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Systemic Sclerosis (SSc) is an autoimmune disease marked by dysregulation of the

immune system, tissue fibrosis and dysfunction of the vasculature. Vascular damage,

remodeling and inadequate endothelial repair are hallmarks of the disease. Since

early stages of SSc, damage and apoptosis of endothelial cells (ECs) can lead to

perivascular inflammation, oxidative stress and tissue hypoxia, resulting in multiple

clinical manifestations. Raynaud’s phenomenon, edematous puffy hands, digital ulcers,

pulmonary artery hypertension, erectile dysfunction, scleroderma renal crisis and heart

involvement severely affect quality of life and survival. Understanding pathogenic aspects

and biomarkers that reflect endothelial damage in SSc is essential to guide therapeutic

interventions. Treatment approaches described for SSc-associated vasculopathy include

pharmacological options to improve blood flow and tissue perfusion and, more recently,

cellular therapy to enhance endothelial repair, promote angiogenesis and heal injuries.

This mini-review examines the current knowledge on cellular and molecular aspects of

SSc vasculopathy, as well as established and developing therapeutic approaches for

improving the vascular compartment.
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INTRODUCTION

Systemic sclerosis (SSc) is an autoimmune disease marked by diffuse vasculopathy, immunological
dysregulation and fibrosis of the skin and internal organs. Vascular manifestations derive mostly
from impaired blood flow and tissue ischemia, and are a challenge for the management of
SSc patients (1–3). In this mini-review, we examine the current and developing therapeutic
interventions with pharmacological agents and cellular therapy for SSc-associated vasculopathy.
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PATHOPHYSIOLOGY OF THE VASCULAR
ENDOTHELIUM IN SYSTEMIC SCLEROSIS

The endothelium is a metabolically active tissue that ensures
regulation of vascular tone, coagulation and fibrinolysis,
smooth muscle proliferation, cell adhesion and inflammation
(4). Vascular injury is an early event in SSc, with damage
and activation of endothelial cells (ECs) (5, 6) (Figure 1).
Injured ECs in SSc produce increased levels of endothelin-
1 (ET-1) and von Willebrand factor (vWF), and low levels
of nitric oxide (NO) and endothelial nitric oxide synthase
(5). The resulting imbalance between vasodilation and
vasoconstriction modifies the vascular tone, contributing to
tissue hypoxia. ET-1 also induces differentiation of fibroblasts
into amyofibroblastic phenotype, promoting intimal hyperplasia,
luminal narrowing, and vessel obliteration (7, 8). Myofibroblasts
may also be originated through the endothelial-to-mesenchymal
transition (EndoMT) (9), when ECs downregulate expression
of markers such as CD31 and VE-cadherin, and assume a
myofibroblast phenotype, characterized by fusiform morphology
and expression of α-SMA (10). The abnormal vascular tonus and
the increased expression of vWF stimulate platelet aggregation
and hypercoagulation, leading to further vascular damage
(11, 12). Reactive oxygen species contribute to further enhance
the damage, participating in the initiation and progression of
SSc (2, 5).

Cell adhesion molecules play an important role in
promoting endothelial integrity, besides regulating leukocyte
migration, vascular permeability and angiogenesis (13).
Increased expression of adhesion molecules and their
soluble levels, detected in early stages of SSc, correlate with
disease severity and visceral involvement (14–18). Indeed,
increased levels of E-selectin, vascular cell adhesion molecule
1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-
1) lead to activation of ECs, dysregulation of angiogenesis
and, as consequence, chronic and progressive vascular
damage (19).

IMPAIRED COMPENSATORY
ANGIOGENESIS AND VASCULOGENESIS

In SSc, damage and apoptosis of ECs result in loss of
capillaries that are not repaired by compensatory mechanisms
of vasculogenesis and angiogenesis (20, 21). Vascular endothelial
growth factor (VEGF) regulates blood vessel growth, with
key role in the process of angiogenesis (22). Serum levels of
VEGF and its receptor (VEGFR) are increased in SSc (16, 23–
26). Exposure to high levels of VEGF causes an exaggerated
angiogenic stimulus, with proliferation of ECs, resulting in
chaotic architecture of vessels, as observed by capillaroscopy (19).
An anti-angiogenic isoform, VEGF165, has been described in SSc
patients (27), and platelet releases containing VEGF165 impair
angiogenesis in vitro (28). In addition, function and frequencies
of endothelial progenitor cells (EPCs) are compromised in SSc,
playing a defective role in vasculogenesis (29). Table 1 describes
additional biomarkers associated with vascular damage in SSc.

