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A B S T R A C T

Background: Tuberculosis (TB) is a chronic respiratory infectious disease caused by Mycobacterium tuberculosis,
typically diagnosed through sputum smear microscopy for acid-fast bacilli (AFB) to assess the infectivity of TB.
Methods: This study enrolled 769 patients, including 641 patients from the First Affiliated Hospital of Guangxi
Medical University as the training group, and 128 patients from Guangxi Hospital of the First Affiliated Hospital
of Sun Yat-sen University as the validation group. Among the training cohort, 107 patients were AFB-positive,
and 534 were AFB-negative. In the validation cohort, 24 were AFB-positive, and 104 were AFB-negative.
Blood samples were collected and analyzed using machine learning (ML) methods to identify key factors for
TB diagnosis.
Results: Several ML methods were compared, and support vector machine recursive feature elimination (SVM-
RFE) was selected to construct a nomogram diagnostic model. The area under the curve (AUC) of the diagnostic
model was 0.721 in the training cohort and 0.758 in the validation cohort. The model demonstrated clinical
utility when the threshold was between 38% and 94%, with the NONE line above the ALL line in the decision
curve analysis.
Conclusion: We developed a diagnostic model using multiple ML methods to predict AFB results, achieving
satisfactory diagnostic performance.

1. Introduction

Tuberculosis (TB) refers to chronic respiratory infectious diseases
caused by Mycobacterium tuberculosis infection in the lungs[1]. The
source of TB infection, Mycobacterium tuberculosis, is mainly in the
sputum, and the main route of transmission is through the respiratory
tract[2]. The main clinical symptoms include cough, expectoration,
fever, and fatigue; severe complications can lead to irreversible lung
damage and even death[3]. TB is a common infectious disease in China.
The proportion of Mycobacterium tuberculosis detected in the sputum
smear of individuals aged 15 years and above is 66 per 100,000[4]. The
susceptible groups mainly include the elderly, immunodeficiency pa-
tients, and infants.

Despite many decades of research, TB remains the leading cause of
death from an infectious agent worldwide. However, the diagnosis of TB

often needs to be performed by considering various aspects, combining
clinical symptoms, imaging and bacteriology, and other tests, and no
convenient detection method is available for making a clear diagnosis of
TB[5,6]. According to the diagnostic criteria of pulmonary TB issued by
China in 2017, the detection of AFB in sputum smear plays a crucial role
in the diagnosis of pulmonary TB. Pulmonary TB diagnosis is made if
two sputum standard smears are positive for AFB, one sputum smear is
positive for AFB, and there is imaging support for pulmonary TB, or
when one sputum smear is positive for AFB, and there is a positive
culture of Mycobacterium tuberculosis in the sputum specimen[7]. The
World Health Organization defines the diagnosis of infectious sputum
smear-positive active pulmonary tuberculosis as 1, one positive sputum
smear for AFB plus one positive sputum culture for Mycobacterium
tuberculosis complex. 2, two or more sputum smears were positive for
AFB[8].

* Corresponding author.
E-mail address: zhanxinli@stu.gxmu.edu.cn (X. Zhan).

1 Dr. Jichong Zhu and Dr. Yong Zhao contributed equally to this work.

Contents lists available at ScienceDirect

Journal of Clinical Tuberculosis and Other
Mycobacterial Diseases

journal homepage: www.elsevier.com/locate/jctube

https://doi.org/10.1016/j.jctube.2025.100511

Journal of Clinical Tuberculosis and Other Mycobacterial Diseases 38 (2025) 100511 

Available online 27 January 2025 
2405-5794/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0000-0002-6936-481X
https://orcid.org/0000-0002-6936-481X
mailto:zhanxinli@stu.gxmu.edu.cn
www.sciencedirect.com/science/journal/24055794
https://www.elsevier.com/locate/jctube
https://doi.org/10.1016/j.jctube.2025.100511
https://doi.org/10.1016/j.jctube.2025.100511
https://doi.org/10.1016/j.jctube.2025.100511
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sputum smear testing for AFB is often lacking in many underdevel-
oped countries. AFB positivity is not limited to Mycobacterium tubercu-
losis; other mycobacteria can yield a positive result. This affects the
doctor’s diagnosis[9]. No in-depth study has been conducted on whether
there is a difference between the blood of AFB-positive and AFB-
negative TB patients.

Machine learning (ML) is a multifield interdisciplinary research
subject. The development of ML in clinical data processing has brought
rich insights and new possibilities to the field of medicine [10]. The use
of highly efficient ML algorithms allows for tackling many previously
intractable statistical problems[11,12]. Therefore, in this study, we
compared the blood test results between AFB-positive and AFB-negative
TB patients using ML methods to identify differences that may help
clinicians better assess AFB status in confirmed TB cases.

