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PERSPECTIVE

A Flexible Approach for Context-Dependent Assessment 
of Quantitative Systems Pharmacology Models

Saroja Ramanujan1,*, Jason R. Chan2, Christina M. Friedrich3 and Craig J. Thalhauser4

Systems pharmacology models are having an in-
creasing impact on pharmaceutical research and 
development from preclinical through postap-
proval phases, including use in regulatory interac-
tions. Given the wide diversity among the models 
and the contexts of use, a common but flexible 
strategy for model assessment is needed to ena-
ble the appropriate interpretation of model-based 
results. We present an approach to evaluate these 
models and discuss how it can be customized to 
available data and intended application.

MODEL ASSESSMENT CONSIDERATIONS

A wide range of modeling approaches, including empiri-
cal, mechanistic pharmacokinetic/pharmacodynamic, and 
quantitative systems pharmacology (QSP), can be applied 
toward pharmaceutical research and development. The 
evaluation of these models is critical to understanding 
their strengths/limitations and interpreting model results. 
Assessment typically involves evaluating fits to observed 
data and testing predictive capabilities where possible.  
Pharmacokinetic/pharmacodynamic models are routinely 
evaluated by goodness-of-fit plots, predictive checks, 
and external validations focused on capturing output data 
under the premise of parsimony.1 In contrast, QSP mod-
els focus on the representation of underlying biological 
systems and address questions that involve exploration 
of mechanism and extrapolation to novel scenarios. QSP 
models are thus frequently and by necessity complex and 
underconstrained, leading to confusion around how QSP 
models can be appropriately evaluated.2 Previous QSP tu-
torials have presented considerations in planning, develop-
ing, qualifying, and applying systems models.3,4 Here, we 
focus on model assessment, defining four major assess-
ment areas (biology, implementation, simulation, and ro-
bustness), and suggest activities that can be customized 
based on the context of the work, mapping these efforts to 
previously presented QSP workflow stages and qualifica-
tion criteria (Table 1). We illustrate the tailored application 
of the assessment approach with two published models of 
cancer signaling.

BIOLOGICAL RELEVANCE

Assessment of the biological relevance is of critical im-
portance in QSP, where utility requires that the biology in-
cluded is appropriate to address the problem at hand and 
reflects relevant knowledge, data, and literature. Thus, liter-
ature support and input from biological and clinical experts 
are valuable in assessment. Mechanisms, hypotheses, be-
haviors, and phenotypes of interest should be articulated to 
ensure the adequacy of biological scope. QSP models typ-
ically include the representation of targets, drugs, biomark-
ers, and outcomes of interest. Although the scale, breadth, 
and depth of biological scope differ greatly among applica-
tions, a model should minimally include sufficient biologi-
cal pathways to connect each target or drug to the relevant 
biomarkers and outcomes, potentially via intermediaries.

MODEL IMPLEMENTATION

Assessment of the model implementation involves evalu-
ation of the mathematical formulation and quality checks 
on the accuracy and veracity of the model, its mathemati-
cal structure, the parameters, and their influence on model 
simulations. The choice of formalism must be consistent 
with the project goals. Ensuring that the implementation is 
technically accurate (e.g., correct coding, unit consistency) 
and appropriate for the mechanisms represented is also 
essential and may be required in regulatory submission. 
Once structure and implementation are confirmed, dy-
namical systems analyses can be used to explore inherent 
model dynamics and corresponding parameter ranges to 
assess their relevance. Although structural identifiability of 
model parameters can be difficult to assess or ensure, the 
impact of the parameters on the ability to reproduce crit-
ical behaviors can be determined via sensitivity analyses 
that determine how uncertainty in and variability around a 
given parameter set (local) or throughout parameter space 
(global) influence model outputs. Other approaches, such 
as Monte Carlo simulation, that explore model behav-
ior under different parameterizations can also inform this 
question and ensure consistency with expectations. These 
methods are used to confirm the ability of the model to 
generate distinct qualitative features or phenotypes (e.g., 
ranges of treatment response, different dynamical signaling 
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features)5 or to highlight needed revision of the model biol-
ogy or mathematics. 