CLINICAL MANIFESTATIONS OF
SSC-ASSOCIATED VASCULOPATHY

Raynaud’s phenomenon is one of the first manifestations of the
disease (8, 73). Progressive structural damage of the vessels,
followed by proliferative endarteritis and consequent tissue
ischemia, leads to systemic involvement, characterizing SSc as
a microvascular disease. Telangiectasias and digital ulcers are
frequent vascular manifestations of SSc, and associate with poor
prognosis (74, 75). Scleroderma renal crisis, a severe clinical
condition characterized by poor renal cortical perfusion and
rapidly progressive renal failure, was a leading cause of death
until the 1970s, when use of angiotensin-converting enzyme
inhibitors significantly improved patient management and
outcomes (76–80). Primary and secondary cardiac involvements
are described as frequent and probably underestimated in
SSc (81–83), and from 5 to 15% of SSc patients develop
pulmonary hypertension (79, 81). Less explored, but still frequent
vascular manifestations of SSc are erectile dysfunction, vascular
malformations of the gastro-intestinal mucosa (gastric antral
vascular ectasia - GAVE) and, to some extent, myopathy (66,
84–86). Routine assessments for vascular involvement include
clinical inspections, evaluation of organ function and, when
required, right-heart catheterism. Such manifestations should
be actively investigated and treated early, before advanced
organ damage.

PHARMACOLOGICAL APPROACHES

Therapeutic strategies for vasculopathy in SSc aim to improve
symptoms of Raynaud’s phenomenon (RP), heal and prevent
development of digital ulcers (DU), and decrease the ischemic
damage to internal organs. Multiple pharmacological options,
with different mechanistic approaches, are available and
recommended in themanagement of SSc patients (Figure 2) (87).
New strategies, including cell therapy, have been developed to
further improve this aspect of the disease.

CALCIUM CHANNEL BLOCKERS

Calcium channel blockers reduce intracellular calcium
concentrations, inducing relaxation of smooth muscle and
vasodilation (88). Dihydropyridines are broadly recommended
to attenuate severity and frequency of uncomplicated RP in SSc
(87, 89). Short and long-term use of calcium channel blockers
decreased plasma markers of oxidative stress (90), and in
vitro, nicardipine protected ECs against oxidative injury (91).
Calcium channel blockers also decreased serum concentrations
of N-terminal pro-brain natriuretic peptide (NT-proBNP)
in patients with SSc-associated PAH, indicating a possible
antispastic and vasodilatory effect on the pulmonary circulation,
not corroborated, however, by hemodynamic changes (92).
In patients with <5 years of SSc, nifedipine and nicardipine
improved myocardial perfusion and left ventricle function,
respectively, supporting the hypothesis of myocardial Raynaud’s
phenomenon in SSc (93).
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FIGURE 1 | Basic mechanisms of systemic sclerosis-related vasculopathy. Vascular injury is considered an initial event in the development of systemic sclerosis (SSc),

and may be triggered by multiple factors, including autoantibodies, infectious agents, reactive oxygen species (ROS), or idiopathic stimuli. In the early stages of

disease, vascular damage leads to activation of endothelial cells (ECs), with expression of adhesion molecules, production of chemokines, von Willebrand factor (vWF)

and vasoconstrictor agents, such as endothelin-1 (ET-1). Molecules produced by the injured endothelium recruit immune cells, that generate a perivascular infiltrate.

