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Breast cancer is the most common cancer in the world, and DNA methylation plays a key
role in the occurrence and development of breast cancer. However, the effect of DNA
methylation in different gene functional regions on gene expression and the effect of gene
expression on breast cancer is not completely clear. In our study, we computed and
analyzed DNA methylation, gene expression, and clinical data in the TCGA database.
Firstly, we calculated the distribution of abnormal DNA methylated probes in 12 regions,
found the abnormal DNA methylated probes in down-regulated genes were highly
enriched, and the number of hypermethylated probes in the promoter region was
6.5 times than that of hypomethylated probes. Secondly, the correlation coefficients
between abnormal DNA methylated values in each functional region of differentially
expressed genes and gene expression values were calculated. Then, co-expression
analysis of differentially expressed genes was performed, 34 hub genes in cancer-
related pathways were obtained, of which 11 genes were regulated by abnormal DNA
methylation. Finally, a multivariate Cox regression analysis was performed on 27 probes of
11 genes. Three DNA methylation probes (cg13569051 and cg14399183 of GSN, and
cg25274503 of CAV2) related to survival were used to construct a prognostic model,
which has a good prognostic ability. Furthermore, we found that the cg25274503
hypermethylation in the promoter region inhibited the expression of the CAV2, and the
hypermethylation of cg13569051 and cg14399183 in the 5′UTR region inhibited the
expression of GSN. These results may provide possible molecular targets for breast
cancer.
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INTRODUCTION

Breast cancer is the most common malignant tumor in women
and the main cause of cancer deaths in women worldwide. There
were more than 2 million new breast cancer patients and more
than 620,000 patients who died of breast cancer in 2018 (Bray
et al., 2018). Since 2004, the incidence of breast cancer has
increased slightly at a rate of about 0.3% per year (Siegel et al.,
2020). At present, despite the use of many advanced treatment
technologies to improve survival, but the quality of life for
patients is poor, and for most patients, the finding of disease
is in the late stage, or metastasis occurs at the late stage of
diagnosis (Punglia et al., 2007). Therefore, it is particularly
important to study breast cancer.

DNA methylation is a heritable and reversible epigenetic
modification that can regulate gene expression without
changing the DNA sequence. It mainly occurs at CpG sites
and is considered to be a goalkeeper for long-term stable
regulation of gene expression (Cedar and Bergman, 2009).
DNA methylation of different regions has both positive and
negative correlations with gene expression in breast cancer
(Győrffy et al., 2016). Many studies have reported that DNA
methylation in the promoter region is negatively correlated with
gene expression (Li et al., 2016; Janostiak et al., 2018). Studies
have also found that DNA methylation is positively correlated
with gene expression levels in the gene body region (Yang et al.,
2014). It has been reported that DNAmethylation may play a key
role in the process of carcinogenesis by down-regulating the
expression of tumor suppressor genes (Jones and Baylin,
2007). The hypermethylation in the promoter region of tumor
suppressor genes is related to gene inactivation and
transcriptional inhibition, and the hypermethylation of CpG
islands (CGI) in the promoter region is considered to be one
of the earliest and most frequent changes in cancer (Baylin, 2005;
Wittenberger et al., 2014). There are some studies have shown
that the hypomethylation of the enhancer region is closely related
to up-regulation for gene expression in breast cancer (Jin et al.,
2019). The hypomethylation in the promoter region is related to
the activation of oncogenes and metastasis-promoting genes and
has been verified to play an important role in the occurrence,
development, and metastasis of cancer (Stefanska et al., 2011;
Jones, 2012; Nilsson et al., 2014). Thus, it is necessary to study the
effect of DNA methylation in different regions on gene
expression.

Studies have shown that abnormal DNA methylation is
considered to be a key factor leading to the carcinogenesis of
various tumors, including breast cancer (Kulis and Esteller, 2010;
Karsli-Ceppioglu et al., 2014). For example, PSAT1methylation is
associated with HR-positive, lymph node-positive breast cancer,
and invasive lobular cancer. GNE methylation is associated with
HR-negative breast cancer, while CXCL14 methylation is
associated with HER2-positive breast cancer (Bu et al., 2013).
Studies have also found that DACT2 promoter methylation is
related to advanced tumor staging (Borgonio-Cuadra et al., 2018).
CRY2 is an independent indicator that reduces the risk of
metastasis and recurrence in ER+ breast cancer patients (Liu
et al., 2017). DFNA5 methylation shows strong potential as a

biomarker for breast cancer detection and prognosis (Croes et al.,
2018). Therefore, it is very meaningful to find key genes regulated
by DNA methylation in breast cancer.