2. Methods

2.1. Patients

All subjects in this study were from the First Affiliated Hospital of
Guangxi Medical University and the Guangxi Hospital of the First
Affiliated Hospital of Sun Yat-sen University. The Ethics Committee of
the First Affiliated Hospital of Guangxi Medical University and the
Guangxi Hospital of the First Affiliated Hospital of Sun Yat-sen Uni-
versity approved this study after discussion.

From July 2017 to June 2022, we collected data on patients with a
confirmed diagnosis of TB from the First Affiliated Hospital of Guangxi
Medical University and Guangxi Hospital of the First Affiliated Hospital
of Sun Yat-sen University. Utilizing the information systems of these two
hospitals, we retrieved patient blood samples based on their ID numbers.
It is important to note that we collected blood samples only at the time of
the patients’ initial hospitalization. We did not group the patients based
on specific TB disease stages or collect information regarding whether
they had received treatment. The patient inclusion criteria were as fol-
lows: [1] according to Chinese 2017 edition WS288–2017 pulmonary
TB, pulmonary TB was diagnosed by two or more experts; [2] patients
who had complete data regarding erythrocyte sedimentation rate (ESR),
blood routine examination, liver function test, renal function test, blood
lipid test, blood electrolyte test, and coagulation function test; [3] pa-
tients for whom sputum smear AFB examination was performed on
admission; [4] the diagnosis of pulmonary TB did not solely depend on
the culture results of Mycobacterium tuberculosis but was based on a
comprehensive assessment by the experts, considering clinical, radio-
logical, and laboratory finding；and [5] patients voluntarily partici-
pated in this study, signing a consent form prior to the study. The
exclusion criteria were as follows: [1] patients who received multiple
AFB examinations after admission with inconsistent results; [2] patients
with missing clinical data; [3] patients who refused to participate in this
study; and [4] patients who had severe cardiovascular, cerebrovascular
or other inflammatory diseases.

A total of 768 patients were enrolled in this study. The subjects were
641 patients from the First Affiliated Hospital of Guangxi Medical Uni-
versity as the training group and 128 patients from the Guangxi Hospital
of the First Affiliated Hospital of Sun Yat-sen University as the verifi-
cation group. In the training cohort, 107 patients were positive for AFB,
and 534 patients were negative for AFB. In the validation cohort, 24
patients were positive for AFB, and 104 patients were negative for AFB.

All patient information was collected from the electronic information
system of the First Affiliated Hospital of Guangxi Medical University and
the Guangxi Hospital of the First Affiliated Hospital of Sun Yat-sen
University by using the patient’s ID number. After collecting the infor-
mation, we concealed the personal information of the patients and
replaced their identities with serial numbers. Sex, ESR, blood routine
examination, Liver function examination, kidney function examination,
Lipid examination, Plasma electrolyte examination and Coagulation
function tests and data were collected. All the results were complete.

2.2. Machine learning method

Support vector machine recursive feature elimination (SVM-
RFE) was selected due to its effectiveness in handling high-dimensional
data and performing feature selection by recursively eliminating the
least important features. This method helps reduce the dimensionality of
the data while preserving the most relevant features for prediction, ul-
timately improving the model’s performance.

Lasso regression was chosen for its regularization property, which
applies L1 regularization to shrink the coefficients of less relevant fea-
tures to zero. This technique effectively selects the most predictive
features while minimizing overfitting, making it particularly useful
when dealing with large datasets where many features may not be
relevant.

Random forest (RF) was selected due to its robustness in handling
noisy data and its ability to model non-linear relationships between
variables. It also provides an efficient way to evaluate feature impor-
tance through metrics like %IncMSE and IncNodePurity, making it ideal
for identifying key blood biomarkers that contribute significantly to AFB
status prediction.

In the data preprocessing stage, missing numerical data were
handled using mean imputation, while features with a high proportion
of missing values were removed; subsequently, the data were stan-
dardized to have a mean of 0 and a standard deviation of 1 to ensure
fairness across features, and finally, the dataset was split into a training
set and a validation set, maintaining the proportion of AFB-positive and
AFB-negative samples to address class imbalance.

