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Abstract

Aims: Evaluate cerebral autoregulation (CAR) by intracranial pressure reactivity index (PRx) and cerebral blood flow reactivity index (CBFx) during the

first four hours following return of spontaneous circulation (ROSC) in a porcine model of pediatric cardiac arrest. Determine whether impaired CAR is

associated with neurologic outcome.

Methods: Four-week-old swine underwent seven minutes of asphyxia followed by ventricular fibrillation induction and hemodynamic-directed CPR.

Those achieving ROSC had arterial blood pressure, intracranial pressure (ICP), and microvascular cerebral blood flow (CBF) monitored for 4h. Animals

were assigned an 8-h post-ROSC swine cerebral performance category score (1=normal; 2�4=abnormal neurologic function). In this secondary

analytic study, we calculated PRx and CBFx using a continuous, moving correlation coefficient between mean arterial pressure (MAP) and ICP, and

between MAP and CBF, respectively. Burden of impaired CAR was the area under the PRx or CBFx curve using a threshold of 0.3 and normalized as

percentage of monitoring duration.

Results: Among 23 animals, median PRx was 0.14 [0.06,0.25] and CBFx was 0.36 [0.05,0.44]. Median burden of impaired CAR was 21% [18,27] with

PRx and 30% [17,40] with CBFx. Neurologically abnormal animals (n=10) did not differ from normal animals (n=13) in post-ROSC MAP (63 vs. 61

mmHg, p=0.74), ICP (15 vs. 14mmHg, p=0.78) or CBF (274 vs. 397 Perfusion Units, p=0.12). CBFx burden was greater among abnormal than normal

animals (45% vs. 24%, p=0.001), but PRx burden was not (25% vs. 20%, p=0.38).

Conclusion: CAR is impaired early after ROSC. A greater burden of CAR impairment measured by CBFx was associated with abnormal neurologic

outcome.

CHOP Institutional Animal Care and Use Committee protocol 19-001327.

Keywords: Pediatric cardiac arrest, Cerebral autoregulation, Cerebral blood flow

* Corresponding author at: Children's Hospital of Philadelphia Department of Critical Care Medicine, 3401 Civic Center Blvd, Wood 6108 Philadelphia, PA
19104.

E-mail address: kirschenm@chop.edu (M.P. Kirschen).
http://dx.doi.org/10.1016/j.resplu.2020.100051

Received 10 September 2020; Received in revised form 3 November 2020; Accepted 8 November 2020

2666-5204/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R E S U S C I T A T I O N P L U S 4 ( 2 0 2 0 ) 1 0 0 0 5 1

Available online at www.sciencedirect.com

Resuscitation Plus
journal homepage: www.journals.elsevier.com/resuscitation-plus

http://crossmark.crossref.org/dialog/?doi=10.1016/j.resplu.2020.100051&domain=pdf
mailto:kirschenm@chop.edu
http://dx.doi.org/10.1016/j.resplu.2020.100051
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.resplu.2020.100051
http://www.sciencedirect.com/science/journal/26665204
www.journals.elsevier.com/resuscitation-plus


Introduction

Brain injury is a leading cause of morbidity and mortality after pediatric
cardiac arrest.1,2 Post-cardiac arrest neuronal injury starts immedi-
ately after return of spontaneous circulation (ROSC) and involves
complex pathophysiological responses to ischemia and reperfusion.3

During this vulnerable period, secondary brain injury can occur due to
impaired cerebrovascular autoregulation (CAR) that leads to
compromised cerebral perfusion and oxygen delivery.4,5 CAR is a
physiologic process by which cerebral blood vessels dilate or constrict
to maintain appropriate cerebral blood flow (CBF) over a wide range of
cerebral perfusion pressures (CPP). This innate process protects the
brain from ischemia and hyperemia.