Although there have been substantial advances in breast
cancer treatment, the treatment of breast cancer is still limited
due to the lack of precise breast cancer molecular targets (Tang
et al., 2018). In this study, to find molecular targets of DNA
methylation that affect breast cancer prognosis. Firstly, the
correlations between gene expression values and abnormal
DNA methylation in different functional regions of four types
of genes were computed and analyzed. Secondly, breast cancer
may not be caused by the regulation of a single gene but by the
joint regulation of multiple genes. To find candidate molecular
targets and describe the correlation patterns between genes, we
used weighted gene co-expression network analysis (WGCNA) to
construct a co-expressed gene network. Based on the analyses of
the correlation between the module gene and the clinical
characteristics of the samples, two modules that were strongly
related to cancer were obtained, and the hub genes were selected
by analyzing the importance of the gene in the module. We
analyzed the pathways of these hub genes and selected genes
enriched in key pathways as the key genes for our research. Then
by analyzing the genes whose absolute value of the correlation
between expression value of key genes and DNA methylation of
different sites was greater than or equal to 0.6, we found that our
results verify that promoter methylation was negatively correlated
with gene expression, and gene body region methylation was
positively correlated with gene expression. Finally, a multivariate
Cox regression analysis was performed on the 27 probes, and a
regression model was constructed using three probes. Survival
analysis shows that the prognostic performance of the model is
good. Consequently, the three probes may be molecular targets
related to methylation in breast cancer.

MATERIALS AND METHODS

Data Sources
We downloaded the gene expression data [fragments per kilobase
of exon model per million mapped fragments (FPKM) and
COUNTS], DNA methylation data (HM450K), and clinical
data (Supplementary Table S1) (hg38) of breast cancer and
paracancerous tissues from the TCGA (The Cancer Genome
Atlas) (https://tcga-data.nci.nih.gov/tcga/) database
(Supplementary Table S2). We downloaded the human
reference genome annotation file RefSeq gene (hg38) and the
location file of CGI from UCSC (http:/genome.ucsc.edu/). The
position file of the enhancer was obtained from the FANTOM5
(Function Annotation of The Mammalian Genome) (https://
fantom.gsc.riken.jp/5/) database.

Data Preprocessing and Division of
Different Regions
For gene annotation file, we retained 57,392 transcripts starting
with the NM (the mature messenger RNA). We randomly reserve
one of the transcripts with the same transcription start site (TSS),
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FIGURE 1 |Distribution map of DNAmethylation in the whole genome. (A) is the methylation value of hypomethylation (Hypo) and hypermethylation (Hyper) probes
in different samples, the rows are the methylation values of each probe, and the columns are the different samples. (B) is the density distribution of DNA methylation
probes in each functional region of the genome. (C) is the density distribution of DNA methylation probes in each functional region of the genome normalized by length.
(D) is the distribution ratio diagram of the hyper and hypomethylation probes of the CGI and the promoter region, (E) is the distribution of average DNAmethylation
levels in 12 regions of ADMPs in paracancerous tissues. (N) and breast cancer tissues (T). The abscissa bin1-bin140 is divided into 12 regions by 11 vertical lines, and the
upper coordinate is the name of each region.
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leaving 19,495 genes. Finally, the genes on chromosomes 1-22, X, and
Y were retained, and a total of 19,484 genes encoding proteins were
obtained for this study. We divided the genome into six regions
{promoter (1,500 bp upstream and downstream of TSS), 5′UTR,
exon, intron, 3′UTR, and intergenic region [from the transcription
termination site (TTS) of one gene to the TSS of the next gene]}. In
addition, we also selected the enhancer region and used the position
of the enhancer to find the gene closest to it, and defined this gene as
the target gene of the enhancer. After processing the location file of
CGI, we obtained five regions [N_Shelf (2–4 kb upstream of CGI),
N_Shore (0–2 kb upstream of CGI), CGI, S_Shore (0–2 kb
downstream of CGI), and S_Shelf (2–4 kb downstream of CGI)].
Thenwe divided the promoter region into 30windows in 100 bp, and
each of the other 11 regions was divided into tenwindows on average.

