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Abstract: A rapid and high-throughput fluorescence detection method for zearalenone (ZEN) based
on a CuO nanoparticle (NP)-assisted signal amplification immunosensor was developed using an
automated sample pretreatment and signal conversion system. CuO NPs with high stability and
biocompatibility were used as carriers to immobilize anti-ZEN antibodies. The obtained CuO NP-
anti-ZEN can maintain the ability to recognize target toxins and act as both a signal source and carrier
to achieve signal conversion using automated equipment. In this process, target toxin detection is
indirectly transformed to Cu2+ detection because of the large number of Cu2+ ions released from
CuO NPs under acidic conditions. Finally, a simple and high-throughput fluorescence assay based on
a fluorescent tripeptide molecule was employed to detect Cu2+, using a multifunctional microporous
plate detector. A good linear relationship was observed between the fluorescence signal and the
logarithm of ZEN concentration in the range of 16.0–1600.0 µg/kg. Additionally, excellent accuracy
with a high recovery yield of 99.2–104.9% was obtained, which was concordant with the results
obtained from LC-MS/MS of naturally contaminated samples. The CuO NP-based assay is a powerful
and efficient screening tool for ZEN detection and can easily be modified to detect other mycotoxins.

Keywords: zearalenone; high-throughput pre-treatment; CuO NPs; automatic signal conversion

1. Introduction

Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by several species
of Fusarium, particularly F. graminearum, F. culmorum, F. equiseti, and F. verticillioides [1].
ZEN and its derivatives have been widely detected in agricultural products, specifically
wheat, corn, barley, soybeans, and oats [2]. ZEN with high thermostability can accumulate
in the human body through food chains and cause strong mutagenicity, teratogenicity,
neurotoxicity, reproductive toxicity, and carcinogenicity [3,4]. To protect humans from
ZEN exposure and reduce economic losses, national and international agencies adopted
regulations for the control of ZEN contamination. Thus, the maximum residue level of
350 µg/kg in unprocessed corn was set by the European Union (Commission Regulation,
EC No. 1126/2007). China has set a maximum level of 60 µg/kg for ZEN in cereal
and cereal-based products (National Food Safety Standard GB2761-2017). Based on the
important effects of ZEN on human and animal health, monitoring of ZEN in food and
feed is a global priority for protecting customers’ health and facilitating international food
and feed trade.

Therefore, extensive research has been conducted to develop sensitive and specific
methods for rapid and economic ZEN detection. High-performance liquid chromatog-
raphy (HPLC) [5] and liquid chromatography combined with mass spectrometry (LC-
MS/MS) [6,7] are the most commonly used accurate quantitative methods because of
their high selectivity and accuracy. However, these methods are time-consuming; require
harmful solvents; and depend on professional technology, costly instruments, and tedious
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sample pretreatment. Conventional lateral flow immunoassays (LFA) with gold nanopar-
ticles (AuNPs) or fluorescent labels [8,9], and as well as enzyme-linked immunosorbent
assays (ELISAs) [10], are simple and convenient; however, these methods suffer from low
sensitivity and poor quantitation, limiting their further applications to complex sample
matrices. In order to overcome the limitations of traditional analytical methods, numer-
ous studies have focused on more cost-effective and simple methods for ZEN analysis.
These methods include magnetic bead (MB)-based methods [11], electrochemistry-based
methods [12,13], microchip-based methods [14], quantum dot (QD)-based methods [15],
surface-enhanced Raman scattering (SERS)-based assays [16], metal–organic frameworks
(MOFs)-based methods [17], and liposomes-based methods [18,19]. Among them, MB-
based methods have shown important advantages in detecting mycotoxins [20,21]. MBs
have high surface areas for immobilizing large numbers of reagents and contribute to the
increase in reaction rate due to the full contact between the capture probe on MB and the
target in the reaction mixture [22]. Our previous studies developed a MB-based purifica-
tion assay to achieve automated and high-throughput sample preprocessing and reduce
matrix effects [23–25]. Although the constructed method is an effective tool for mycotoxins
purification, terminal detection relies on large instruments [23,25] or can only be used to
detect individual mycotoxin following purification [24]. Therefore, the goal of this study
was to combine automated sample preprocessing with high-throughput terminal detection
for efficient and rapid detection of mycotoxins.

