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Abstract

Accurate and rapid characterization of influenza A virus (IAV) hemagglutinin (HA) and neuraminidase (NA) sequences with
respect to subtype and clade is at the basis of extended diagnostic services and implicit to molecular epidemiologic studies.
ClassyFlu is a new tool and web service for the classification of IAV sequences of the HA and NA gene into subtypes and
phylogenetic clades using discriminatively trained profile hidden Markov models (HMMs), one for each subtype or clade.
ClassyFlu merely requires as input unaligned, full-length or partial HA or NA DNA sequences. It enables rapid and highly
accurate assignment of HA sequences to subtypes H1–H17 but particularly focusses on the finer grained assignment of
sequences of highly pathogenic avian influenza viruses of subtype H5N1 according to the cladistics proposed by the H5N1
Evolution Working Group. NA sequences are classified into subtypes N1–N10. ClassyFlu was compared to semiautomatic
classification approaches using BLAST and phylogenetics and additionally for H5 sequences to the new ‘‘Highly Pathogenic
H5N1 Clade Classification Tool’’ (IRD-CT) proposed by the Influenza Research Database. Our results show that both web
tools (ClassyFlu and IRD-CT), although based on different methods, are nearly equivalent in performance and both are more
accurate and faster than semiautomatic classification. A retraining of ClassyFlu to altered cladistics as well as an extension of
ClassyFlu to other IAV genome segments or fragments thereof is undemanding. This is exemplified by unambiguous
assignment to a distinct cluster within subtype H7 of sequences of H7N9 viruses which emerged in China early in 2013 and
caused more than 130 human infections. http://bioinf.uni-greifswald.de/ClassyFlu is a free web service. For local execution,
the ClassyFlu source code in PERL is freely available.
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Introduction

Influenza A viruses (IAV) continue to threaten public as well as

animal health [4,5]. Costly diagnostic programs and in depth

molecular epidemiological studies are conducted to follow the

spread and to analyse evolutionary trends of avian and mamma-

lian IAVs. Subtyping and finer phylogenetic clustering of IAVs is

based on the antigenic and genetic characteristics of the

immunodominant viral HA (hemagglutinin) and NA (neuramin-

idase) proteins and genes, respectively, into currently at least 17

HA and 10 NA subtypes [2]. Reassortment events and rapid

mutation of the HA gene driven by immune-selective pressure

causes antigenic shift and drift, respectively, of affected viruses

[6,7]. In addition, these processes lead to swiftly progressing

phylogenetic diversification which challenges subtype and cluster

assignment required for molecular epidemiological analyses [8].

Such problems culminated with the unprecedented spread of

highly pathogenic avian influenza viruses (HPAIV) of subtype

H5N1 within and from Asia since 2003. Tools for the reliable

classification of the specific clusters are essential to follow

evolutionary trends and spreading routes. As a first step towards

classification of HPAIV H5N1 viruses, the H5N1 Evolution

Working Group of the WHO set up a unified nomenclature

system based on genetic similarity among all available HA H5(N1)

sequences [1]. This annotation provides the opportunity to

separate HPAIV H5N1 into different clades and lineages.

Recently, the group distinguished 32 clades which are arranged

as a hierarchic tree based on genetic similarities [1]. Unfortunate-

ly, there is no standard rapid method to assign newly established

and uncategorised HA sequences into this system. Common

approaches to assign new sequences while circumventing time-

consuming phylogenetic operations include a simple BLAST [9]

search against a selection of categorized HA sequences or the de

novo construction of a phylogenetic tree of smaller scale of

unclassified and assigned sequences. However, these methods are

inhomogeneous and inconvenient since there is neither a rule how

to choose the reference database for BLAST or the phylogenetic

tree nor a consistent criterion to assign sequences to a specific

subtype or clade. Recently, the Influenza Research Database

(IRD, http://www.fludb.org) proposed the ‘‘Highly Pathogenic

H5N1 Clade Classification Tool’’ (CT) as a free web service. IRD-

CT is based on a phylogeny but keeps the tree of already classified

sequences fixed [14]. Independent of the IRD development we set

out to follow a different approach and assembled a tool, ClassyFlu,

that is based on discriminatively trained profile hidden Markov

models. Here the assignment power of ClassyFlu is examined and

compared to IRD-CT and other classification approaches. We

show that ClassyFlu rapidly assigns HA and NA sequences to the
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corresponding subtypes, and, within the H5N1 clade system, also

places H5 sequences correctly, similar to IRD-CT. Moreover, we

examined the influence of sequence length on the precision of

clade assignment. We conclude that a sequence stretch of only 100

nucleotides spanning the HA cleavage site (so-called PanHA

fragment [10]) and a stretch of *612 nucleotides (PanNA

fragment [10]) at the 59-end of the NA gene are sufficient for

confident subtype assignment. However, for reliable H5N1 clade

differentiation longer fragments are required.

