedded electrodes was virtually unaffected during the 20,000 bending cycles, which means that the 

Figure 2.  (a) SEM micrograph of AgNWs on a glass substrate without an Ar plasma treatment, (b) AFM 
surface micrograph of an untreated AgNWs/cPI electrode, (c) SEM micrograph of the untreated AgNWs/
cPI electrode after immersion into a Cu plating solution, (d) SEM micrograph of AgNWs on a glass substrate 
after an Ar plasma treatment, (e) AFM surface micrograph of a treated AgNWs/cPI electrode, and (f) SEM 
micrograph of the treated AgNWs/cPI electrode after immersion into a Cu plating solution.
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mechanical stability of the fabricated electrodes did not severely deteriorate. Surface-coated electrodes, on the 
other hand, exhibited a fast increase in resistance, of approximately 100% after 3000 bending cycles, mainly due 
to poor adhesion of the AgNWs to the cPI. The adhesion test, with repeated taping and releasing, revealed that the 
AgNWs embedded in the cPI were very robustly adhered to the cPI as shown in Fig. 3c. Moreover, the resistance 
of the embedded electrodes was not deteriorated even after being immersed in an ultra-sonication bath for up to 
400 s (Fig. 3d). To the best of our knowledge, this is the first example achieving most of the requirements for the 
fabrication of flexible transparent electrodes, i.e. a high figure-of-merit, smooth surface, mechanical stability, and 
abundant surface coverage of the conductive medium.

Based on our experiments with the AgNWs/cPI composite electrode, we fabricated the FT-RRAM. Figure 4 
shows the current-voltage (I–V) characteristics of the Pt/TiO2/AgNW memory cell, which was obtained by DC 
voltage sweep measurements using different thickness of the active layer so as to optimize the oxide thickness. For 
all measurements, the Pt electrodes were grounded, a bias was applied to the AgNW electrodes, and a compliance 
current of 500 μA was imposed during the forming and set processes to prevent breakdown of the device by the 
abrupt increase in current during switching. Depending on the TiO2 thickness, different switching characteristics 
were observed. In the case of a 20 nm TiO2 thickness, upon sweeping, the FT-RRAM shows Ohmic behaviour in 
all sweeping regions. This indicates that the thin oxide film of TiO2 causes short-circuit of the FT-RRAM. In the 
case of a 30 nm TiO2 thickness, a forming process was essential before operating the FT-RRAM device, because 

Figure 3.  (a) Transmittance and haziness of the AgNWs/cPI electrode, (b–d) resistance change of the AgNWs/
cPI electrodes as a function of number of bending cycles, tape tests, and sonication time, respectively.

Figure 4.  Typical bipolar I–V curve of the FT-RRAM device with different TiO2 insulator thickness.
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the device was initially in the high resistance state (HRS) of the as-deposited condition. When a positive bias volt-
age (0 to 2.5 V) was applied to the AgNW electrode, a rapid increase in the current was observed at roughly 1.6 V 
(VForming), as shown in Figure S1. The forming process was essential for initiating the FT-RRAM, so that device 
would convert from the HRS to a low resistance state (LRS). Subsequently, the I–V properties of the FT-RRAM 
structure were determined by voltage sweep measurements in the sequence 0 V → −0.65 V → 0 V → 1 V → 0 V. 
After the forming process, when a negative voltage was applied to the AgNW electrode of the FT-RRAM, in the 
LRS, the device went back to the HRS at a specific negative voltage (VRESET). This transition is the reset process. 
When a positive voltage was applied to the AgNW electrode in the HRS, resistive switching back to the LRS 
occurred at a specific positive voltage (VSET). This transition is the set process. In this work, the FT-RRAM usu-
ally had a VSET of 1 V for switching from the HRS to the LRS, and a VRESET of −0.6 V for switching from the LRS 
to the HRS. Lastly, in the case of a 40 nm TiO2 thickness, the FT-RRAMs also showed bipolar resistive switching 
characteristics. However, higher set and reset voltages than those for a 30 nm TiO2 thickness were measured that 
cause high power consumption making the FT-RRAM unreliable. In addition, in case of FT-RRAM with 30 nm 
thickness of TiO2, they show good I–V reliability as can be inferred by endurance and retention tests in the later 
part of this manuscript. Therefore, the optimized FT-RRAM with a 30 nm TiO2 thickness showed the best perfor-
mance to be used as an active material for our resistive switching memory.