The use of copper oxide nanoparticles (CuO NPs) as intermediates is pivotal for the
integration of automated sample preprocessing and high-throughput terminal detection to
enhance the detectable signal and improve detection efficiency. As nanostructured metal
oxides, CuO NPs show brilliant physical and chemical properties due to the quantum
confinement in the nano-dimensions, such as good biocompatibility, high specific surface
area, antibacterial, low cost, non-toxicity, as well as excellent stability in solution [26–29].
Lai et al. [30] reported a sensitive detection of carcinoembryonic antigen based on CuO
NP-labeled antibody. Li et al. [31] demonstrated a metalloimmunoassay for human im-
munoglobulin G (IgG) detection through CuO NPs labeling. Liu et al. [32] developed a
fluorescence immunoassay for prostate-specific antigen detection with CuO NPs as signal
labels; after dissolving CuO NPs with acid, the fluorescence signal of SGHK-Dns can be
quenched by Cu2+ with high quenching efficiency of 84.8%, which can be used for the
sensitive detection of Cu2+. Therefore, a CuO NPs-based assay for developing simple and
sensitive immunosensors has wide application and the unique advantages of the CuO
NPs-based assay still remain to be exploited.

In this study, we developed a CuO NP-based immunosensor for ZEN detection by
combining automated sample preprocessing with high-throughput terminal detection.
The method was based on a three-component competitive immune reaction achieved by
an automatic instrument, through which the target toxin content could automatically be
converted into the Cu2+ concentration. The Cu2+ can be detected with a high-throughput
fluorescence method. Under optimized conditions, the CuO NP-based method has excellent
accuracy with high recovery, and the test results are concordant with those obtained
from LC-MS/MS for real sample analysis. The designed CuO NP-based assay provides a
versatile platform for the development of fast and high-throughput mycotoxin pretreatment
and terminal detection.

2. Materials and Methods
2.1. Reagents and Chemicals

HPLC grade acetonitrile (CAS: 75-05-8) and methanol were obtained from Merck
(Darmstadt, Germany). A standard solution of ZEN (1.96 mg/L) (CAS:17924-92-4) was
purchased from Biopure (Tulln, Austria) and was stored at −18 ◦C. Complete antigen
(ZEN-BSA) and monoclonal ZEN antibody (anti-ZEN) were acquired from Wuxi Jiesh-
engjiekang Biological Technology Co., Ltd. (Beijing, China). CuO nanoparticles (CuO NPs,
CAS: 1317-38-0) were obtained from Sigma-Aldrich (Milwaukee, Brookfield, WI, USA).
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NHS-activated MB, which can combine antibodies directly without the EDC activation step,
was purchased from Shanghai enriching biotechnology Co., Ltd. (Shanghai, China). Mor-
pholinoethanesulfonic acid (MES, CAS: 4432-31-9) and bovine serum albumin (BSA, CAS:
13755-38-9) were acquired from Beijing Solarbio Science & Technology Co., Ltd. (Beijing,
China). Tween-20 (CAS: 9005-64-5) was supplied by Beijing Aipoo HuaMei Biotechnology
Co., Ltd. (Beijing, China). SGHK-Dns was synthesized and purchased from ChinaPeptides
Co., Ltd. (Beijing, China). Blank maize and wheat samples were acquired from China. The
ultrapure water was purified in the experiment by a Water Purifier purification machine
(Chengdu, China)