Materials and Methods

HA subtypes and clades
The parameter training of our classification method requires the

definition of classes to which the later input sequences shall be

assigned to. While this could in principle be done de novo through

sequence clustering or using phylogenetic analyses, we here used

sequences and their pre-defined classification from the NCBI

Influenza Virus Resource http://www.ncbi.nlm.nih.gov/

genomes/FLUhttp://www.ncbi.nlm.nih.gov/genomes/FLU. In

total, 63 classes comprising subtypes H1–H17 and including 32

HPAIV H5N1 clades were used. Sequences belonging to H5N1

but not to HPAIV were labeled H5N1-HPAIV and sequences

belonging to H5 but not to H5N1 with H5-N1. H7 was subdivided

into clusters based on a targeted selection of Eurasian and

American H7 full-length HA sequences available from the EpiFlu

database. We propose a clustering into 13 distinguishable clades

on the basis of a phylogenetic analysis by PhyML of the HA1

encoding fragment of the hemagglutinin gene (Figure S1). A

subclade was assigned if a monophyletic group of sequences was

separated by aLRT [11] values w0.9 and its members

distinguished on average by w1% differences at the nucleotide

level from other clusters.

The training data comprises all HA gene sequences which had a

length of at least 1,600 bp and which had been released until

December 2010. For the H7 subselection also recent sequences

present in the Epiflu database including those of the recently

emerged zoonotic H7N9 viruses from China were added. The

subtype H17 is also an exception because it was described after

2010. Therefore, the only two existing sequences of H17 from

2011 were taken as training sequences and no evaluation could be

performed on them. Overall, there were 15.672 sequences used for

training of our classifier – 3.295 for the H5 subtype, 995 for H7

and 11.382 for all other subtypes.

NA subtypes and clades
We selected a training set on the basis of all available non-

redundant NA sequences published in GenBank until September

2013. Incomplete sequences and sequences that contain ambig-

uous nucleotides were excluded. Sequences possibly misclassified

in GenBank were identified by a comparison to our NA reference

data set. Multiple alignments of the NA sequences of each subtype

were created using MAFFT [12]. A representative subset for each

NA subtype N1–N9 was selected on the basis of sequence

similarity. The subsets contain at least 26 and at most 109

sequences. All available three N10 sequences were selected as well.

As test set we used sequences from recent isolates published in

[13]. These sequences had been characterised phylogenetically

into subtypes N1–N9. We removed three of the 101 sequences of

[13] that were already in our training set (KF259614, KF259642,

KF259671) to obtain a test set of 98 sequences. No sequence

appeared identically in both the training and test set.

Generative training
ClassyFlu uses a specific profile hidden Markov model (HMM)

for each of the k~73 classes. For each class a multiple sequence

alignment (MSA) of all sequences of that class was constucted with

MUSCLE [14]. Each HMM represents the family of DNA

sequences belonging to that class, including the information on

conserved nucleotide positions and on position-specific probabil-

ities of substitutions, insertions and deletions. The HMMs were

built with hmmbuild from the HMMer package [15]. In doing so,

the parameters of each HMM depend only on the sequences from

that class. As they specify a probability distribution on DNA

sequences that is fit to sequences of this class, this model is referred

to as generative. The resulting set of k HMMs will be referred to as

database of HMMs.

Classification
To classify an input DNA sequence d into one of the k classes d

is compared to each of the k HMMs. This is done using the

program hmmscan from the HMMer package. HMMer deter-

mines a log-odds score for each HMM, the logarithm of the

probability of d in the HMM over the probability of d in a

background model. ClassyFlu then predicts the class of an input

DNA sequence d to be the HMM against which d obtains the

highest score. We introduced a rough filter to alert users about

sequences that cannot be reliably classified. If an input sequence is

long enough to be near full-length (1600 bp for HA and 1300 bp

for NA) but the score is below a threshold (1600 for HA and 1300

for NA), then the classification is flagged as not confident.