2.3. Statistical analysis

IBM SPSS 23 and R software were used for statistical analysis and
visualization of the data. Continuous variables were analyzed using the
Student t-test, and the data were normally distributed and had homo-
geneity of variance[13]. Categorical variables were statistically
analyzed using the chi-square test[14]. All statistical analysis data were
repeatedly verified by two or more members of our team to avoid errors.
For all analyzed data, a two-sided probability of less than 0.05 was
considered statistically significant [15]. In the statistical analysis, we
used the Student’s t-test for comparing continuous variables and the chi-
square test for categorical variables. All tests were two-sided, with a
significance level set at P < 0.05. To account for multiple comparisons
and reduce the risk of false positives, we applied the Bonferroni
correction to adjust the P-values for all statistical tests conducted.

Due to the significant computational demands posed by incorpo-
rating 55 independent variables, each corresponding to a large number
of patient records, we initially employed univariate logistic regression to
streamline our analysis. Variables with univariate logistic regression p-
value of < 0.05 were included in multivariate logistic regression, Lasso
regression, RF, and SVM-RFE for further screening[16].

For logistic regression, we used the “rms,” “glmnet,” and “plyr” R
packages in R software for the calculations. For Lasso regression, we
utilized the “glmnet” R package for the calculations[17]. For RF, we
used the “randomForest” R package; an increase in mean squared (%
IncMSE) and an increase in node purity (IncNodePurity) are two
screening methods in the randomForest package. In both methods,
higher values represent more important variables[18]. SVM-RFE was
calculated using the “e071” package in R software; a smaller AvgRank
value indicates that the dependent variable has a greater influence on
the independent variable[19].

3. Results

Pairwise correlations were computed among all features. As shown
in Fig. 1, high correlations were observed between several pairs of
variables, including apolipoprotein A (APOA) and apolipoprotein C
(APOC), high-density lipoprotein (HDL) and APOA, Na + and Cl-,
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hematocrit value (HCT) and red blood cell (RBC) count, international
normalized ratio (INR) and prothrombin time (PT), fibrinogen (FIB) and
PT, alanine aminotransferase (ALT) and aspartate aminotransferase
(AST), creatinine (Cr) and cysteine C (Cys-C), total cholesterol (Tch) and
apolipoprotein B (APOB), low-density lipoprotein (LDL) and Tch, glob-
ulin (GLB) and total protein (TP), thrombocytocrit (PCT) and platelet
count (PLT), as well as between total bilirubin (TBil) and indirect bili-
rubin (IBil). Additionally, a positive correlation was noted between TBil
and direct bilirubin (DBil), while negative correlations were observed
between neutrophil percentage (NEUT) and lymphocyte percentage
(LYM), GLB and albumin/globulin ratio (ALB/GLB), and between
creatinine clearance rate (Ccr) and Cys-C.

As can be seen in Table 1, in the training cohort, the RBC and PLT of
AFB-positive patients were higher than those of AFB-negative patients,
and the mean corpuscular hemoglobin concentration (MCHC) of AFB-
positive patients was lower than that of AFB-negative patients, with
statistically significant differences. As can be seen in Table 2, IBil,
gamma-glutamyl transpeptidase (GGT), and alkaline phosphatase (ALP)
decreased in AFB-positive patients, whereas uric acid (UA) and

bicarbonate radical (HCO) decreased and exhibited statistically signifi-
cant differences in AFB-negative patients. There was no significant dif-
ference in blood lipid examination and coagulation function between
AFB-positive and AFB-negative patients（Table3）.

We included all the variables in the logistic regression. According to
the results of univariate logistic regression (Table 4), ALP, ALT, GGT,
HCO, HCT, IBil, MCHC, PCT, PLT, RBC, and UA were included in the
analysis due to their p-values being less than 0.05, indicating statistical
significance. To reduce the computational load of ML methods, we
incorporated these 11 dependent variables into the subsequent multi-
variate logistic regression, Lasso regression, RF, and SVM-RFE.

The results of multivariate logistic regression are presented in
Table 4; the p-values of ALT, MCHC, and UA were less than 0.05 and
exhibited statistically significant differences. Fig. 2A illustrates the
visualization results obtained using Lasso regression. As can be seen in
Fig. 2B, the best performance was achieved when nine dependent var-
iables (Table 5) were included in the regression model.

The results obtained using RF are depicted in Fig. 3. Fig. 3A shows
the algorithm scores of %IncMSE and IncNodePurity for the 11

Fig. 1. Correlation between all data.
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variables. As can be seen in Fig. 3B, a good prediction effect was ach-
ieved when seven factors were selected by RF.

The AvgRank values of SVM-RFE are shown in Table 6; the smaller
the value, the more important it is. As can be seen in Fig. 4, in the SVM-
RFE algorithm, the best diagnostic efficiency was achieved when all 11
factors were included in the model.