2.2. Apparatus and Measurements

LC-MS/MS analysis was performed by using Agilent ultra-HPLC system and an Agi-
lent 6470 QQQ-MS (Agilent Technologies). Data acquisition as well as qualitative and quan-
titative analysis were realized by using Agilent Mass Hunter Workstation software. Fluo-
rescence signals were collected on a Multimode Microplate Reader (PerkinElmer/Victor
Nivo 3S) with the excitation and emission wavelengths of 355 nm and 530 nm, respectively.
The size distribution and zeta potential were measured and statistics were analyzed by
a Zeta-sizer Nano-ZS90 instrument. A Mycotoxin Automatic Purifier (JJHZ10, Beijing
Dongfu Jiuheng Instrument Technology Co., Ltd.) with minor change about the soft-
ware determining the sequence of events shown in Table S1 was used for performing the
automated magneto-controlled pretreatment and signal conversion process.

2.3. Preparation and Characterization of CuO NP-Anti-ZEN Conjugates

The labeling of anti-ZEN with CuO NPs was performed by previous literature [33] in
which the nano-copper oxide powder was ultrasounded into PBS buffer solution, which
was followed by the adding of antibodies to the formed colloidal solution of CuO NPs.
The labeling process in our developed method was as follows: 5 mg of CuO NPs was
weighed into 10 mL of PBS buffer solution and sonicated for 15 min, to which 100 µL of
monoclonal ZEN antibody (anti-ZEN, the original concentration is 2 mg/mL) was added
to the CuO NPs solution by a stepwise process; then, the mixture was shaken for 1 h at
500 rpm. After being centrifuged for 5 min at 6000 rpm, the suspension was discarded,
and the functionalized CuO NPs were redispersed in 5 mL of PBS containing 1% BSA to
block the unsaturated sites. The only BSA-coated CuO NPs (CuO NPs-BSA) were prepared
in the same way except for the addition of an anti-ZEN antibody. In order to confirm the
successful decoration of anti-ZEN on CuO NPs, the size distribution and zeta-potential of
CuO NPs before and after modification were measured and statistics were analyzed.

2.4. Synthesis and Characterization of the Complex (MB-BSA-ZEN) between Magnetic Bead (MB)
and Complete Antigen (BSA-ZEN)

MB-BSA-ZEN synthesis was performed according to our previous report [23,24]
except that the antibody was replaced by complete antigen with minor changes: a volume
of 2.5 mL of NHS activated MB suspension was placed in a 5 mL centrifuge tube, and
the supernatant was discarded with the assistance of an external magnetic field. The
remaining MB in the tube was washed thoroughly with absolute ethyl alcohol to remove
the residual stored reagents on the surface of MB. Subsequently, 1.5 mg of ZEN-BSA in
50 mM PBS buffer containing 1% BSA was added to the suspension of MB. After two hours
of incubation, the supernatant was discarded, and the precipitate was blocked by adding
5.0 mL of PBS with 2% BSA as a blocking reagent. The prepared complex (MB-BSA-ZEN)
was washed three times with phosphate buffer solution with 0.1% Tween-20 (PBST) and
PBS, respectively and stored at 4 ◦C. The indirect characterization of the complex was
performed according to the interaction between CuO NP-anti-ZEN/CuO-BSA and MB-
BSA-ZEN. The formed immune complex (CuO NP-anti-ZEN-MB-BSA-ZEN) was washed
and separated via an external magnetic field and then digested by HCl; the obtained Cu2+

concentration can be an indicator of the successful synthesis of MB-BSA-ZEN and CuO
NP-anti-ZEN.
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2.5. The Study of Fluorescence Stability of SGHK-Dns

The study of fluorescence stability of SGHK-Dns was performed by selecting 0, 20, 50,
100, 200, 500, and 1000 ng/mL Cu2+ to react with SGHK-Dns of the same concentration
(2 µM); the fluorescence signal was monitored for 1 h by a multifunctional microplate
detector in a 96-well plate every 10 min.