Discriminative training
As further described below in the evaluation section, this

generatively trained database of HMM has a performance

disadvantage in our setting with given classes. Although it appears

to work well for the distinction between different H and N

subtypes, the performance on the more difficult task of

distinguishing between closer clades could be increased by our

novel algorithm that aims at better discrimination and improved

performance on the HPAIV H5N1 clades.

As influenza alignments contain relatively few indels, almost all

parameters of the HMMs that are important for discrimination are

position-specific scores for the four bases. Let sc
i,b be the score of

base b[fA,C,G,Tg at MSA position i in class c[f1, . . . ,kg. Let

S~(sc
i,b) denote this set of parameters that essentially represents

the HMM database. The starting point S for our algorithm that

improves the HMM database is taken from above generative

database of HMMs. The supervised training algorithm outlined

below iteratively makes small changes to S. Parameter changes to

S are made whenever the classification algorithm of ClassyFlu

misclassifies a sequence d based on the current S. In such a case

the score parameters of the two involved classes – the true class c

and the falsely predicted class c’ – are changed, in such a way that

the score of d against the true HMM c increases and its score

against the false HMM c’ decreases. The algorithm uses a

parameter gw0 that determines how quickly the parameters of the

two HMMs c and c’ change. g depends on the length of the input

sequence d . Further details of the training algorithm are described

in the document ClassyFlu-algorithm.pdf that is available on the

ClassyFlu web page.

Discriminative HMM database training algorithm
for each DNA sequence d from the training set do

let c be the true class of d

ClassyFlu: Influenza A Classification Tool
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let c’ be the predicted class of d using the current HMM

database parameters S

if c’=c then

for all positions i of d do

let b be the base in d at position i

sc
i,b/sc

i,bzg

sc’
i,b/sc’

i,b{g

end for

end if

end for

The source code for this discriminative HMM-training algo-

rithm that builds on the HMMer package is available at http://

bioinf.uni-greifswald.de/ClassyFlu/query/downloads). This train-

ing prodecure is discriminative as it tries to distinguish between the

given classes, rather than to model each class independently by

itself. Using this algorithm, the parameters of a HMM that

represents one class c depends also on the training sequences from

other classes c’=c. Above algorithm was used to improve only the

HMMs for the H5N1 HA sequences as the performance on the

other classes was good already with the generative training. The

resulting database S was used in the experiments in the results

section as well as for the ClassyFlu web server.

Results

Evaluation on classified data
After the HMM database was created, the classification

accuracy was determined on the subtype level and on the level

of H5N1 clades.

HA subtype. To examine the correct assignment of a

sequence to its HA subtype, test sequences of subtypes H1–

H4,H6–H16, that were not included in the training were chosen

from the NCBI database (Oct. 02, 2012). For this selection all

available sequences with a release date starting from January 2011

were taken as input and up to 100 sequences of each subtype were

chosen arbitrarily. The final set of 870 test sequences was then

assigned to the specific H-subtypes. The validation resulted in a

100% accordance with respect to the reference classification

provided by NCBI demonstrating the robustness of HMMs for this

special task.

HPAIV H5N1 clades. We tested wether the finer distinction

between the 32 HPAIV H5N1 clades could also be achieved in a

leave-one-out cross-validation with 2,161 annotated training

sequences. These sequences were taken from the NCBI database,

too, while the reference annotation was adopted from the WHO

nomenclature. In a first test, using the generative database of

HMMs created by HMMER, 3% of the sequences were

misclassified; the majority of these were classified into a

neighbouring clade of the one to which it had been originally

assigned. Using the discriminative training algorithm, classification

performance increased from 97% to 99.2%. These measures are

based on cross-validation, whereby the sequences for measuring

accuracy were not used for training. The 0.8% remaining error

rate corresponds to 7 disagreements out of 870 sequences. Of

these, 4 sequences were assigned by ClassyFlu to the same top-

level clade as in the NCBI annotation, suggesting only a minor

classification error. The 3 remaining cases are the following. A/

chicken/Jilin/hp/2003 assigned by ClassyFlu to clade 0 but by the

WHO to clade 5. This may be due to a disputable choice in the

WHO nomenclature as this sequence is the only exception to an

otherwise monophyletic clade 5. A/chicken/Hong Kong/61.9/

2002 and A/chicken/Hong Kong/86.3/2002 were both assigned

to clade 9 by ClassyFlu but to clade 8 in the WHO nomenclature.