We calculated the area under the curve (AUC) for the models con-
structed by the fourMLmethods. As can be seen in Fig. 5, the AUC values
of SVM-RFE were better than that of other ML methods in both the
training cohort and the validation cohort. Additionally, the data selected
through SVM, as depicted in Fig. 1, did not show any clear correlations,
which is why we included all these variables in our model. The AUC and

Table 1
The differences ESR,Sex and blood routine examination.

Training cohort Validation cohort
Type AFB

positive
AFB
negative

P-
value

AFB
positive

AFB
negative

P-
value

 (N = 107) (N = 534)  (N = 24) (N = 104) 
Sex      
male 67 357 0.398 12 73 0.059
female 40 177  12 31 
Age      
Mean
(SD)

57.53
(14.7)

59.27
(16.11)

0.301 53.33
(16.59)

58.05
(17.31)

0.228

ESR      
Mean
(SD)

51.70
(29.05)

46.46
(30.1)

0.099 51.96
(24.15)

40.5
(30.27)

0.086

WBC      
Mean
(SD)

7.98
(3.31)

8.33
(5.38)

0.509 7.95(3.5) 8.11
(3.77)

0.848

RBC      
Mean
(SD)

4.19
(0.78)

3.98
(0.82)

0.016 4.23
(0.82)

4.02
(0.86)

0.280

HCT      
Mean
(SD)

0.35
(0.06)

0.34
(0.06)

0.048 0.35
(0.04)

0.35
(0.06)

0.895

MCV      
Mean
(SD)

84.11
(9.90)

85.25
(9.68)

0.267 83.22
(8.52)

86.9
(9.37)

0.080

MCH      
Mean
(SD)

27.23
(3.82)

27.96
(3.73)

0.066 27.25
(3.48)

28.55
(4.14)

0.155

MCHC      
Mean
(SD)

322.85
(11.92)

327.34
(13.94)

0.002 326.51
(13.48)

327.68
(19.91)

0.791

PLT      
Mean
(SD)

335.46
(134.25)

300.16
(131.82)

0.012 320.43
(114.54)

289.43
(119.29)

0.250

PDW      
Mean
(SD)

0.16
(0.02)

0.16
(0.02)

0.156 0.16
(0.01)

0.15
(0.03)

0.037

NEUT      
Mean
(SD)

0.66
(0.11)

0.66
(0.13)

0.661 0.64
(0.12)

0.67
(0.13)

0.437

LYM      
Mean
(SD)

0.2(0.09) 0.2(0.10) 0.932 0.21
(0.10)

0.21
(0.10)

0.813

MO      
Mean
(SD)

0.1(0.03) 0.09
(0.04)

0.362 0.11
(0.04)

0.09
(0.04)

0.091

EO      
Mean
(SD)

0.04
(0.03)

0.04
(0.04)

0.783 0.03
(0.03)

0.038
(0.04)

0.893

CV      
Mean
(SD)

0.16
(0.03)

0.16
(0.03)

0.631 0.15
(0.02)

0.15
(0.03)

0.832

PCT      
Mean
(SD)

0.26
(0.01)

0.24
(0.01)

0.018 0.25
(0.07)

0.24
(0.10)

0.660

The red text means that the p-value was < 0.05. SD, standard deviation; WBC,
white blood cell; MCV, mean corpuscular volume; MCH, mean corpuscular he-
moglobin; MO, monocyte percentage; EO, eosinophil percentage; CV, RBC vol-
ume distributing width.

Table 2
The differences liver function examination, renal function examination, and
plasma electrolyte examination.

Training cohort Validation cohort
Type AFB

positive
AFB
negative

P-
value

AFB
positive

AFB
negative

P-
value

 (N =

107)
(N = 534)  (N = 24) (N = 104) 

TBil      
Mean
(SD)

8.36
(6.94)

9.96
(9.89)

0.109 7.00
(3.85)

9.73
(9.31)

0.163

DBil      
Mean
(SD)

3.99
(5.33)

4.62
(6.26)

0.335 2.89
(1.98)

4.43
(6.60)

0.259

IBil      
Mean
(SD)

4.36
(3.15)

5.36
(4.37)

0.024 4.11
(2.29)

5.29
(4.13)

0.18

DBil/
TBil

     

Mean
(SD)

0.46
(0.15)

0.44
(0.16)

0.175 0.41
(0.10)

0.44
(0.17)

0.405

TP      
Mean
(SD)

66.26
(7.43)

65.25
(7.85)

0.221 67.57
(6.45)

65.01
(9.06)

0.193

ALB      
Mean
(SD)

35.17
(5.89)