SIMULATION RESULTS

Assessment of simulation results gauges the qualitative 
and quantitative plausibility of model simulations with 
respect to data and biological understanding. Generally, 
during modeling, parameters are estimated such that 
model or subsystem outputs match a set of qualitative 
and/or quantitative criteria. Confirmation that the model 
satisfactorily recapitulates this training/calibration data is 

one critical step. However, confidence in model predic-
tions further requires testing the model’s ability to pro-
spectively or retrospectively predict data or behaviors not 
used in model calibration. Ideally, these validation/test ex-
periments should be orthogonal to the calibration data yet 
fall within the scope of the biology represented. When data 
are limited, alternative approaches such as leave-one-out 
cross-validation or iterative calibration, validation, and up-
dating can be considered. Sensitivity analysis that demon-
strates appropriate responses to parameter modification 
can also provide confidence in simulated or predicted be-
haviors. Where validation against data or other biological 

Table 1  Quantitative systems pharmacology model assessment in four key areas—biology, implementation, simulation, and robustness

Assessment 
area

Workflow 
stage4

MQM 
criterion3

Assessment approach

Considerations Specific assessments Reporting

Biology 1–2 1–2 Biological relevance and 
plausibility

•	 Appropriate goal/questions
•	 Biological rationale and 

justification
•	 Literature evidence
•	 Biology/therapeutic area expert 

endorsement

•	 Documentation
•	 Model schematic

1–2 1–2 Main hypotheses and 
assumptions

1–2 3–6 Alternate hypotheses

Implementation 3 2, 7–8 Technical QA/QC •	 Appropriate modeling formalism
•	 Appropriate representation of 

biology
•	 Adherence to best coding 

practices
•	 Correct implementation: review or 

scripts to test equations, 
parameters, units

•	 Appropriate and stable numerical 
approach

•	 Documentation
•	 Detailed model diagram
•	 Model equations
•	 Variable list (definitions, 

units, constraints)
•	 Parameter list (definitions, 

units, ranges, refs.)
•	 Test scripts and results
•	 Model file (executable)

3–4 2, 5–6 Model structure and 
parameter ranges

•	 Dynamical features
•	 Potential range of behaviors/

outputs
•	 Relevant range of parameters/

inputs

•	 Graphical results
•	 Documentation/lists

4 7 Sensitivities and 
behaviors

•	 Targeted/specific sensitivity
•	 Local sensitivities (Local SA)
•	 Global sensitivities (Global SA)
•	 Qualitative phenotypes
•	 Literature support, expert input on 

results

•	 Documentation of approach 
and interpretation

•	 Tornado plots, heat maps, or 
similar

•	 List of critical sensitivities 
and how they are explored 
for predictions

•	 Example simulation plots

Simulations 4 7–8 Reproduction of 
behaviors (calibration/
training)

•	 Qualitative or quantitative 
comparison to calibration data 
(subsystem or system level)

•	 List of calibration 
experiments

•	 Plots comparing simulation 
vs. data (e.g., VPCs)

•	 Criteria metrics if used

4–5 8 Prediction of behaviors 
(validation/testing)

•	 Qualitative or quantitative 
comparison to validation data 
(subsystem or system level)

•	 List of validation experiments
•	 Plots comparing simulation 

vs. data (e.g., VPCs)
•	 Criteria metrics if used

Robustness 5–6 3–8 Evaluation of variability 
and uncertainty

•	 Comparison of input/output range, 
distribution, etc. with data

•	 Results with alternate parameteri-
zations or structures

•	 Tabular or graphical 
comparison of simulated vs. 
data variability

•	 Graphs of variability in input 
(parameters) and outputs 
(typically states)

•	 Documentation of critical 
uncertainties and variabilities

MQM, model qualification method; Assessment considerations in each key area are outlined and mapped to published guidances3,4 alongside specific  
assessments of interest in quantitative systems pharmacology modeling and recommendations for reporting.
MQM, model qualification method; QA, quality assurance; QC, quality check; SA, sensitivity analysis; VPC, visual predictive check.
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knowledge is not demonstrated, prospective simulations 
should be considered explorations, hypotheses, or “poten-
tial outcomes” rather than predictions. In such scenarios, 
modeling can still provide value by increasing mechanistic 
understanding, highlighting potential outcomes, and iden-
tifying or reducing uncertainties and risks in pharmaceuti-
cal research and development.