Additionally, we also measured the transmittance characteristics. As shown in Figure S2, the optical trans-
mittance spectra of the FT-RRAM obtained using a UV-visible spectrophotometer was measured. The average 
transmission in the visible region (400–800 nm in wavelength) of the FT-RRAM, including the substrate, is 
approximately 75.6%. This semi-transparent characteristic is due to the transparent AgNW electrodes of the 
device, the wide band gap of the thin TiO2 layer, pillar-patterned Pt electrodes and the transparent cPI substrate. 
The transmission of the device is slightly lower because we used Pt electrode as the top electrode to maximize 
the memory characteristics for cation migration-based RRAMs36, 37, but it can be improved by using transparent 
conductive electrode as the top electrode for anion-based memory. Nevertheless, our device compared with the 
previous fabricated transparent RRAM device, showed higher transmission6, better endurance and longer reten-
tion7, low-voltage operation8, even characteristic of flexibility with simple fabrication9. Therefore, we believe that 
this result can be immediately applied to a transparent RRAMs.

For further analysis, the endurance and retention were measured, including the bent state, using a bending 
chuck with a curvature radius of 10 mm to examine the mechanical stability, reliability, and non-volatility of the 
FT-RRAM. Figure S3 shows the measurement set-up. The reading voltage after the set and reset processes was 
−0.2 V in both tests. As can be seen in Fig. 5a, no significant changes in the resistance magnitudes for 500 cycles 
are observed, even at the bent state showing on/off ratio of over 200. This endurance test confirmed the excellent 
reliability of our device even under bent states. Furthermore, the retention test was also examined in both the 
flat and bent state (extended range of the retention and endurance are shown in Figure S4). As shown in Fig. 5b, 
the current was measured every 104 s. The resistances in both states, under the bent state, fluctuated slightly. 
However, the fluctuations of the resistances were sufficient to dissolve both states. These retention results show 
that the FT-RRAM has excellent non-volatility. The results of the endurance and retention tests indicate that the 
performance of our FT-RRAM is not affected by acute bending of the device. In addition, we tested 16 samples for 
the reliability of our devices summarized in Figure S5 and Table 1. At the point of view about resistance ratio, in 
the case of MRAM, the resistance ratio of only 1.2 to 1.3 can be utilized by exquisite circuit design1, 2. Therefore, 
resistance ratio of our FT-RRAM devices is enough to effectively distinguish by using today’s highly sense amplifi-
ers. Furthermore, it can be improved by various methods such as embedding Ag nano particles into the insulating 
medium and applying higher compliance current38, 39. Even for mass production of FT-RRAMs, small on/off ratio 
issues will be solved by computational program such as error correction code (ECC) and systematic fabrication 
process.

Figure 6 illustrates a schematic diagram of the cation-based resistive switching mechanism for our FT-RRAM 
device (organized mechanism and switching processes are summarized in provided in Supplementary 
Information). When a positive voltage is applied to the AgNW electrode (active electrode), an oxidation process 
of the Ag atoms occurs and Ag+ cations are generated, which could be described as Ag → Ag+  + e− (Fig. 6a). The 

Figure 5.  (a) Endurance and (b) retention characteristics of the FT-RRAM at flat and bent states, respectively, 
measured at a VREAD = −0.2 V.
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mobile Ag+ cations move toward the Pt electrode (inert electrode) through the TiO2 layer, and are reduced by 
electrons injected from the Pt electrode i.e. Ag+  + e− → Ag (Fig. 6b). The consecutive sedimentation of Ag metal 
atoms on the Pt electrode leads to the growth of Ag filaments, which when they reach the AgNW electrode form 
highly conductive filaments in the ON state (Fig. 6c). When a negative voltage is applied to the AgNW electrode, 
an electrochemical dissolution takes place somewhere along the conductive filaments and causes a reset process 
(Fig. 6d)2, 40–42.

Conclusion
Highly flexible and transparent electrodes comprising of a percolated network of AgNWs embedded at the 
surface of cPI were fabricated. By employing a plasma treatment to collapse the nanowires on a preliminary 
glass substrate, the coverage of the conductive pathways at the surface of the AgNWs/cPI electrode could be 
significantly enlarged. Furthermore, a pretreatment with DMA improved the wettability of the cPI varnish 
onto the plasma treated AgNWs, resulting in an extreme smoothness of the composite electrode. As a result, 
for the first time, four important requirements for the successful employment of the electrodes in the fab-
rication of thin film based devices were simultaneously satisfied: a high figure-of-merit (around 700–800), 
mechanical stability (curvature radius of 0.5 mm), surface smoothness (RRMS less than 1 nm), and abundant 
surface coverage of the conductive networks (much of the nanowires were exposed to air). The fabricated 
AgNWs/cPI electrodes were used as a bottom electrode and substrate to construct the FT-RRAMs. The 
device successfully shows flexible and semi-transparent resistive switching memory characteristics includ-
ing high on/off ratio, excellent endurance, and long retention times even at the bent state. We tried to 
explain the cation-based resistive switching mechanism to interpret our memory system. To the best of our 
knowledge, this is the first example of AgNW-based electrodes used in the fabrication of RRAMs. We are 
convinced that our FT-RRAM device will bring a technology breakthrough and achieve success in future 
flexible and transparent electronic devices.
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