However, these two sequences are descendants of the most recent

common ancestor of all clade 9 sequences in the HA full tree

http://www.who.int/entity/influenza/gisrs_laboratory/

201101_h5fulltree.pdf http://www.who.int/entity/influenza/

gisrs_laboratory/201101_h5fulltree.pdf also suggesting a disput-

able choice in the WHO classification.

NA subtype. All of the 98 NA full length test sequences were

classified by ClassyFlu into the same subtype as they had been

classified previously [13]. This perfect classification performance

did not not decrease when we cut out the panNA sequence

segment from each of the full length sequences and used only this

smaller segment (averaging 612 bp) from the NA gene for

classification. All panNA fragments were classified the same as

the full length NA sequences they were extracted from.

Application to non annotated sequences
Based on these improved classification capacities, we applied

ClassyFlu to new unannotated test sequences of subtype H5 but

not necessarily HPAIV H5N1. This set included all available HA

genes, full DNA sequences or fragments, from the NCBI and

GISAID EpiFlu influenza databases http://www.gisaid.orghttp://

www.gisaid.org with a release date between and including January

2011 and September 2012 (1,033 sequences, 179 from GISAID).

The classification results of ClassyFlu were compared to

semiautomatic approaches using BLAST and phylogenetic

analyses, and to the IRD-CT tool. For BLAST as well as for the

phylogeny 196 annotated reference sequences from a multiple

alignment, available from the updated WHO HPAIV nomencla-

ture 2011, were specified (http://www.who.int/influenza/gisrs_

laboratory/Smalltreeupdated.txthttp://www.who.int/influenza/

gisrs_laboratory/Smalltreeupdated.txt). These sequences were

used to build a local BLAST database. The subsequent

evaluation with BLASTN [9] only considered results with at

least 95% identity and assigned the hit with the maximum

score. The same 196 sequences were used for the phylogenetic

analysis (PHYLO). A subset of the non-annotated data was

aligned to them using MAFFT [12] in order to build a joint

phylogenetic minimum evolution tree with MEGA5 [16] which

then was analysed manually for subtype and clade assignment,

respectively. To achieve consistency, the method of choice was

to assign the test sequences to the same clade as its nearest

reference sequence in the tree.

Classification of H5 full length HA sequences
Out of all 1,033 non-annotated test sequences extracted from

NCBI and GISAID only 963 were suitable for classification with

all four methods (ClassyFlu, BLAST, PHYLO, IRD-CT). The

other 70 sequences were excluded since they were either too short

or not sufficiently overlapping in the alignments for being classified

in our phylogenetic approach (PHYLO). The evaluation of the

classifications is summarized in Table 1.

Identical classification across all four methods was achieved for

87.1% of the sequences. BLAST more frequently disagreed with

the other methods. ClassyFlu, IRD-CT and PHYLO proved to be

very consistent as shown by the average percentage accordance in

Table 1. The closest consistency in the classification is for

ClassyFlu and PHYLO with 98.8% but also ClassyFlu and IRD-

CT share a high value of 96.8% indicating that ClassyFlu

ClassyFlu: Influenza A Classification Tool
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produces results which are similarly reliable on subtype classifica-

tion as those from IRD-CT and PHYLO.