Prolonged inflammation leads to tissue fibrosis, with excessive activation of resident fibroblasts that transdifferentiate into myofibroblasts, the main cell type involved in

excessive collagen production and other extracellular matrix components (ECMs). Myofibroblasts are also originated through the endothelial-to-mesenchymal

transition (EndoMT). Dysfunction of endothelial progenitor cells (EPCs), antibody-induced ECs apoptosis, persistent platelet activation, decreased production of

vasodilatory nitric oxide (NO) and prostaglandin I-2 (PGI-2), synthetized by ECs, also participate in the pathogenesis of SSc-vasculopathy. In addition, compensatory

mechanisms of vasculogenesis and angiogenesis, including vascular endothelial growth factor (VEGF) and its receptor (VEGFR), are dysregulated and ineffective. High

(Continued)
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FIGURE 1 | expression of VEGF165, an anti-angiogenic isoform, contributes to this scenario. Reactive oxygen species, further contribute to intensify damage and

activation of the endothelium and, thus, increase tissue injury. Clinical manifestations of SSc-related vasculopathy include Raynaud’s phenomenon, pulmonary arterial

hypertension, scleroderma renal crisis, telangiectasias, digital ulcers and digital pitting scars, which severely affect quality of life and may compromise survival. ETA,

type A endothelin receptor; ETB, type B endothelin receptor.

TABLE 1 | Biomarkers associated with endothelial activation or vascular damage in SSc and clinical correlates.

Biomarkers Class/function Clinical associations References

Adhesion molecules

(ICAM-1, VCAM-1, selectins)

Cell–cell interactions Capillaroscopic abnormalities

Disease severity

Pulmonary fibrosis

(14, 15, 18, 30–35)

Angiopoietin system (ANG-Tie) Angiogenesis Disease activity

Digital ulcers

Esophageal dysmotility

Microangiopathy

Proliferative vasculopathy

(36–41)

Anti-centromere (ACA) Autoantibodies Microangiopathy

Pulmonary arterial hypertension

(41–43)

Anti-AT1R and -ETAR Autoantibodies Digital ischemic

Pulmonary arterial hypertension (PAH)

(44, 45)

Anti-endothelial cell (AECA) Autoantibodies Pulmonary fibrosis (46)

Anti-RNA polymerase III Autoantibodies Gastric Antral Vascular Ectasia (GAVE)

Scleroderma renal crisis

Diffuse skin thickening

Cardiopulmonary involvement

Rapid disease progression

(34, 47–55)

Anti - topoisomerase I (anti-SCl70) Autoantibodies Digital ulcers

Heart involvement

Interstitial lung disease

(56)

Endoglin (CD105) Type I membrane glycoprotein. Digital ulcers (57)

Endothelin-1 Vasoconstrictor molecule Interstitial lung disease

Right ventricle dysfunction

(58–62)

Endostatin Angiogenesis Digital vascular damage

Skin and pulmonary fibrosis

(63, 64)

Thrombomodulin Coagulation Pulmonary hypertension (65)

Thrombospondin-1 (TSP-1) Antiangiogenic glycoprotein Brachio-cervical inflammatory myopathy (66)

Vascular endothelial cell growth

(VEGF)

Angiogenesis Diffuse skin subset

Interstitial lung involvement

Nailfold capillary loss

Pulmonary Artery Hypertension (PAH)

(25, 67–72)

ETAR, endothelin receptor type A; AT1R, Ang receptor type-1.

ENDOTHELIN-1 RECEPTORS
ANTAGONISTS

Endothelin-1 receptor antagonists target ET-1, a crucial mediator
in SSc vasculopathy. Ambrisentan is a selective type A endothelin
receptor antagonist, while bosentan and macitentan are dual
antagonists, targeting both type A and B receptors (88). In two
randomized clinical trials, bosentan prevented the development
of new DU, but did not heal active DU (94, 95). Ambrisentan
reduced the number of active and new DU in SSc patients, also
decreasing pain and disability (96, 97).

Bosentan and ambrisentan improved hemodynamic
parameters in patients with SSc-PAH (98, 99). Bosentan
also decreased serum concentrations of endothelial activation
markers ICAM-1, VCAM-1, P-selectin and PECAM-1 (100).
In vitro experiments with preincubation of microvascular

endothelial cells (MVECs) from SSc patients with bosentan or
macitentan decreased the expression of mesenchymal markers,
identifying a possible pharmacological interference pathway to
prevent EndoMT (101).