ROBUSTNESS OF RESULTS

Assessment of the robustness of results ties in many as-
pects of biology, implementation, and simulations to in-
crease confidence in model-based insight and predictions, 
specifically their robustness to biological variability and un-
certainty (alternate hypotheses or quantitative differences). 
This assessment focuses on the extent to which the im-
pact of variability or uncertainty in topology or parameters 
has been considered in predictions and the extent to which 
variability in data is captured. This can be done through 
explicit simulation of alternate parameterizations (“virtual 
subjects”)4 or collections thereof that cover input and/or 
output uncertainty and variability.4,5 Note that exploration 
of parameter uncertainty helps address concerns related to 
parameter identifiabilty.

CONTEXT DEPENDENCE

The application of the model and the availability of data de-
termine how and to what extent different assessment ap-
proaches are appropriate. Some applications (e.g., clinical 
trial design) require more robust assessment, whereas a more 
flexible approach may be sufficient for mechanistic explora-
tion. Decisions with significant safety or financial implications 

also require more rigorous assessment, as do efforts where 
modeling is a primary driver for a decision, without parallel 
evidence. Abundant data enable separate calibration and 
validation data sets, whereas limited data may necessitate 
other approaches to testing the model and corresponding 
caution in interpretation of results. In addition, different math-
ematical formulations require different mathematical assess-
ment techniques. Although context influences how and to 
what extent each major assessment area is addressed, all 
areas should be considered and discussed. Figure 1 shows 
how contextual considerations can influence the degree of 
rigor required in model assessment and indicates the differ-
ent context surrounding example models of cancer signaling 
pathways.6–9 Here, we discuss how context influences model 
assessment for two of these studies.6,7

Context
Many cancers display alterations in mitogen activated pro-
tein kinase (MAPK), PI3K, and other intracellular signaling 
pathways that promote tumor growth. Briefly, the canon-
ical MAPK pathway proceeds from receptor engagement 
through RAS, RAF, MEK, and ERK phosphorylation to 
downstream effects on cell growth, survival, and protein 
translation. Kirouac et al.6 modeled the MAPK pathway 
based on rich preclinical and limited clinical data to ex-
plore the potential utility of a novel ERK inhibitor, espe-
cially in the treatment of RAF-mutant BRAFV600E colorectal 
cancer, to support clinical strategy and ongoing phase I 
trials. Eduati et al.7 modeled multiple signaling pathways, 
including MAPK, using in vitro data from a broad set of 
colorectal cancer lines to investigate diversity in cellular 
signaling and mechanisms of resistance and to suggest 
sensitivities for possible therapeutic investigation. 

Figure 1  Context-dependent considerations in assessment of Quantitative Systems Pharmacology models. The rigor required or 
flexibility acceptable in model assessment is influenced by context-specific considerations, including: intended application of the 
model; financial, safety, or other risks involved; parallel evidence supporting model-based recommendations; intended positioning of 
modeling work; and the nature and extent of the data available for the modeling effort. As illustration, we roughly indicate on the axes 
the different context of each of the following modeling efforts involving the mitogen-activated protein kinase (MAPK) signaling pathway: 
(1) Kirouac et al.6 used preclinical and limited clinical data to support clinical strategy with potentially significant consequences and 
only preclinical parallel evidence on the drug/combo efficacy; (2) Eduati et al.7 used rich preclinical data to explore signaling diversity 
and resistance mechanisms and propose hypotheses for in vitro testing; (3) different dynamical models8,9 have aimed more generally 
to understand the implications of mechanistic signaling topology and feedback on the pathway behavior.
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Biology
In each case, the biology represented is appropriate for the 
goal. Kirouac et al.6 focus on the MAPK pathway, including 
targets and mutations of interest, hypothesized resistance 
mechanisms (receptor redundancy, bypass signaling, feed-
backs), and a mechanistic link from signaling to cell/tumor 
growth. In contrast, Eduati et al.7 address a broader set of 
signaling pathways and interactions required to identify re-
sistance mechanisms in different cell lines.