CAR integrity can be assessed by the relationship between
spontaneous low frequency fluctuations in cerebral blood flow (CBF)
and mean arterial pressure (MAP) as a proxy for CPP and the driving
pressure for CBF.6,7 The most commonly used metric is the Pressure
Reactivity Index (PRx) which quantifies this relationship between MAP
and intracranial pressure (ICP), a surrogate for CBF, using a moving
Pearson’s correlation coefficient. Other similar metrics are based on
the same computations and use different surrogates for CBF like
regional brain tissue oxygenation or Doppler flow velocity.8,9 When
derived from a direct measure of CBF, the CAR metric is termed CBFx.
Small studies have demonstrated that infants, children, and adults
have impaired CAR after cardiac arrest and that impaired CAR is
associated with worse outcomes.10�17 However, CAR assessment in
these studies did not begin until many hours after ROSC, thus limiting
the ability to determine CAR integrity early after ROSC.

The objective of this study was to determine the integrity of CAR
using 1) intracranial pressure reactivity index (PRx) and 2) cerebral
blood flow reactivity index (CBFx) in the first four hours after ROSC in a

swine model of pediatric cardiac arrest and determine the association
of CAR impairment with neurologic outcome. We hypothesized that
CAR would be impaired after cardiac arrest and that the burden of
impaired CAR would be associated with abnormal neurologic
outcome.

Methods

Experimental overview

This was an analytical study using data from completed experi-
ments in an ongoing pre-clinical trial studying hemodynamic
targets during cardiopulmonary resuscitation (CPR) (NHLBI
R01HL141386). The primary findings of this study have not yet
been published. The Institutional Animal Care and Use Committee
of the Children’s Hospital of Philadelphia approved the experi-
mental protocol (19-001327), which was in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Animal preparation and experimental protocol

Full methods and model justification are detailed in previous
publications.18�21 Briefly, healthy four-week-old Yorkshire domestic
swine (approximately 10kg) were anesthetized, intubated, and
mechanically ventilated. Central venous and arterial access was
established and invasive hemodynamic monitors were advanced to
the aorta and right atrium. Through right frontal burr holes, a Millar
Mikro-Tip pressure catheter (Millar Instruments, Houston, TX, USA)
was advanced 5mm into the cerebral cortex to measure ICP and a
laser Doppler probe (Periflux; Perimed AB, Jarafalla, Sweden) was

Fig. 1 – Representative data from a single animal demonstrating the calculation for the burden of impaired
autoregulation. The four graphs (top to bottom) represent mean arterial pressure (MAP), cerebral blood flow (CBF),
cerebral autoregulation index (CBFx) correlating MAP with CBF, and the burden of CBFx >0.3 over the 4-h post-ROSC
monitoring period. The CBFx burden is calculated by the area under the curve (gray shaded areas) representing both
the magnitude and duration of impaired cerebral autoregulation. The area under the curve is then normalized as a
percentage of the monitoring duration for each animal.
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secured over the dura mater to measure local microcirculatory blood
perfusion (CBF) in a similar location.

All swine underwent seven minutes of asphyxia via endotracheal
tube clamping, followed by electrical induction of ventricular fibrillation
and immediate commencement of hemodynamic-directed CPR with
titration of chest compression force to achieve an a priori systolic blood
pressure goal of either 90mmHg or 110mmHg and vasopressor
administration to achieve a diastolic blood pressure goal of either
30mmHg or 40mm Hg. An initial defibrillation attempt was provided
after 10min of CPR. Animals without ROSC at that time continued to
receive hemodynamic-directed CPR for up to 10 additional minutes
with defibrillation attempts, when indicated by rhythm, every two
minutes. The experiment ended after 20min of CPR in animals not
achieving ROSC.

Those achieving ROSC were maintained on a post-arrest
protocol including the following: 1) titration of epinephrine infusion
and crystalloid boluses to maintain MAP between 45 and 60mmHg;
2) titration of minute ventilation to maintain end-tidal carbon dioxide
between 38 and 42mmHg; 3) titration of supplemental oxygen to
maintain peripheral oxygen saturation between 92 and 98%; and 4)
titration of inhaled isoflurane to maintain general anesthesia. Four
hours post-ROSC, invasive monitors were removed and animals
were extubated. Animals that did not survive to 4h post-ROSC or did
not have sufficient data from invasive monitors were excluded.
Swine were serially assessed by trained investigators, who
assigned an 8-h post-ROSC swine cerebral performance category
(CPC) score. This scale is a global assessment of neurologic
function with a value of 1 representing normal or near-normal