Calculation of Differentially Methylated CpG
Sites and Average DNA Methylation Level
First, we integrated the downloaded DNA methylation data of
789 breast cancer and 96 paracancerous samples into a matrix.
Then we used the Limma package for differential analysis (Ritchie

et al., 2015). Finally, we selected the probe of |Δβ|≥ 0.2, p< 0.05,
adjusted p-value< 0.01, 14,855 hypermethylated probes and
11,056 hypomethylated probes were obtained (Supplementary
Table S3). We collectively refer to hypermethylated probes and
hypomethylated probes as abnormal DNA methylated probes
(ADMPs).

Δβ � βω,c − βω,n (1)

here βω,c denotes the methylation level of the ω-th CpG site
(probe) in the cancer sample, the βω,n denotes the methylation
level of ω-th CpG site in the paracancerous sample.

We matched ADMPs to 12 different regions of the gene and
calculated the DNA methylation level of each region for the gene.
To better understand the abnormal DNA methylation
characteristics of each region, we calculated the average DNA
methylation level of each region according to the following
formula:

βb � ∑
k

i�1
βb,i/k

FIGURE 2 | The distribution of correlation coefficients between gene expression and DNA methylation. (A) is a volcano map for screening DEGs. (B) is the
enrichment number of DNA methylation probes in each region of up-regulated and down-regulated genes. (C) is the correlation between DNA methylation and gene
expression in each region of the four types of genes.
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FIGURE 3 | WGCNA analysis of DEGs. (A) is a sample clustering tree diagram. (B) is the scale-free index of various soft threshold power, and the average
connection degree of various soft threshold power. (C) is the module gene color block of cluster analysis. The first line is the module generated by the first clustering, and
the second line is the mergedmodule (when the similarity between different modules reaches 0.8, they are merged into onemodule). (D) is the heat map of the correlation
coefficient between module genes and clinical features. (E) is the scatter plot of the distribution of the Module Membership (MM) and the Gene Significance (GS) in
the blue module. (F) is the scatter plot of the distribution of MM and GS in the green module. (G) is the Venn diagram of the hub gene and the expression up-regulated
gene and the expression down-regulated gene.
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βb,i � ∑
m

ω�1
βω/m (2)

here βb denotes the average DNAmethylation level of the bth bin,
βb,i denotes the methylation level of the bth bin in the ith gene,
and k represents the number of genes whose DNA methylation
level is not 0. βω denotes the DNA methylation level of the ω-th
CpG site. m represents the number of probes falling into the bth
bin of the ith gene.

Analysis of Differentially Expressed Genes
We used the DESeq2 package to process gene expression data
(Love et al., 2014). First, the expression data were integrated and
normalized into a matrix, and log2FC (foldchange = cancer/
normal) >1, p < 0.05, adjusted p-value< 0.05, was used as the
threshold. Finally, 5,063 differentially expressed genes (DEGs)
were obtained, of which 3,030 genes were up-regulated, and 2,033
genes were down-regulated (Supplementary Table S4).

Selection of Co-Expressed Genes and Hub
Genes
We used the WGCNA package to calculate the Pearson correlation
coefficient betweenDEGs, and construct a similaritymatrix. To better
satisfy the structure of the scale-free network, the similarity matrix
was transformed into a connectivity matrix through suitable soft
thresholding. The topological overlap matrix (TOM) was calculated
through the connectivity matrix, and finally, the degree of
dissimilarity matrix was obtained through 1-TOM. Through the
dissimilaritymatrix, genes could be easily clustered to obtain different
gene modules. When selecting the hub genes, first, we calculated the
logarithm of the p-value after linear regression between the gene

expression value and the clinical characteristics. It represents the
relationship between gene expression and clinical characteristics in
themodule, that is, theGene Significance (GS). If the absolute value of
GS for a gene is greater, the biological significance of the gene is
greater. Second, the Pearson correlation coefficient between the gene
expression value and the characteristic gene of a given module was
calculated, that is, the Module Membership (MM). The larger the
MM value of a gene, the more important the gene is in the module
(Langfelder and Horvath, 2008).