Implementation
Kirouac et al.6 use an ordinary diffferential equation formulation 
appropriate for signaling and growth dynamics, whereas the 
logic–ordinary diffferential equation implementation of signal-
ing used by Eduati et al.7 facilitates exploration of differential 
signaling among cells lines while an elastic net model relates 
signaling model parameters to in vitro cell survival. Full model 
specifications are provided in each to enable thorough math-
ematical assessment. Although neither study presents formal 
structural or dynamical analysis, the Kirouac et al.6 model is 
shown to capture critical dynamic data, such as feedback-
driven ERK rebound. With respect to parameter sensitivity, 
both studies verify reasonable model sensitivities by demon-
strating appropriate responses of diverse cells/tumors to differ-
ent perturbations (drugs and stimuli), and Eduati et al.7 further 
analyzes which parameters are most correlated with survival.

Simulation
Both models are calibrated to rich data sets obtained using 
diverse preclinical models and treatments. Both studies in-
clude preclinical validation: Kirouac et al.6 by (retrospective) 
prediction of growth response for multiple drug combinations 
and preclinical models and Eduati et al.7 by (prospective) in 
vitro verification of a novel model-predicted drug combina-
tion. To support clinical application, Kirouac et al.6 capture 
prior clinical trial data in a virtual population and validate 
quantitative predictions for ERK inhibitor efficacy against 
emerging clinical results. In contrast, clinical simulation is not 
the focus of the Eduati et al.7 effort, and thus clinical valida-
tion is neither required nor included; instead, they cite ongo-
ing trials as evidence for the relevance of their predictions.

Robustness
Variability is explored in each study using different param-
eterizations for different cell lines/tumors. Eduati et al.7 em-
phasize variability in preclinical signaling pathway usage and 
graphically illustrate the inferred differences. Kirouac et al.6 
focus on representing the diversity required to predict clinical 
response distributions and present both ranges of parame-
ters sampled and the resulting virtual population output vari-
ability, although they do not report the final parameter ranges 
retained in the virtual population. Ultimately, the approaches 
taken in each study enabled the exploration of differential re-
sponsiveness and resistance in the corresponding contexts. 
Numerous other modeling studies (from Huang and Ferrell8 to 
Kochańczyk et al.9) have investigated MAPK pathway topol-
ogy, signal propagation, feedback and crosstalk, and dynam-
ical features. Such studies often perform detailed dynamical 
and parameter sensitivity analyses, but did not always include 
nor require extensive model calibration and validation given 

the exploratory intent of the studies, further illustrating how 
goals and context help influence assessment strategy.

CONCLUSION

We have proposed a customizable approach for QSP model 
assessment consistent with previous guidances and tutorials. 
A technical review of QSP efforts could include an assess-
ment summary describing context of use and listing ap-
proaches in each of the four major areas, noting justification 
and limitations. This could accompany detailed reporting of 
assessment and modeling results as outlined in Table 1 and 
in a recent publication from the UK QSP Network.10 This uni-
form assessment approach, which allows for customization to 
context of use, could thus support communication and review, 
including regulatory interactions. Publication and transparent 
model sharing would further promote assessment and use by 
the community, as evidenced by the recently described reuse 
and utilization of a published QSP model by the US Food and 
Drug Administration.10 Moving forward, common language 
and libraries of visualizations, analysis scripts or tools, and 
metrics would facilitate the execution, communication, and 
review of QSP efforts as it has in the field of pharmacometrics.
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