PHOSPHODIESTERASE-5A INHIBITORS

Phosphodiesterase-5A (PDE-5A) hydrolyzes the cyclic
guanosine-5-monophosphate (cGMP), associated to the
nitric oxide (NO) vasodilator pathway. PDE-5A inhibitors
reduce the metabolism of cGMP, intensifying the vasodilatory
effects of NO (102). In SSc patients, PDE-5A inhibitors decreased
frequency and duration of RP attacks, improved DU healing
(103) and reduced disability and discomfort associated with
RP (104). For SSc-PAH, sildenafil reduced pulmonary artery
pressure, with beneficial effects on cardiopulmonary status (105).
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FIGURE 2 | Mechanistic targets of the main pharmacological approaches for systemic sclerosis-related vasculopathy. Multiple drug options, with different mechanistic

approaches, can be used for management of vascular manifestations in SSc patients. This figure summarizes mechanisms and clinical indications for: calcium

channel blockers (I); endothelin-1 receptor antagonists (II); phosphodiesterase-5 (PDE-5) inhibitors (III); angiotensin-converting enzyme (ACE) inhibitors (IV); guanylate

cyclase stimulator – riociguat (V) and prostanoids (VI). SR: strength of recommendation; SR: A, SR: B or SR: C according to the European League against

Rheumatism, in 2017 (87). Dihydropyridines, PDE-5 inhibitors and iloprost are recommended for SSc-associated Raynaud’s phenomenon (SR: A); bosentan is

recommended to reduce the number of new digital ulcers (SR: A); PDE-5 inhibitors and iloprost are recommended for active digital ulcers (SR: A); PDE-5 inhibitors,

endothelin-1 receptor antagonists (bosentan, ambrisentan, and macitentan) and riociguat are recommended for treatment of SSc-related pulmonary artery

hypertension (SR: B); epoprostenol (SR: A) and other prostacyclin analogs (SR: B) are recommended for severe SSc-related pulmonary artery hypertension; ACE

inhibitors are recommended as treatment for scleroderma renal crisis (SR: C). * and ** indicate clinical conditions in which specific drugs from the class are

recommended. NO, nitric oxide; ET-1, endothelin-1; ETA, type A endothelin receptor; ETB, type B endothelin receptor; cGMP, cyclic guanosine-5-monophosphate;

sGC, soluble guanylate cyclase; cAMP, cyclic adenosine monophosphate; GTP, guanosine-5′-triphosphate; IP, prostacyclin receptor; PGI-2, prostaglandin I-2.

Combined therapy of tadalafil plus ambrisentan resulted in better
responses for SSc-PAH than monotherapy with either agent
(106). However, sildenafil did not affect the number of circulating
EPCs or VEGF serum levels in SSc patients with vasculopathy
(107–109). PDE-5 inhibitors have been also investigated as
treatment for erectile dysfunction and, although SSc patients
have poor response to on-demand administration, daily fixed
doses may be effective (110).

PROSTANOIDS

Prostacyclin, also known as prostaglandin I-2 (PGI-2), is
synthetized by vascular ECs, promoting vasodilation and

decreasing platelet aggregation, inflammation and vascular
smooth muscle proliferation (111). Prostacyclin analogs
(iloprost, beraprost, treprostinil, and epoprostenol) and
the prostacyclin receptor agonist (selexipag) are available
pharmaceutical agents that enhance the prostacyclin pathway
and thus promote vasodilation (88).

Iloprost was effective for treatment of RP, DU and PAH
in SSc patients (112–117), also decreasing serum levels of
ICAM-1, VCAM-1 and E-selectin, reflecting reduced activation
of ECs (115). Iloprost and bosentan combinatory therapy
increased the number of nailfold capillaries (118). Beraprost
did not prevent development of DU (119) and had little effect
on hemodynamic parameters in SSc-PAH (120). Conversely,
epoprostenol improved clinical status and hemodynamic
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parameters (121, 122), and increased serum levels of adiponectin
(123), suggesting effects on vascular function (124) and on
adipose tissue metabolic pathways (123). Treprostinil improved
cutaneous blood flow (125, 126) and healing of DU (127), but
recent studies failed to show changes in vascular, angiogenic and
inflammatory biomarkers (128).