2.6. Cu2+ Detection Procedure

First, 100 µL of SGHK-Dns (2 µM) solution in PBS buffer was added to 100 µL Cu2+

solution obtained by the digestion of CuO NPs in acid solution. The fluorescence quenching
reaction occurred immediately after the two solutions are mixed. Finally, the fluorescence
signals were collected on a Multimode Microplate Reader with the excitation and emission
wavelengths of 355 nm and 530 nm, respectively.

2.7. Sample Preparation and Extraction

Real wheat and maize samples were collected from Hanan Province, China. All
samples were finely ground and filtered through a 40-mesh sieve. The ZEN-spiked samples
for recovery experiment were prepared by adding ZEN stock solution to blank samples
to obtain final ZEN concentrations at 30, 60, and 120 ng/mL in triplicate. The sample
extraction was prepared as follows: first, 5.0 g of finely ground samples were weighed into
a 50 mL centrifuge tube and extracted using 20 mL of extraction solvent (acetonitrile/water,
90:10, v/v) by shaking 20 min on a vortex shaker. Sequentially, the samples were centrifuged
for 5 min at 7000 rpm, and the supernatants were collected for further analysis.

2.8. Linear Relationship and Detection Limit

A sample extract containing ZEN was diluted 10-fold before adding to the mixture of
CuO NP-anti-ZEN and MB-BSA-ZEN; then, the resulting three-component reaction mixture
was incubated for 30 min under stirring conditions with the automated instrument. Under
optimal conditions, the linear relationship was established by plotting the logarithmic
value of different ZEN concentrations (16, 32, 80, 160, 320, 800, and 1600 ng/mL) versus the
corresponding fluorescence intensity. LOD and LOQ were defined as the concentration of
toxin equivalent to three times (for LOD) and ten times (for LOQ) the value of the standard
deviation (SD) measured in the absence of toxins.

2.9. Specificity of the Assay

The specificity of the CuO NP-based method was studied by choosing a series of
structurally similar toxins (AFB1, OTA, DON, AFB2, AFG1, AFG2) for comparison. The con-
centrations of AFB1, AFB2, AFG1, and AFG2 were 20 ng/mL, whereas the concentrations
of OTA, DON, and ZEN were 20 ng/mL, 1000 ng/mL, and 60 ng/mL, respectively.

2.10. Analytical Application for Actual Samples

To evaluate the reliability of the CuO NP-based assay, 10 naturally contaminated
samples were detected by the CuO NP-based assay and LC-MS/MS analysis. Sample
extraction and LC-MS/MS determination were performed in accordance with our previous
study [34]. The grated sample (5.0 g) was extracted with 20.0 mL of acetonitrile/water
(90:10, v/v) by vigorous stirring for 20 min and centrifuged at 6000 rpm for 5 min. The
supernatants were collected for the CuO NP-based assay and LC-MS/MS analysis.

3. Results and Discussion
3.1. The Principle of the CuO NP-Based Immunosensor for ZEN Detection

The principle of the CuO NP-based immunosensor for ZEN detection is shown in
Scheme 1. First, CuO NPs and magnetic beads (MBs) were modified with antibody (anti-
ZEN) and complete antigen (MB-BSA-ZEN) to form CuO NP-anti-ZEN and MB-BSA-ZEN,
respectively. Second, by using an automatic sample preprocessing and signal conversion
system built in our lab, a three-component competitive immune reaction including target
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toxins (ZEN), CuO NP-anti-ZEN, and MB-BSA-ZEN was established. Therefore, a larger
amount of ZEN in the solution led to fewer CuO NP-anti-ZEN combining with MB-
BSA-ZEN. Third, through the automated washing, concentration, and transfer steps, the
captured CuO NPs on the surface of MB were treated with an acidic solution (HCl, 10 mM),
which could release the corresponding metal ions (Cu2+) with an amplification effect of
hundreds of thousands of folds. Here, CuO NPs act as the signal source and signal carrier to
achieve signal conversion and signal amplification. It is worth mentioning that the amount
of released Cu2+ or captured CuO NPs was dependent on the target toxin concentration. In
this manner, target toxins are indirectly identified via Cu2+ detection based on the large
amount of Cu2+ released from the CuO NPs. Finally, an ATCUN peptide of SGHK labeled
with the fluorophore Dns (denoted as SGHK-Dns) was used as the Cu2+ sensing probe [32];
thus, Cu2+ was easily analyzed in a high-throughput manner using a multifunctional
microporous plate detector based on the principle that the fluorescence of SGHK-Dns
would be quenched after formation of the Cu2+–peptide complex.
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Scheme 1. The principle of the automated sample pretreatment and signal conversion system for
rapid and high-throughput ZEN detection.