function and values of 2�4 representing substantial neurologic
dysfunction.19,22

Data acquisition and cerebral autoregulation monitoring

Aortic blood pressure, ICP, and CBF signals were sampled at 100Hz
(PowerLab; ADInstruments, Chelmsford, MA, USA) for the first 4h
after ROSC. We manually excluded periods of unusable data (e.g.,
sensor calibration, catheter obstruction) and applied an automated
sliding-median filter with a variable window size to remove residual
artifacts. With MATLAB (Mathworks, Natick, MA), we calculated PRx
and CBFx using a continuous, moving correlation coefficient between
MAP and ICP and between MAP and CBF, respectively.23 First, a 10-
second average filter was applied to limit the influence of faster
frequencies related to the pulse and respiration waveform compo-
nents. Then, PRx and CBFx were calculated as Pearson’s correlation
coefficient of 30 consecutive pairs of these 10-second averaged
values (total duration of 300s for each calculation). PRx and CBFx are
indices that range from -1 to +1. Negative or near-zero values
represent intact CAR because MAP and ICP (or MAP and CBF) are
either negatively correlated or are not correlated. Whereas, when
cerebral autoregulation is impaired, the indices are positive and
approach +1 because MAP and ICP (or MAP and CBF) positively
correlate. The indices were updated every 60s using a moving window
(80% overlap of data). To determine the total burden (combining the
magnitude and duration) of impaired CAR, we calculated the area
under the PRx and CBFx curves using a threshold of �0.3 and
normalized as a percentage of the monitoring duration (Fig. 1).24

Fig. 2 – Cerebral and systemic physiologic measurements at baseline (i.e. pre-arrest) and over the 4-h post-ROSC
recording period for normal and abnormal animals. Plots are medians with interquartile ranges. Baseline represents
pre-arrest values. Values at each timepoint compared with Wilcoxon rank-sum test with Bonferroni correction
(p<0.01 considered significant for MAP, ICP, CBF; p<0.0125 considered significant for PaO2, PaCO2).
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Using this method, if PRx (or CBFx) was <0.3 for the entire monitored
duration, the percent burden would be 0%, whereas if PRx (or CBFx)
was 1 for the entire monitored duration, the percent burden would be
100%.

Statistical analysis

Physiologic data were summarized as 1-minute mean values
throughout the post-ROSC period. From these values, mean values
for each animal were calculated for each hour post-ROSC as well as
for the entire 4-h post-ROSC period. Data were described as means
with standard deviations (SD) or medians with interquartile ranges
(IQR).

Each animal was classified as normal (8-h CPC 1) or abnormal
(8-h CPC 2 or 3).19 Differences in physiologic parameters over the
entire 4-h period were compared between outcome groups using
Wilcoxon rank-sum tests. Hourly mean values of systemic (MAP,
PaCO2, PaO2) and cerebral (ICP, CBF) physiologic parameters, as
well as CAR indices (PRx, CBFx, percent PRx and CBFx burden),
were compared between outcome groups at each time point using
Wilcoxon rank-sum with the Bonferroni correction. MAP, ICP, CBF
were compared at 5 different time points; therefore, a significant
p-value was <0.01. PaO2, PaCO2, PRx, CBFx and percent PRx and
CBFx burden were compared at 4 time points; therefore, a significant
p-value was considered < 0.0125. Analyses were performed using
SAS v9.2 (SAS Institute Inc., Cary, NC, USA), GraphPad Prism
(v5.03, GraphPad Software Inc., La Jolla, CA, USA), and Stata
(Version 14.2; StataCorp, College Station, TX, USA).

Results

Twenty-eight animals completed the experimental protocol. Twenty-
five of 28 remaining animals survived to 4h post-ROSC and 23 had
sufficient post-ROSC data for analysis. The median duration of post-
ROSC monitoring was 3.9 [3.7, 4] hours. There were no adverse
events. Among these 23 animals, the median 4-h post-ROSC PRx
was 0.14 [0.06, 0.25] and the median CBFx was 0.36 [0.05, 0.44]. The

median percent burden of impaired CAR measured by PRx was 21%
[18,27] and measured by CBFx was 30% [17,40].