Correlation Analysis
We used 75 breast cancer samples with DNAmethylation and gene
expression in both cancerous and para-cancerous tissues. Due to
the characteristics of DNA methylation and gene expression data,
we used Spearman correlation to calculate the correlation between
DNA methylation and gene expression, as shown in Eq. 3.

rω � 1 −
6∑n

j�1(rgβω,j − rgei,j,ω)
2

n(n2 − 1) (3)

here rgβω,j denotes the order of the DNA methylation value of
ω-th probe in the jth sample, rgei,j,ω denotes the order of the gene
expression value of the ith gene where the ω-th probe is located
for the jth sample, rω denotes the Spearman correlation
coefficient between the DNA methylation value of the ω-th
probe and the expression value of its gene.

Prognostic Model Construction
We selected 11 genes because they are strongly correlated with
tumor status, they are all enriched in pathways related to cancer,
and their gene expression values are strongly correlated with DNA
methylation. Thenwe used themethylation level of 27CpG sites on

FIGURE 4 | Hub gene-enriched KEGG pathway. (A) is the bubble chart of the hub gene-enriched pathway. (B) is the pathway-enriched gene, the square is the
pathway name, and the circle is the gene name.
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the 11 genes and survival information to establish a multivariate
Cox proportional hazard regression model, in which significant
CpG sites were regarded as typical CpG sites. Finally, three
methylation sites (cg25274503, cg13569051, and cg14399183) in
the risk ratio model were determined. A risk score was established,
the coefficient was weighted by the Cox model, and the risk score
was calculated according to the following formula:

Risk Score � ∑Coef × β (4)

whereCoef represents the regression coefficient of the CpG site on
the prognostic risk score, and β is the methylation level of CpG site.

RESULTS

Genome-Wide DNA Methylation Analysis
To understand the distribution of ADMPs in the breast cancer
genome, we calculated the difference in DNA methylation. The

14,855 hypermethylated probes and 11,056 hypomethylated probes
were obtained (Figure 1A). The ADMPswerematched to 12 regions
of the genome (Figures 1B,C,E). In both sides of CGI, intergenic
regions, and intron regions, the degree of enrichment for
hypomethylated probes is higher than that for hypermethylated
probes (Figure 1B). The hypermethylated probes are highly
enriched in CGI and promoter regions. Then we normalized the
number of probes distributed in each region according to the length
of each region, and the distribution was shown in Figure 1C. The
enrichment degree of hypermethylated probes is higher than that of
the hypomethylated probes in CGI, enhancer regions, and promoter
regions. In other regions, the enrichment degree of hypomethylated
probes is higher than that of hypermethylated probes. By comparing
Figures 1B,C, we found that hypermethylated probes are more
significantly enriched in CGI and promoter regions after
normalization by length. We found that the hypermethylated
probes in CGI and promoter regions are highly enriched both
before and after normalization. So, we took the intersection

FIGURE 5 | The DNA methylation distribution map of probes for 17 key gene, the distribution heat map of the DNA methylation value of 45 CpG sites in 150
matched cancers and paracancerous samples. The row represents the DNAmethylation value of each CpG site, and the column represents each sample. Blue indicates
the trend of DNA methylation value close to 1, and yellow indicates that the DNA methylation value is close to 0.
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between the hypermethylated probes in the CGI and the
hypermethylated probes in the promoter region (Figure 1D) and
found that most of the hypermethylated probes in the promoter
region are located on the CGI. And we found that the number of
hypermethylated probes is almost the same as the number of
hypomethylated probes in the promoter region without CGI. In
the promoter region with CGI, hypermethylated probes is as high as
97.87%. It can be speculated that the enrichment of hypermethylated
probes in the promoter region is caused by the enrichment of CGI.
Our results also confirmed that hypermethylated probes are mainly
concentrated in CGI of the promoter regions.

We further explored the distribution of DNA methylation levels
in the 12 regions (Figure 1E). In the paracancerous tissues, the DNA
hypomethylated values are mainly concentrated in 0.65–0.85, the
DNA hypermethylated values in each region are mainly
concentrated in 0.15–0.3. In cancer tissues, the DNA
hypomethylated values in each region are mainly concentrated in
0.4–0.55, the DNA hypermethylated values are mainly concentrated
in 0.45–0.55. Regardless of whether the DNA methylation level of
the cancer genome is a hypermethylated probe or a hypomethylated
probe, the methylation level of each region of the gene is about 0.5.