Subtype and H5 clade classification using truncated HA
sequences

If correct, the classification results of sequences should be

identical no matter which fragment of the input sequence is

chosen. In practice, the classification accuracy increases with

fragment length and sequence variability. Given the fact that

variability is not uniformly distributed across the HA gene [17] it

is, however, easily conceivable that the region of a fragment used

for classification will influence classification accuracy. In routine

diagnostics, especially of animal influenza A virus infections,

shorter sequences are preferred for analysis as these can be more

reliably amplified directly from clinical samples and will enable

subtyping even if no culture-grown isolate was obtained. Along

these lines a conventional RT-PCR method (referred to as

PanHA) has recently been proposed which amplifies, indepen-

dently of the subtype (H1–H16), a short 140–150 bp fragment of

the HA gene that spans the endoproteolytical cleavage site of the

HA protein [10]. Usable PanHA fragment sequences (without

primer sequences) are * 100 bp in length, i.e., less than 6% of the

full length HA gene. Sequence analysis of this amplicon allows for

molecular pathotyping of H5 and H7. We here examined whether

the fragment is too short for reliable subtyping, and, especially,

H5N1 clade assignment. Out of the 963 sequences selected for

testing, 902 contained the PanHA fragment and were analysed

comparatively by the four classification methods (results shown in

Table 2). Not unexpectedly, classification accuracy suffered and

assignments were more inconsistent: No two methods had a higher

accordance than 86.7% (ClassyFlu: IRD-CT) while the minimum

accordance was 39.6% (BLAST: IRD-CT).

It should be mentioned that the IRD points to the fact that an

input sequence needs to be at least 300 bp in length to ensure

reliable classification with IRD-CT and that its results on shorter

sequences must be treated with caution [3].

To further assess classification reliability, for each full length HA

sequence the truncated HA sequence was also classified with the

same tool and the classifications were compared. In the ideal case

any method should classify all sequence pairs (full, PanHA)

identically. The consistency was evaluated for each method

individually, defined through their percentage accordance:

N IRD-CT: 87%

N ClassyFlu: 86.3%

N PHYLO: 63.5%

N BLAST: 47.1%

The outcome shows that IRD-CT and ClassyFlu achieved by

far the most constant performance with 87% and 86.3%

accordance, respectively. Thus, only about 13% of the H5 HA

sequences differed in their clade assignment when full length

sequences or the PanHA fragment were used.

As ClassyFlu and IRD-CT use quite different approaches we

tested whether the precision of the prediction is larger in the cases

where these two tools agree. We here considered classifications

only for the sequences where both tools had an identical PanHA

classification. As a result, for 89% of those sequences ClassyFlu

and IRD-CT agreed for the full HA segment classification. Thus

this consensus approach improves accordance by 2% points

compared to the results of IRD-CT alone (87%). As the

classifications of one tool can agree on the full and PanHA

sequence, although the classifications on the full sequence do not

agree between tools, this is a conservative comparison to the

accordance computed for a single method and the accuracy of

predicted subtypes may be larger than 89% when IRD-CT and

ClassyFlu agree.

Subtype and H7 clade classification of newly emerging
H7N9 viruses from China

In contrast to H5N1 HPAI viruses, no internationally approved

cladistics for IAV of subtype H7 are available. Our tentative

proposal is based on phylogenetic analysis by PhyML (see legend

to Figure S1 for methodological details) of 198 full-length HA1

sequences of subtype H7 viruses selected from the Epiflu database.

A total of 13 clades was distinguishable by high aLRT values

(Figure S1). For each of these 13 H7 clades, a HMM was trained

generatively.

As a sanity check, we tested how many of the same 198 H7 HA1

sequences were classified as H7. We repeated this test once for full

length sequences and once for PanHA fragments. In both cases, all

H7 sequences were correctly classified by ClassyFlu as H7. Also, to

test a finer grained classification on the proposed clade level, we

confirmed that all 17 sequences of the clade of H7N9 viruses that

emerged in China early in 2013 (clade H7_China-1.2 in

Figure S1) were reassigned to this clade, both when submitted to

ClassyFlu as full length sequence and when submitted as PanHA

fragment. In addition, all 23 H7N9/China sequences from

GenBank and GISAID that were published between April 27th

and July 18th, 2013, and that were not used to build the HMMs

and the tree, were classified as clade H7_China-1.2. These test

results can be considered additional anecdotal evidence for the

accuracy of ClassyFlu. However given the lack of a larger number

of recent independent H7 test sequences, above tests on H5 are

more accurate and representative estimates of the performance.

Discussion

ClassyFlu is able to very reliably and rapidly determine the

subtype of a given full HA and NA sequence as demonstrated by

Table 1. Pairwise comparison of the H5 HA classification of
full sequences.