Thirteen (56%) animals had normal neurologic function at 8h post-
ROSC, and 10 (44%) had abnormal neurologic function, seven with
CPC 2 and three with CPC 3. There were no differences in baseline or
hourly values of MAP, ICP, CBF, PaO2, or PaCO2 between
neurologic outcome groups (Fig. 2). Neurologically abnormal animals
did not differ from normal animals in post-ROSC MAP (63 [59, 65] vs.
61 [60, 66] mmHg, p=0.74), ICP (15 [12,17] vs. 14 [13,17] mmHg,
p=0.78) or CBF (274 [129, 315] vs. 397 [210, 486] Perfusion Units,
p=0.12).

Median CBFx in the four hours post-ROSC was greater for animals
with abnormal versus normal neurologic outcome (0.50 [0.37, 0.57]
vs. 0.22 [-0.07, 0.36], p=0.002, Fig. 3), and the percent burden of
impaired CBFx over the 4-h period was greater for abnormal animals
(45% [32, 47] vs. 24% [10,27], p=0.001, Fig. 3). In contrast, median
PRx in the four hours post-ROSC was not different between the
abnormal and normal neurologic outcome groups (0.14 [0.09, 0.19 vs.
0.18 [0.06, 0.34], p=0.648), and the percent burden of impaired PRx
was not different between these two outcome groups (25% [18,32] vs.
20% [18,25], p=0.376). The hourly PRx and CBFx comparisons
between the two outcome groups is shown in Fig. 4 which
demonstrates that CBFx differed between groups in Hour 3 (0.47
[0.27, 0.53] vs. 0.07 [-0.02, 0.22], p=0.0019), and the percent burden
of impaired CBFx differed between groups in Hour 3 (36% [21, 44] vs.
10% [2,15], p=0.0008) and Hour 4 (32% [26, 50] vs. 11% [4,22],
p=0.0056).

There was no difference between abnormal and normal
outcome groups in either the amount of intravenous fluids
(36 [13,40] vs. 40 [20, 50] ml/hour, p=0.416) or epinephrine infusion
rates (4 [0,25] vs. 0 [0,19] mcg/hour, p=0.628) received during the
four-hour post-ROSC period.

Discussion

This study demonstrated that CAR is impaired early after ROSC in a
porcine model of pediatric cardiac arrest. A greater burden of impaired

Fig. 3 – PRx, CBFx and percent PRx and CBFx burden in normal and abnormal outcome animals over the entire 4-h post-
ROSC recording period. Whiskers represent 5-95% percentile. Dotted line represents PRx (CBFx)=0.3, the threshold
for impaired autoregulation. Comparisons between outcome groups performed with Wilcoxon rank-sum test (p<0.05
considered significant). * p=0.002; **p=0.001.
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CAR, as determined by the cerebral blood flow reactivity index
(CBFx), within the first 4h following ROSC was associated with worse
neurologic outcome. When derived from the pressure reactivity index
(PRx), the burden of impaired CAR was not associated with neurologic
outcome. These data from a translational animal model contribute to
further understanding of the cerebral pathophysiologic consequences
of cardiac arrest and suggest that altered CAR in the early post-arrest
period may have a role in the pathogenesis of post-arrest brain injury.

A limited number of studies in adults, children, and neonates
suggest that CAR may be impaired after cardiac arrest and associated
with worse outcomes.10,11,13�15,25Unfortunately, the techniques used
to measure CAR varied widely between these studies, as did the
timing and duration of monitoring. While some degree of impaired
CAR was observed after cardiac arrest in all cohorts, the limited
sample sizes and substantially variability in patient populations and
severity of brain injury makes comparing the degree of impaired CAR
between children and adults not feasible. None of these clinical
studies, however, evaluated CAR early after ROSC. In our animal
model, CAR was impaired within these early hours post-arrest.
Interestingly, clinical investigations have shown that hypotension is
also common early (0�6hours) after ROSC and is associated with
worse brain injury and outcomes, even after accounting for cardiac
arrest characteristics.26�28 Patients with impaired CAR and concomi-
tant hypotension early after ROSC may have worse secondary brain
injury due to critical alterations in CBF and cerebral metabolism that
trigger a cascade of cellular damage.29,30 All of these data suggest
that the first few hours post-ROSC may be a crucial time for rigorous

systemic and cerebral hemodynamic monitoring and aggressive
supportive care.