Analysis of the Correlation Between DNA
Methylation and Gene Expression in
Different Functional Regions of DEGs
To understand the regulatory effect of DNA methylation on gene
expression, we calculated the DEGs between breast cancer tissues

and paracancerous tissues, of which 3,030 genes are up-regulated,
and 2,033 genes are down-regulated (Figure 2A). We computed
the ADMPs in various functional regions for up-regulated genes
and down-regulated genes, as shown in Figure 2B. The total
number of ADMPs in up-regulated genes is less than that in
down-regulated genes. The number of up-regulated genes is
about 1.5 times that of down-regulated genes, which further
shows that ADMPs like to be enriched in down-regulated
genes. The number of probes enrichment in the 5′UTR and
3′UTR of the up-regulated genes is almost the same, and the same
is true in the down-regulated genes. The number of
hypermethylated probes in the promoter and exon regions of
up-regulated genes is about twice the number of hypomethylated
probes, and the same pattern is observed in the exons of down-
regulated genes. However, the number of hypermethylated
probes in the promoter region of down-regulated genes is
6.5 times that of hypomethylated probes, which is quite
different from up-regulated genes. From the up- and down-
regulation of gene expression and the hyper- and hypo-
methylation of probes, it can be divided into four categories
(hypermethylated up-regulated genes, hypomethylated up-
regulated genes, hypermethylated down-regulated genes, and
hypomethylated down-regulated genes). We calculated the
Spearman correlation coefficients between the gene expression
value and each CpG probe falling into the functional region of the
differentially expressed gene in these four types of genes. The
correlation coefficients with p < 0.05 were selected for display, as
shown in Figure 2C. We can see that the expression of

TABLE 1 | Table of ADMPs significantly correlated with gene expression.

Style Gene cg id Chr Position Location Spearman
correlation coefficient

p value

hyper CAV2 cg12739419 chr7 116500539 Promoter, 1st intron, S_shore −0.7466 0
cg16260298 chr7 116500288 Promoter, 1st intron, CGI −0.6980 0
cg25274503 chr7 116500074 Promoter, 1st intron, CGI −0.6353 0

CFL2 cg25027125 chr14 34713595 3rd intron, N_shore −0.7061 0
FXYD1 cg03078169 chr19 35138887 Promoter, N_shelf, N_shore −0.6494 0

cg05247914 chr19 35138797 Promoter, N_shelf −0.7427 0
cg07780528 chr19 35139430 Promoter, N_shelf −0.6864 0
cg17540545 chr19 35139451 Promoter, N_shelf, N_shore −0.7986 0
cg18503912 chr19 35139375 Promoter, N_shelf, N_shore −0.8249 0

GNG11 cg08038054 chr7 93921469 Promoter −0.6857 0
GSN cg13569051 chr9 121289425 5′UTR, 10th intron −0.6657 0

cg13828579 chr9 121306136 12th intron −0.6756 0
cg14399183 chr9 121286030 5′UTR, 10th intron −0.7008 0

LEP cg00840332 chr7 128241216 Promoter, CGI −0.6269 9.38e-18
cg07464571 chr7 128240948 Promoter, CGI −0.6032 3.10e-16
cg12782180 chr7 128240879 Promoter, CGI −0.6268 9.46e-18
cg13381984 chr7 128241291 Promoter, 5′UTR, 1st exon, CGI −0.6302 5.57e-18
cg19594666 chr7 128241227 Promoter, CGI −0.6331 3.53e-18
cg26814075 chr7 128241245 Promoter, CGI −0.6136 6.97e-17

MGLL cg18274619 chr3 127776009 Enhancer, 4th intron −0.7373 0
MYLK cg00465319 chr3 123620721 3rd intron −0.6799 0

cg18731398 chr3 123695886 16th intron −0.7483 0
SEMA3G cg11137980 chr3 52435210 5′UTR, 1st exon −0.6044 0
SORBS1 cg02370232 chr10 95415608 18th intron −0.6763 0

cg06282596 chr10 95415722 18th intron −0.6528 0

hypo FXYD1 cg22783327 chr19 35142354 5th intron, N_shore 0.6777 0
PDE2A cg16640865 chr11 72590514 24th exon, CGI 0.6494 0
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hypomethylated up-regulated genes and hypermethylated down-
regulated genes are negatively correlated with the DNA
methylation level of the probes. The expression of
hypermethylated up-regulated genes and hypomethylated
down-regulated genes are positively correlated with the DNA
methylation level of the probes. In summary, the abnormal DNA
methylation of down-regulated genes is highly enriched. The
most obvious manifestations are the promoter region. Among
them, the number of hypermethylated probes in the promoter
region of down-regulated genes is much higher than that of
hypomethylated probes.