3.2. Synthesis and Characterization of Antibody (Anti-ZEN)-Labeled CuO NPs

According to previously reported references, the antibody and CuO NPs interact
through physical adsorption [35]. Figure 1a shows that CuO NPs had an average hydrated
diameter of 190.7 ± 5.6 nm; after the antibody was connected on the surface of CuO
NPs, the particle size increased to 208 ± 3.1 nm, which indirectly indicated the successful
modification of the antibody (about 17 nm) on CuO NPs. Notably, the size obtained through
the dynamic light scattering (DLS) of CuO NPs was much larger than the average size
of 40 nm obtained through transmission electron microscopy (TEM). This is because DLS
gives a hydrodynamic size corresponding to the core and swollen corona of the micelles,
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whereas TEM gives the core size for micelles in a dried state, as the corona with low
electronic density is not visible. The zeta potential of CuO NPs after conjugating with
the anti-ZEN tended to show less negative charge (from −28.3 ± 2.9 to −12.8 ± 8.0 mV,
Figure 1b). These data confirm the successful decoration of anti-ZEN on CuO NPs. Studies
reported that the changes in the hydrodynamic diameter and zeta potential of CuO NPs
before and after modification can reflect the binding of DNA to the CuO NP surface [36].
Thus, the antibody binds to the CuO NP surface in the same manner as DNA.
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3.3. The Interaction Principle between Cu2+ and SGHK-Dns and the Fluorescence Stability Study
of SGHK-Dns

A study [32] has shown that Cu2+ exhibits both high binding affinity to SGHK peptide
and high quenching ability toward the Dns group; after forming the Cu2+–peptide complex,
the fluorescence signal of SGHK-Dns gradually reduced with increasing Cu2+ concentration.
Figure S1 showed the structure of SGHK-Dns and the interaction principle between the SGHK-
Dns and Cu2+. To confirm whether the change in fluorescence intensity of SGHK-Dns is
suitable to this experimental system, the fluorescence stability of SGHK-Dns was investigated.
Different concentrations of Cu2+ (0, 20, 50, 100, 200, 500, and 1000 ng/mL) were reacted with
a constant concentration of SGHK-Dns (2 µM). The fluorescence signal was rapidly quenched
within a few seconds, and then, the fluorescence intensity remained unchanged within 1 h
(Figure S2), demonstrating the stability of the peptide–Cu2+ detection system.

3.4. Synthesis and Characterization of Complex (MB-BSA-ZEN) between MB and Complete
Antigen (BSA-ZEN)

We previously characterized the MB and protein complex from the point of view of
the maximum saturation supermagnetization; it changes slightly before and after protein
modification, and this is enough for magnetic separation under an external magnetic
field [23,24,37]. In this study, we used an indirect method to further verify the successful
synthesis of MB-BSA-ZEN. Excess CuO NP-anti-ZEN/CuO NP-BSA reacted with different
amounts of MB-BSA-ZEN (5, 10, and 20 µL), and the formed immunocomplex was washed
and digested with acid solution (HCl, 10 mM). The concentration of the Cu2+ obtained was
measured through the interaction between Cu2+ and SGHK-Dns; higher Cu2+ concentra-
tion would lead to a lower fluorescence intensity of SGHK-Dns based on the interaction
principles between them described in Section 3.3. Thus, as shown in Figure 2, the red
bars showing higher Cu2+ concentration than the green ones represented the reaction
between CuO NP-anti-ZEN and MB-BSA-ZEN, indicating that with increasing amounts of
MB-BSA-ZEN, the fluorescence intensity of SGHK-Dns decreased. In addition, the above
experimental results indirectly demonstrated the successful synthesis of MB-BSA-ZEN.
The green histogram with high fluorescence intensity revealed that there is almost no
nonspecific reaction between CuO NP-BSA and MB-BSA-ZEN after washing. These results
demonstrate the successful synthesis of CuO NP-anti-ZEN and MB-BSA-ZEN, and the
reaction between them is based on specific interactions of the antigen and antibody.