In our study, animals with a greater burden of impaired CAR using
a direct measurement of CBF were more likely to have abnormal
neurologic outcomes. We hypothesize that these animals had
increased cerebral metabolic demand that was not met by their
tightly controlled blood pressure. Alternatively, their impaired CAR
may have led to hyperemic brain injury. Although while impaired CAR
determined by CBFx burden was associated with worse neurologic
outcomes, impaired CAR determined by PRx burden was not. Both
CBFx and PRx are time domain-based relationships between low
frequency fluctuations in MAP and CBF.31,32 However, CBFx directly
assesses the effects of MAP fluctuations on CBF, whereas PRx
measures the effects of MAP fluctuations on ICP, a surrogate marker
of CBF. Notably, in both our study and in prior large animal and human
studies, ICP is not elevated in the first few hours post-arrest.7,33 This
may explain in part why there was no demonstrable difference in PRx
between normal and abnormal animals.

Post-arrest care focuses on limiting secondary brain injury.2 The
findings fromthis translational model suggest thatavoiding hypotension
and maintaining normoxia and normocapnia are not sufficient to limit
secondary brain injury. Instead, our data suggest that rigorous
continuous monitoring of cerebral hemodynamics and physiology,
including assessments of CAR, may provide novel opportunities to
uncover cerebral hemodynamic abnormalities and perhaps ultimately
prevent or mitigate secondary brain injury. Although we measured
cerebral hemodynamics with an invasive technique, promising

Fig. 4 – PRx, CBFx and percent PRx and CBFx burden >0.3 in normal and abnormal animals for each hour of the post-
ROSC recording period. Dotted line represents PRx (CBFx)=0.3, the threshold for impaired autoregulation. Plots are
medians with interquartile ranges. Values at each timepoint compared with Wilcoxon rank-sum test with Bonferroni
correction (*p<0.0125 considered significant).
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non-invasive technologies have been successfully employed in
translational swine studies,34 as well as clinical studies.35�37 Utilizing
non-invasive devices that directly measure CBF at the bedside may
facilitate detection of CBFx-determined CAR impairments that could be
used to individualize hemodynamic management during post-cardiac
arrest care and potentially influence neurologic outcomes.38�40

This study has several limitations. We only evaluated CAR during
the initial 4h post-arrest. Longer monitoring periods would allow for the
measurement of temporal trends in CAR. Increased PRx burden later
in the process may have been associated with worse neurologic
function, as has been shown in adult clinical studies.41 However, our
data suggest that monitoring CBFx in the first hours post-ROSC may
be a fertile approach to delineate a potential harbinger of poor
neurologic outcome and perhaps ultimately mitigate the damage
when effective interventions are developed. The lack of variability in
blood pressures due to the strict post-cardiac arrest treatment protocol
precluded determination the lower limit of autoregulation for each
animal. Yet, this protocol allowed us to show that increased CBFx
burden was associated with poor neurologic outcome even in the
setting of tight blood pressure control and prevention of post-arrest
hypotension. We were also unable to determine PRx- or CBFx-
derived optimal blood pressure due to the limited duration of the
experiment designed to investigate the first 4h after ROSC.42 The
CPC scale is a gross measure of neurologic outcome for swine and
was only assessed at eight hours post-ROSC. It is unclear if the
association between the burden of impaired CAR and abnormal
neurologic outcome will persist at later time points. Lastly, the
calculated burden of impaired CAR in this study combined both the
duration and magnitude of impaired CAR. Larger studies with longer
recording periods will be needed to determine if one of these
components is more strongly associated with adverse outcomes.

Conclusions

In a large animal model of pediatric cardiac arrest, CAR was impaired
in the first several hours after ROSC and a greater burden of CAR
impairment when determined using a direct measurement of
microvascular cerebral blood flow was associated with an abnormal
neurologic outcome.
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