ClassyFlu BLAST IRD-CT PHYLO average

ClassyFlu – 90.8% 96.8% 98.8% 95.5%

BLAST 90.8% - 87.1% 83.9% 89.5%

IRD-CT 96.8% 87.1% – 89.7% 93.6%

PHYLO 98.8% 83.9% 89.7% – 95%

doi:10.1371/journal.pone.0084558.t001

Table 2. Pairwise comparison of the H5 HA classification of
PanHA fragments.

ClassyFlu BLAST IRD PHYLO average

ClassyFlu – 42.1% 86.7% 66.7% 65.2%

BLAST 42.1% – 39.6% 52.4% 44.7%

IRD 86.7% 39.6% – 65.6% 64%

PHYLO 66.7% 52.4% 65.6% – 61.6%

doi:10.1371/journal.pone.0084558.t002

ClassyFlu: Influenza A Classification Tool
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its perfect classification on a test set of 870 HA and 98 NA

sequences. On the harder task of assigning H5N1 clades to

sequences it disagreed with the NCBI-annotated classification on

0.8% of the data, provided that the input sequences are full-length.

These few cases were either minor disagreements or cases in which

the WHO ‘‘clades’’ actually apear to be non-monophyletic.

The subtype and clade assignment analysis of a large set of very

recent influenza A virus test sequences revealed a hierarchy in the

accuracy of the classification methods. IRD-CT and ClassyFlu

showed higher accordance compared to two semiautomated

methods (BLAST, PHYLO) and provide the most consistent

classification results. ClassyFlu is similarly accurate as IRD-CT

and both are better than the ‘LAST’and ‘HYLO’ approaches.

ClassyFlu is an accurate and simple alternative to IRD-CT. The

advantages are not only high accuracy but also simplicity in

handling. No database preparations are required and query

sequences can simply be input in FASTA format. ClassyFlu always

checks back on the same reference HMM database to assign

sequences which prevents inconsistency in the analysis. Classifica-

tion precision of IRD-CT relies on the structure and quality of the

phylogenetic tree. The HMM database of ClassyFlu is based on

the classified training sequences only and not on a particular tree.

However, both tools use pre-classified sequences to classify user

input sequences and their accuracy or usefulness may be affected

by poorly chosen or erroneous input classifications. ClassyFlu can

be easily trained for any other sequence-based assignment tasks

where complex phylogenetic structures or swift diversifying

evolution hamper easy classification by BLAST or rapid phylo-

genetic algorithms. We exemplified this by using HA sequences of

the H7N9 avian influenza virus lineage which currently emerges in

China and has caused a series of human infections. Both full length

as well as PanHA fragment sequences of these viruses were

promptly assigned to subtype H7. Provided international rules for

H7 clade assignment will be proposed, ClassyFlu’s profiles can

easily be trained on these clades as well.

In conclusion, the newly developed influenza A virus HA

sequence classification tool ClassyFlu, based on HMM profiling,

provides highly accurate subtyping of full length HA sequences to

subtypes and HPAIV H5N1 clades. A sequence fragment as short

as 100 bp which spans the endoproteolytical cleavage site can be

assigned with albeit reduced (86.3%) accuracy to H5N1 clades;

however, accuracy is good enough for reliable HA and NA

subtyping. Furthermore, the precision of the prediction is

improved in the cases where ClassyFlu and IRD-CT agree (from

87% to 89%). Given the remaining error rate of just above 10%

for classifying these short PanHA fragments into subclades of

HPAIV H5N1, we recommend either to sequence longer

fragments or to interpret predicted H5N1 clades based on panHA

sequences as approximate.

Supporting Information

Figure S1 A PhyML-directed phylogenetic analysis of subtype

H7 HA sequences was based on the alignments of the open

reading frames of the HA1 fragment (nucleotides 1–1023,

representing amino acids 1–339) generated by with the aligment

program MAFFT [12] and further optimized by manual editing

using JalView [18]. The Akaike criterion calculated by JModelt-

est2 [19] was used to choose the most appropriate mutation

model. PhyML was accessed via the ACTG server [20]. The

resulting tree topology was visualized using FigTree (http://tree.

bio.ed.ac.uk/software/figtree/). Further editing of the graphics

was carried out with Inkscape (http://inkscape.org/).

(TIFF)

Table S1 Acknowledgement table for influenza sequences used

that are in the GISAID database.

(XLS)
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