Sensors 2021, 21, 6538 7 of 12

Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 
 

 

synthesis of MB-BSA-ZEN. Excess CuO NP-anti-ZEN/CuO NP-BSA reacted with different 
amounts of MB-BSA-ZEN (5, 10, and 20 μL), and the formed immunocomplex was 
washed and digested with acid solution (HCl, 10 mM). The concentration of the Cu2+ 
obtained was measured through the interaction between Cu2+ and SGHK-Dns; higher Cu2+ 
concentration would lead to a lower fluorescence intensity of SGHK-Dns based on the 
interaction principles between them described in Section 3.3. Thus, as shown in Figure 2, 
the red bars showing higher Cu2+ concentration than the green ones represented the 
reaction between CuO NP-anti-ZEN and MB-BSA-ZEN, indicating that with increasing 
amounts of MB-BSA-ZEN, the fluorescence intensity of SGHK-Dns decreased. In 
addition, the above experimental results indirectly demonstrated the successful synthesis 
of MB-BSA-ZEN. The green histogram with high fluorescence intensity revealed that 
there is almost no nonspecific reaction between CuO NP-BSA and MB-BSA-ZEN after 
washing. These results demonstrate the successful synthesis of CuO NP-anti-ZEN and 
MB-BSA-ZEN, and the reaction between them is based on specific interactions of the 
antigen and antibody. 

 

 
Figure 2. Specific and nonspecific reaction between CuO NP-anti-ZEN/CuO NP-BSA and MB-BSA-
ZEN. 

3.5. The Study of Nonspecific Adsorption and the Optimal Reaction Time 
To verify whether nonspecific adsorption between MB-ZEN-BSA and CuO NP-anti-

ZEN would occur, bovine serum albumin (BSA), a common blocking reagent, was se-
lected for investigation. As shown in Figure 3a, when CuO NP-anti-ZEN reacted with MB-
BSA-ZEN in reaction buffer containing 2% BSA, the obtained fluorescence intensity was 
higher than that without BSA, which demonstrated that nonspecific adsorption between 
MB-ZEN-BSA and CuO NP-anti-ZEN occurred, and BSA was able to inhibit nonspecific 
adsorption. When CuO NP-BSA reacted with MB-BSA-ZEN, fluorescence intensity with 
BSA was almost the same as that without BSA; additionally, the signal was a little lower 
than that obtained as the blank test (0 ng/mL) of Figure S2. These results indicate that the 
reaction between CuO NP-anti-ZEN and MB-BSA-ZEN is attributable to the specific in-
teraction of antibodies and antigens; there is low nonspecific adsorption between MB-
ZEN-BSA and CuO NP-BSA. 

The optimal reaction time between MB-ZEN-BSA and CuO NP-anti-ZEN was also 
studied in the developed method. Figure 3b indicates that when the reaction time was 20 
min, the fluorescence intensity was almost 350,000, and the fluorescence intensity gradu-
ally decreased to about 290,000 when the reaction time was 30 min. Thereafter, the Cu2+ 
signal intensity decreased slightly when the reaction time continued to extend to 1 h. 
Therefore, in consideration of the sensitivity of the constructed method, the optimal reac-
tion time was set at 30 min for this study. 

Figure 2. Specific and nonspecific reaction between CuO NP-anti-ZEN/CuO NP-BSA and MB-BSA-ZEN.