Discovery of Modular Genes Related to
Breast Cancer and Screening of Hub Genes
The genes that affect breast cancer are not single, so we need to
look for co-expressed gene clusters. We used 5,063 DEGs to find
gene clusters related to breast cancer. First, we performed
hierarchical clustering on all samples of DEGs and removed
14 outlier samples (Figure 3A). Then we constructed a scale-

free network for the gene expression values of the remaining
samples and chose three as the best soft threshold (Figure 3B).
We set the minimum number of genes in each gene module to 30
and obtained 19 gene modules by clustering and merging similar
modules (Figure 3C). At the same time, it can be seen that the
gene expression is relatively independent between the modules
(Supplementary Figure S1). Finally, the Pearson correlation
analysis was carried out between 19 gene modules and clinical
traits. Figure 3D shows that some module genes are strongly
correlated with tumor status. Among them, MEblue and
MEgreen show a strong negative correlation with tumor
status, and the correlation coefficients are −0.8 (p = 7e-265)
and −0.75 (p = 3e-212), respectively.

Because of the strong negative correlation between the above
two gene modules and the tumor status, we calculated the GS and
MM of each gene in blue and green modules. The results show
that the MM and GS of genes in the blue module and the green
module are highly linearly correlated (Figures 3E,F). Then we
selected genes with MM value greater than or equal to 0.8 and GS
value greater than or equal to 0.6 as hub genes that were highly

FIGURE 6 |Construction of a prognostic model. (A) The results of multivariate Cox regression analysis. p-values were shown as: *p < 0.05; **p < 0.01; ***p < 0.001.
(B) The sensitivity and specificity of the survival time of the sample. (C) The abscissa indicates the survival time (years), and the column indicates the survival rate.
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correlated with clinical features (Supplementary Table S5). 14
hub genes were obtained in the green module, and 125 hub genes
were obtained in the blue module, and these hub genes were all
down-regulated (Figure 3G). In summary, it is indicated that the
down-regulation of the 139 hub genes we obtained may be related
to the occurrence of breast cancer.

Pathway Analysis of Hub Gene
To understand the biological functions of the hub genes, we used
GenCLiP3 (Wang et al., 2019) to analyze the pathways of these
genes. We chose the KEGG pathway with p-value ≤ 0.01, Hit ≥
5. It can be seen from Figure 4 that these genes are mainly
enriched in the PPAR signaling pathway, which can regulate lipid
metabolism, adipogenesis, maintain metabolic homeostasis and
inflammatory gene expression, and have anti-cancer effects in a
variety of tumors (Ahmadian et al., 2013). The hub genes are also

enriched in the AMPK signaling pathway. Because of AMPK’s
role in regulating energy homeostasis, AMPK is considered to be
a potential target for developing new therapies for obesity, type 2
diabetes, metabolic syndrome, and cancer (Mihaylova and Shaw,
2011). The hub genes are also enriched in the Apelin signaling
pathway, which is related to different key physiological processes,
such as cell proliferation and energy metabolism regulation. On
the other hand, it also involves a variety of pathologies, including
diabetes, obesity, cardiovascular disease, and cancer
(Antushevich and Wójcik, 2018). These genes are also
enriched in the regulation of actin cytoskeleton pathway,
which is mainly responsible for mediating various important
cellular processes, including cell migration, proliferation, and
survival (Saarikangas et al., 2010). These results indicate that
hub genes are enriched in a variety of cancer-related pathways,
further explaining the importance of these hub genes.