Prostacyclin agonists have short half-life, high frequency of
administration and multiple side effects, and products with more
convenient posology have been investigated. Selexipag is an oral
selective prostacyclin receptor agonist that promotes vasodilation
by increasing cyclic adenosine monophosphate concentrations
(129) and has been effective for PAH (130). For the peripheral
circulation, however, efficacy of this drug is still debated. While
in a randomized, placebo-controlled study, selexipag failed to
reduce the frequency of RP attacks (131), an open observational
study showed considerable improvement of RP, also suggesting
that selexipag may be effective for DU healing and resolution of
DU related-pain (132).

ANGIOTENSIN-CONVERTING ENZYME
INHIBITORS

Angiotensin-converting enzyme (ACE) inhibitors block the
conversion of angiotensin I into the vasoconstrictor agent
angiotensin II, promoting rapid control of the blood pressure
(133, 134). Over the past decades, ACE inhibitors had a
significant impact on outcomes of SSc patients with scleroderma
renal crises (SRC), decreasing the need for dialysis and increasing
survival (78, 135). Prophylactic use, however, did not reduce the
incidence and was associated with poor prognosis and risk of
death after onset of SRC (136, 137).

RIOCIGUAT

Riociguat is a soluble guanylate cyclase (sGC) stimulator that
leads to strong vasodilator effects on the pulmonary arteries
(138–144). Clinical trials in PAH patients, including SSc, showed
improvements in pulmonary vascular resistance (145). An initial
study failed to demonstrate significant reduction of active
or painful DU, or changes in plasma levels of VEGF, E-
selectin, VCAM-1 and ICAM-1, but long-term observations
detected complete healing of the DU (146), and improvement of
discomfort and disability associated with RP (147). Larger studies
should determine the impact of riociguat on the peripheral
vasculature (148, 149).

CYCLOPHOSPHAMIDE

Cyclophosphamide (CYC), an immunosuppressive drug
mostly used for SSc-related interstitial lung disease (150),
also affects the vascular compartment, both in experimental
and clinical scenarios (5). Cyclophosphamide improved
nailfold capillaroscopic patterns (151), increased the number
of circulating EPCs and reduced serum levels of VEGF, E-
selectin and thrombomodulin, markers of endothelial injury
and activation (152, 153), indicating that CYC may affect

pathogenic processes associated with lung damage and fibrosis,
such as re-endothelialization and re-epithelialization of the
alveolar-capillary barrier (154).

Dermal MVECs exposed to the serum of CYC-treated
SSc patients had better proliferation and less apoptosis
than those exposed to serum of untreated SSc patients.
Additionally, serum levels of antiangiogenic factors pentraxin
3 (PTX3), matrix metalloproteinase (MMP)-12, endostatin and
angiostatin were significantly reduced after CYC treatment
in SSc patients, suggesting a therapeutic effect on peripheral
microvasculopathy (155).

FLUOXETINE

Fluoxetine is a selective serotonin reuptake inhibitor that has
been recommended as treatment for SSc RP attacks (87).
Serotonin participates in Raynaud’s phenomenon pathogenesis
as a stimulator (156–158), but fluoxetine has paradoxical
vasodilation effects, mediated by 5HT7 and 5HT2B receptors
(159), that affect the NO and calcium pathways (160–162).
Fluoxetine reduced the severity of RP attacks in SSc patients, with
no impact on soluble P-selectin or wWF levels, however (163).