3.5. The Study of Nonspecific Adsorption and the Optimal Reaction Time

To verify whether nonspecific adsorption between MB-ZEN-BSA and CuO NP-anti-
ZEN would occur, bovine serum albumin (BSA), a common blocking reagent, was selected
for investigation. As shown in Figure 3a, when CuO NP-anti-ZEN reacted with MB-BSA-
ZEN in reaction buffer containing 2% BSA, the obtained fluorescence intensity was higher
than that without BSA, which demonstrated that nonspecific adsorption between MB-ZEN-
BSA and CuO NP-anti-ZEN occurred, and BSA was able to inhibit nonspecific adsorption.
When CuO NP-BSA reacted with MB-BSA-ZEN, fluorescence intensity with BSA was
almost the same as that without BSA; additionally, the signal was a little lower than that
obtained as the blank test (0 ng/mL) of Figure S2. These results indicate that the reaction
between CuO NP-anti-ZEN and MB-BSA-ZEN is attributable to the specific interaction of
antibodies and antigens; there is low nonspecific adsorption between MB-ZEN-BSA and
CuO NP-BSA.
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The optimal reaction time between MB-ZEN-BSA and CuO NP-anti-ZEN was also
studied in the developed method. Figure 3b indicates that when the reaction time was
20 min, the fluorescence intensity was almost 350,000, and the fluorescence intensity grad-
ually decreased to about 290,000 when the reaction time was 30 min. Thereafter, the Cu2+

signal intensity decreased slightly when the reaction time continued to extend to 1 h. There-
fore, in consideration of the sensitivity of the constructed method, the optimal reaction
time was set at 30 min for this study.

3.6. Analysis Performance

To establish the calibration curve of ZEN using the automated magneto-controlled
pretreatment and signal conversion system, a series of spiked samples of ZEN (16, 32,
80, 160, 320, 800, and 1600 ng/mL) were prepared. The fitting curve with a corre-
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lation coefficient of 0.9937 was obtained by fitting the ZEN concentration versus the
corresponding fluorescence intensity (Figure 4a). The logarithmic value of ZEN con-
centration in the range of 16–1600 µg/kg was proportional to the fluorescence intensity
(Y = 103,385.6x + 247,338.69, R2 = 0.9948) (Figure 4b). The limit of detection (LOD) was
0.33 µg/kg (S/N = 3), and the limit of quantification (LOQ) was 1.1 µg/kg (S/N = 10)
based on the value of standard deviation (11,409.2) obtained from 0 ng/mL ZEN. In
the analysis of the sample extracts (wheat and maize), the correlation coefficients were
0.9980 and 0.9951 for the curve fitting, respectively (Figure 4c,e). Good linear relation-
ships (Y = 63,175.2x + 365,315.04, R2 = 0.9963 for wheat, and Y = 55,420.2x + 390,423.15,
R2 = 0.9925 for maize) were also obtained between the fluorescence intensity and the log-
arithmic value of ZEN concentration (16–1600 µg/kg, Figure 4d,f). Relevant analytical
parameters are presented in Table 1, indicating that our approach is effective for ZEN
analysis in cereal samples. The analysis performance of this method is comparable to or
even better than those of other ZEN detection assays [11,38–44] (Table S4).
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Table 1. The linearity, correlation coefficient, LOD, and LOQ for ZEN using the automated magneto-
controlled pretreatment and signal conversion system in standard solution, maize, and wheat samples.

Matrix Linearity Range
(ng/mL)

Correlation
Coefficient

LOD
(ng/mL)

LOQ
(ng/mL)

Standard
solution 16–1600 0.9937 0.33 1.1

Maize 16–1600 0.9980 0.51 1.70

Wheat 16–1600 0.9951 0.61 2.02

To evaluate the recovery and repeatability for the CuO NP-based method, blank maize
and wheat samples spiking at three different concentrations (30, 60, and 120 ng/mL) of
ZEN were prepared. Through experiments and data analysis, Table 2 shows that the
recovery rates were 99.2–104.9% and the intra-day relative standard deviation (RSD) were
0.7–5.1% for the two matrices, indicating that the recovery and precision of the automated
and high-throughput method are satisfactory for ZEN detection in common cereals.