FIGURE 7 | Analysis of risk scoring model. (A) represents the characteristic risk score distribution of the three methylation probes. (B) is a scatter plot of the
patient’s survival time. (C) is the heat map of DNA methylation level, and a row represents a CpG probe, a column represents a patient. The three graphs have the same
abscissa, and the abscissa is the patient in ascending order of risk score.
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Correlation Analysis Between Key Gene
Expression and DNA Methylation
We have obtained 34 genes enriched in the key pathways and called
them key genes. To understand the influence mechanism of
abnormal DNA methylation on the key genes whose expression is
down-regulated, wematched probes for abnormal DNAmethylation
corresponding to the 34 genes. In the end, only 17 key genes have
ADMPs. Among them, 34 hypermethylated probes werematched on
14 genes, 11 hypomethylated probes were matched on six genes, and
there were both hypermethylated probes and hypomethylated probes
on three genes,MGLL, FXYD1, andMYLK. Figure 5 shows theDNA
methylation value of the 45 probes on the cancer samples and
matched paracancerous samples. We computed the Spearman
correlation coefficients between the expression values of these 17
genes and the DNAmethylation of 45 probes (Supplementary Table
S6) and found that the hypomethylated probes for the key genes are
mainly located in the intron and exon regions, and the DNA
methylation of probes are positively correlated with gene
expression. Then, we used 0.6 as the threshold, and the absolute
value of the correlation coefficient greater than or equal to 0.6 was
considered a significant correlation (p < 0.05). Finally, the DNA
methylation values of the 27 probes are significantly correlated with
the expression of 11 genes (Table 1). Among the 27 probes, the 25
probes are hypermethylated, and the expression of the 25 probes are
significantly negatively correlated with their genes. Due to the overlap
of gene annotation file regions, a probe may be in a different region.
We see that most of these hypermethylated probes are located in the
promoter, CGI, and intron, and the CGI are all contained in the
promoter. Some hypermethylated probes are located in the 5′UTR
region, the first exon, and enhancer regions. The cg16640865 and
cg22783327 are hypomethylated, located in the 24th exon of PDE2A
and the 5th intron of FXYD1, respectively. The results show that the

CGI hypermethylation in the promoter formost key genes can inhibit
gene expression. The hypomethylation of the 24th exon of PDE2A
and the 5th intron of FXYD1 also have an inhibiting effect on gene
expression. This is consistent with the conclusion that the promoter
methylation is negatively correlated with gene expression, and the
methylation of the gene body region is positively correlated with gene
expression.

The Construction and Evaluation of
Prognostic Model
We used the above 27 ADMPs that were significantly related to key
hub gene expression for regression analysis (Figure 6A). Three
ADMPs (cg13569051, cg14399183, and cg25274503) were obtained
using multivariate Cox analysis, and a Cox proportional hazard
model was constructed. The formula of our model is: Risk Score =
−3.0311 × β value of cg13569051 + (−2.7747) × β value of
cg14399183 + 1.7067 × β value of cg25274503. According to the
risk scoring formula, we performed receiver operating characteristic
(ROC) analysis on the risk score of each sample, and the area under
the curve is AUC = 0.73 (Figure 6B), which shows that the model is
good for the prognosis. Then, we divided the patients into a high-risk
group and a low-risk group using the median of the risk score as the
dividing line. ThroughKaplan-Meier survival analysis, we found that
the survival time of the high-risk group was significantly lower than
that of the low-risk group (p < 0.0001) (Figure 6C).

In addition, to observe whether theDNAmethylation level of the
probe in the model changes with the risk scoring model system, we
sorted the samples according to the risk score. Figures 7A,B show a
scatter plot of risk score distribution and patient status, where high
risk is associated with more deaths. The heat map shows the
methylation status of the three methylation probes between the
high-risk group and the low-risk group (Figure 7C). The

FIGURE 8 | DNA methylation distribution map of CAV2 and GSN. The scatter graph shows the Δβ level, the histogram shows the correlation coefficient between
the DNA methylation of each probe and the gene expression value (p-values were shown as: *p < 0.05; **p < 0.01; ***p < 0.001).
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methylation levels of cg14399183 and cg13569051 decrease as the
risk increases. The methylation level of cg25274503 increases with
increasing risk. The cg14399183 and cg13569051 probes located in
the 5′UTR of the GSN gene are protective factors for breast cancer,
while the cg25274503 probe located in the promoter of the CAV2
gene is a risk factor for breast cancer.

DNA Methylation of CAV2 and GSN
According to the above analysis, we can see the importance of
CAV2 and GSN for breast cancer. Therefore, we visualized the
DNA methylation values of all eight probes on CAV2 and all 21
probes on GSN (n = 75) (Figure 8). We calculated the Δβ value of
each probe in the 75 samples and determined that the probes on
CAV2 and GSN genes are hypermethylated probes except for the
median of Δβ about 0. Then we calculated the correlation between
the DNA methylation value of each probe and the gene
expression level. We see that all hypermethylated probes are
significantly negatively correlated with the down-regulated CAV2
and GSN in breast cancer. These results indicate that the down-
regulation of the two genes, CAV2 and GSN, is caused by
hypermethylation of important DNA methylation sites.