LESS TRADITIONAL THERAPEUTIC
INTERVENTIONS

Statins have been studied in immune-mediated diseases,
including SSc, due to their immunomodulatory effects (164–
166). Rosuvastatin improved endothelial function in SSc patients,
assessed by skin microcirculation and brachial artery flow (167).
Atorvastatin improved the visual analog scale for RP and DU,
and was associated with reduced plasma levels of endothelial
activation markers ICAM-1, E-selectin and ET-1, oxidative stress
and vWF activity (159, 168). Atorvastatin led to transient increase
in numbers of circulating EPCs (159), but failed to induce
maturation of EPCs into ECs in vitro, indicating a limited
therapeutic potential on vascular repair (169). Topical nitrate
application is also effective in the treatment of RP in SSc patients.
Nitrates are degraded into NO, increase cGMP concentration
in the vascular smooth muscle and lead to vasodilation (170).
Nitroglycerine tapes improved the peripheral circulation in
SSc patients (171). Likely, MQX-503, a novel compound of
nitroglicerine, was well-tolerated, improving the cutaneous blood
flow in SSc patients (172). Topical application of glyceryl
trinitrate increased DU perfusion, indicating supplementation of
the NO pathway by nitrates as a promising strategy (173).

More recently, pirfenidone, an antifibrotic drug considered
for treatment of interstitial lung disease (174), has shown
vasodilatory effects. In animal models, pirfenidone induced
pulmonary artery relaxation, restored renal blood flow and
stimulated the NO pathway involving voltage-gated KV7
channels (175, 176). Clinical studies should further evaluate
potential effects of the drug on the vascular compartment.

Local therapies are also described for SSc-associated
vasculopathy. Botulinum toxin (Btx) inhibits acetylcholine
release from presynaptic nerve terminals, reducing vascular
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smooth muscle contraction, and improving local circulation
(177). A randomized controlled trial was inconclusive, since
administration of Btx unexpectedly worsened blood flow in
hands of SSc patients with RP, but patient perceptions of hand
function and discomfort improved (178). Series of cases and
one systematic review show healing of DU and reduction of
pain in most patients after digital Btx applications (179, 180).
Laser and intense pulsed light therapies have been investigated
for digital ulcers and telagiectasies, with reports of safety
and improvements of patient perception and blood flow
(181, 182). In SSc patients with severe ischemic complications,
especially vascular obstruction of the hands, peripheral or digital
sympathectomy, microsurgical revascularization and digital
artery reconstruction may be indicated. Besides limitations,
these approaches are able to increase blood perfusion, decrease
or eliminate pain, and may be recommended for selected
cases (183).

CELLULAR THERAPIES FOR
SSC-ASSOCIATED VASCULOPATHY

In the last two decades, different cellular therapy approaches have
been investigated for SSc patients (184). Local applications of
fat graft/adipose-derived stem cells (ADSCs) or bone marrow
hematopoietic stem cells show the strongest potential for
regeneration of damaged tissue and vascular remodeling.

FAT GRAFTING AND STROMAL VASCULAR
FRACTION/ADIPOSE-DERIVED STEM
CELLS-BASED THERAPY

Adipose-derived stem cells can be isolated from the stromal
vascular fraction (SVF), located in the white adipose tissue (184),
and show robust angiogenic activity (185–195). Patients with SSc
treated with local administration of autologous fat grafts showed
improvement of RP symptoms (188, 195), and complete healing
of DU (189, 193). Treatment also led to significant increase of
capillary density in fingers affected by DU (193) and enabled
better pain control (189). Furthermore, autologous fat grafts
increased mouth opening and vascularization in perioral areas of
SSc patients (191).

Local injections of autologous SVF also improved RP, vascular
flow, hand pain and finger edema in SSc patients (190, 192).
Combination of autologous SVF and platelet-rich plasma, which
is reported to enhance ADSC proliferation (194), also increased
capillary density and decreased vascular ectasia in SSc patients,
suggesting induction of neoangiogenesis (196). When locally
implanted, ADSCs secrete VEGF and fibroblast growth factor,
which may support local angiogenesis (197). These cells promote
proliferation and inhibit apoptosis of ECs (198). Nevertheless,
ADSCs isolated from SSc patients exhibit abnormal proliferation,
metabolism, differentiation potential, and have a pro-fibrotic
phenotype (194, 199–201), suggesting that despite beneficial
effects, autologous ADSCs may not achieve full potential in tissue
repair (185). More efforts are needed to investigate how they

interfere with disease pathogenesis, and if there is potential for
systemic therapy (185).