Table 2. Recovery and relative standard deviations of spiked maize and wheat samples with various
ZEN concentrations of three levels.

Sample Added (ng/mL) Detected
(ng/mL)

Recovery
(%, n = 3)

RSD
(%, n = 3)

Maize
30 30.03 100.9 0.8
60 59.76 99.6 5.1

120 125.88 104.9 3.4

Wheat
30 29.88 99.6 0.7
60 59.94 99.9 3.6

120 119.04 99.2 3.7

3.7. Specificity Analysis

The specificity is a significant parameter for achieving good performance of the
developed method. To assess the specificity of the constructed assay, common mycotoxins
including aflatoxin B1 (AFB1), ochratoxin (OTA), deoxynivalenol (DON), aflatoxin B2
(AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2), and a blank control were investigated.
It can be seen in Figure S4 that only ZEN contributed to Cu2+ concentration due to the
three-component competitive immune reaction of CuO NP-anti-ZEN, MB-BSA-ZEN, and
ZEN. In contrast, high concentrations of Cu2+ were obtained when ZEN was replaced
by other mycotoxins, and there was no apparent difference between them and the blank
control, indicating that the designed assay can selectively detect ZEN in the presence of
other mycotoxins.

3.8. Analytical Application for Actual Samples

The analytical reliability of the CuO NP-based assay for ZEN detection was evaluated
by detecting 10 naturally contaminated samples. The performance of the constructed
method was thoroughly verified by LC-MS/MS analysis. Figure 5 shows the regression
analysis (Y = 2.614 + 0.987x, R2 = 0.981) between the two methods, demonstrating that
the developed method agreed well with those obtained from LC-MS/MS. Thus, the auto-
mated and high-throughput approach was appropriate for determination samples with
ZEN contamination.
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4. Conclusions

A CuO NP-based immunosensor for ZEN detection was developed using an auto-
mated sample pretreatment and signal conversion system. This method takes advantage
of three features of CuO NPs: effective adsorption of large amounts of antibodies as the
capture probe; the ability to act as the signal source and signal carrier for signal amplifi-
cation; and combined automated sample pre-processing with high-throughput terminal
detection. Excellent accuracy, high recovery yield, and a wide linear range were achieved
using this method. The developed assay simplifies tedious sample handling through
automated processing and enables high-throughput terminal detection, which can facilitate
the processing and inspection of massive samples. In addition, the assay can easily be
extended to detect other mycotoxins.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21196538/s1, Figure S1: The structure of SGHK-Dns and the interaction principle between
the SGHK-Dns and Cu2+. Figure S2: The study of fluorescence stability of SGHK-Dns (2 µM) with
different concentrations of Cu2+ (0, 20, 50, 100, 200, 500, 1000 ng/mL), Figure S3: The logarithmic
value of Cu2+ concentration in the range of 0–1000 ng/mL was proportional to the fluorescence
intensity of SGHK-Dns (2 µM), Figure S4: The fluorescence intensity of the developed assay toward
ZEN, AFB1, OTA, DON, AFB2, AFG1, AFG2, and blank control. The concentrations of AFB1, AFB2,
AFG1, AFG2 were 20 ng/mL, the concentration of OTA, DON and ZEN were 20 ng/mL, 1000 ng/mL
and 60 ng/mL, respectively, Table S1: the sequence of events for the automated magneto-controlled
pretreatment and signal conversion process, Table S2: The fluorescence intensity when spiking ZEN
(0, 16, 32, 80, 160, 320, 800, 1600 ng/mL) in different sample matrixes (PBS, Maize and Wheat),
Table S3: Comparison of the analytical performances of our method with other ZEN detection assays,
Table S4: An abbreviation list to the manuscript.
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