DISCUSSION

In this study, based on analysis of the correlation between abnormal
DNA methylation in six different regions and gene expression of
DEGs, co-expression analysis, and KEGG pathway analysis, 34 key
hub genes co-expressed and strongly correlated with cancer status
were obtained. The 27 ADMPs that were significantly related to gene
expression were obtained. Based on three methylation probes
(cg13569051, cg14399183, and cg25274503) in the CAV2 and
GSN genes, a risk scoring model with good prognostic
performance was constructed. It is further confirmed that the
three probes can be used as molecular targets for breast cancer.

Our results showed that in breast cancer samples, the
hypermethylation of cg25274503 in the promoter was significantly
negatively correlated with the down-regulation of CAV2. This rule is
also reflected in other studies. For example, the hypermethylation of
CGI silences theCAV2 gene, which can be used as an obviousmarker
of breast cancer (Uehiro et al., 2016). At the same time, the
hypermethylation of cg13569051 and cg14399183 in the 5′UTR
was significantly negatively correlated with the down-regulation of
GSN. Similar findings have been reported in previous studies. For
example, GSN is down-regulated in gastric cancer cell lines, and
promoter DNA methylation is involved in this process (Wang et al.,
2017). In addition, the CAV1 gene is highly methylated and lowly
expressed (Li et al., 2016). In ER breast cancer patients, FOXA1
hypermethylation is associated with the down-regulation of gene
expression (Espinal et al., 2017). The silencing of gene expression by
PAQR3 promoter hypermethylation may play an important role in
breast cancer (Nowak et al., 2017). These reflect the negative
correlation between DNA methylation in the promoter region and
gene expression. However, in previous studies on breast cancer, there
was almost no discovery of the relationship between the DNA
methylation of cg25274503 and CAV2 expression and the DNA
methylation of cg13569051 and cg14399183 and theGSN expression.

In fact, CAV2 is a gene encoding caveolin 2, which is involved in
basic cell functions, including signal transduction, lipid metabolism,
control of cell growth, and apoptosis; it may have tumor suppressor
effects (Fujimoto et al., 2001). In all types of lung cancer, CAV2 is
dysregulated at the RNA and protein levels (Wikman et al., 2004).
Experiments have verified that the CAV2 gene transcription is down-
regulated in mice and humans with obstructive bladder disease
(Thangavel et al., 2019). Studies have confirmed that compared
with the corresponding normal tissues, the mRNA level of CAV2
in human breast cancer tissues is significantly down-regulated (p <
0.001) (Sagara et al., 2004). GSN is an actin binding protein, a key
regulator of actin filament assembly and disassembly, and is involved
in cell movement, shape, and metabolism (Feldt et al., 2019). Studies
have shown that GSN gene transcription is down-regulated in breast
cancer of humans and some animals, and the activation of GSNmay
be a protective factor in the treatment of cancer cells against cancer
(Mielnicki et al., 1999; Shahrokh et al., 2019). The secreted GSN
inhibits the invasion and migration of colon cancer cells (Chen et al.,
2019). The expression ofGSN in bladder cancer is higher than that in
normal tissues, and the prognosis of bladder cancer patients whose
gene expression of GSN is up-regulated is worse (Yang et al., 2020).
GSN is overexpressed in HCC tissues, and high GSN expression is
significantly associated with advanced Edmondson grade,
encapsulation, and multiple tumors (Zhang et al., 2020). These
different studies show that the role of GSN in cancer depends on
the type of cancer studied. It has been suggested that GSN has both
the functions of tumor suppressor genes and oncogenes (Feldt et al.,
2019). It can be seen from the above research that CAV2 and GSN
have important roles in a variety of cancers. Our study also found that
CAV2 and GSN were down-regulated in breast cancer, which is
consistent with the results of previous studies.

In summary, our research has found two key genes (CAV2 and
GSN) related to breast cancer that may be regulated by DNA
methylation and discovered three DNA methylation probes
(cg13569051, cg14399183, and cg25274503). The risk scoring
model was constructed by the three probes has a good prognostic
ability. Therefore, these DNA methylation probes may be used as
molecular targets for the prognosis of breast cancer.
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