HEMATOPOIETIC STEM CELL
TRANSPLANTATION

Over the past 25 years, hundreds of patients with severe
and progressive SSc have undergone autologous stem cell
transplantation (AHSCT) (202), with better outcomes regarding
survival, disease control and quality of life, when compared
to conventional treatment (203–206). Indications for AHSCT
includemainly fibrosis-relatedmanifestations of SSc, such as skin
thickening and interstitial lung disease (202–206). Patients with
severe vascular manifestations, especially those with pulmonary
hypertension or scleroderma renal crisis are usually excluded
(143–147) and extensive cardiac assessment is recommended
to avoid inclusion of patients with asymptomatic cardiac
involvement (207). The procedure resets the immune system
and promotes better control of autoreactivity, inflammation and
fibrosis processes (208, 209).

To date, little is known about the impact of AHSCT on
SSc-associated vasculopathy. Stem cell transplantation did not
change dermal vessel density evaluated by immunostaining for
endothelial markers CD31, VE-cadherin and vWF (210). On
the other hand, AHSCT partially restored the microvascular
structure assessed by nailfold video capillaroscopy (211),
increased capillary counts, normalized cutaneous expression of
VE-cadherin and decreased the expression of Interferon αmRNA
in the skin, which is known as a potent inhibitor of angiogenesis
(212, 213). Serum levels of VEGF decreased after AHSCT (214),
which can be interpreted as a good result, since disrupted VEGF
upregulation is associated with abnormal vessel morphology in
SSc (24). Mechanisms to possibly explain the positive influence
of AHSCT on the vascular compartment of SSc patients include
removal of cells associated with inhibitory effects on endothelial
repair, mobilization of endothelial progenitor cells from the
bone marrow (212), and other still unidentified mechanisms of
angiogenesis (211).

OTHER CELL TYPES USED FOR
SSC-VASCULOPATHY: BONE MARROW
MESENCHYMAL STROMAL CELLS

Mesenchymal stromal cells (MSC) are potential tools to treat
vascular dysfunction, due to their immunosuppressive, anti-
fibrotic and proangiogenic properties (215–217). AlthoughMSCs
from SSc patients display reduced capacity to differentiate
into ECs in vitro (218), intramuscular injections of autologous
MSCs reduced necrotic areas in one SSc patient with critical
limb ischemia (219). After treatment, angiographies showed
important revascularization, and histological analyses showed
strong expression of angiogenic factors possibly effective through
paracrine mechanisms. A SSc patient with multiple active skin
ulcers was treated with intravenous infusion of allogeneic MSCs,
with improvement of pain and blood flow in hands and fingers
(220). In five SSc patients treated with intravenous allogeneic
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MSC infusions, there was healing of skin ulcers, and two
of these patients also healed lesions of acral necrosis (221).
An ongoing double-blind randomized placebo-controlled trial
aims to evaluate safety and potential efficacy of intramuscular
injections of allogeneic MSC as treatment for DU. In addition to
clinical evaluations, such as DU healing and hand function, this
study plans also analyze biomarkers in peripheral blood and skin
biopsies (222).

CONCLUSIONS AND FUTURE
DIRECTIONS

Treatment of SSc-related vasculopathy remains difficult, despite
the multiple available therapeutic options and targeted pathways.
So far, patients seem to present advanced vascular involvement
since early periods of disease, with vessel disruption and ischemic
lesions. The narrow therapeutic window, associated withmultiple
pathophysiological presentations, makes development of new
strategies a challenge. There are no reliable biomarkers of
vascular severity or extension, so identification of patients with
disabling or life-threatening vascular involvement is often too
late. Best therapeutic effects include healing of ulcers and

improvement of blood flow in pulmonary, renal and peripheral
vascular beds. Cell therapy has an important potential, and may
be expanded and refined in the future to achieve more substantial
goals. Besides subsiding inflammation, future strategies should
aim to fully repair and reverse established vascular damage.
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