34.58
(5.63)

0.33 36.33
(4.72)

34.46
(5.96)

0.155

GLB      
Mean
(SD)

31.06
(6.04)

30.66
(7.08)

0.585 30.2
(7.92)

30.23
(6.10)

0.964

ALB/
GLB

     

Mean
(SD)

1.19
(0.33)

1.20
(0.35)

0.808 1.20
(0.24)

1.21
(0.39)

0.876

GGT      
Mean
(SD)

53.97
(42.27)

73.13
(78.01)

0.014 45.29
(64.84)

82.62
(103.14)

0.93

TBA      
Mean
(SD)

10.92
(29.95)

10.79
(20.23)

0.956 4.21
(2.50)

11.37
(27.97)

0.214

AST      
Mean
(SD)

24.93
(23.19)

32.15
(47.41)

0.124 22.13
(11.81)

32.83
(31.26)

0.102

ALT      
Mean
(SD)

17.84
(12.65)

28.43
(59.20)

0.066 17.88
(17.93)

29.66
(31.59)

0.081

AST/
ALT

     

Mean
(SD)

1.56
(0.83)

1.46
(0.89)

0.251 1.47
(0.43)

1.51
(1.30)

0.876

ALP      
Mean
(SD)

90.24
(34.71)

108.25
(80.53)

0.024 89.29
(41.41)

113.13
(113.50)

0.314

PAB      
Mean
(SD)

169.46
(71.56)

167.24
(66.87)

0.758 116.26
(60.71)

178.96
(74.87)

0.441

BUN      
Mean
(SD)

4.63
(4.57)

5.11
(3.41)

0.212 3.89
(1.34)

5.34
(4.26)

0.102

Cr      
Mean
(SD)

80.00
(72.95)

87.76
(92.05)

0.411 66.33
(17.6)

76.45
(45.82)

0.291

UA      
Mean
(SD)

409.24
(214.86)

338.54
(180.01)

<0.001 338.21
(149.87)

303.51
(174.93)

0.371

HCO      
Mean
(SD)

25.92
(4.51)

25.05
(3.81)

0.037 25.8
(3.96)

25.09
(3.69)

0.405

Ccr      
Mean
(SD)

92.63
(29.99)

86.25
(32.55)

0.062 102.47
(26.08)

86.23
(30.20)

0.018

Cys_C      
Mean
(SD

0.97
(0.64)

1.10
(0.87)

0.132 0.83
(0.35)

1.05
(0.64)

0.107

Kþ      
Mean
(SD)

3.94
(0.44)

4.01
(0.52)

0.235 3.93
(0.42)

4.01
(0.43)

0.437

(continued on next page)
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C value of the SVM − RFE diagnostic model were 0.721 and 0.721,
respectively. Table 7 lists the AUC values of the models constructed
using different ML algorithms.

To construct a nomogram diagnostic model, we used the results

Table 2 (continued )

Training cohort Validation cohort
Type AFB

positive
AFB
negative

P-
value

AFB
positive

AFB
negative

P-
value

Naþ      
Mean
(SD)

137.88
(3.91)

138.59
(3.95)

0.091 138.53
(4.61)

138.11
(4.14)

0.667

Cl-      
Mean
(SD)

102.02
(4.58)

102.72
(4.40)

0.136 102.03
(5.41)

101.42
(5.02)

0.602

Ca2þ      
Mean
(SD)

2.20
(0.14)

2.18
(0.15)

0.175 2.19
(0.12)

2.17
(0.18)

0.693

Mg2þ      
Mean
(SD)

0.87
(0.13)

0.86
(0.15)

0.622 0.82
(0.13)

0.85
(0.12)

0.198

The red text means that the p-value was < 0.05. SD, standard deviation; TBA,
total bile acid; PAB, prealbumin; ChE, cholinesterase.

Table 3
Differences in lipid examination and coagulation examination.

Training cohort Validation cohort
Type AFB

positive
AFB
negative

P-
value

AFB
positive

AFB
negative

P-
value

 (N =

107)
(N = 534)  (N = 24) (N = 104) 

Tch      
Mean
(SD)

4.19
(0.91)

4.16
(1.03)

0.74 4.10
(0.91)

4.12
(1.12)

0.941

TG      
Mean
(SD)

1.26
(0.64)

1.17
(0.67)

0.195 1.19
(0.65)

1.19
(0.74)

0.991

HDL      
Mean
(SD)

0.97
(0.41)

1.01
(0.41)

0.369 1.07
(0.35)

0.99
(0.37)

0.34

LDL      
Mean
(SD)

2.54
(0.83)

2.50
(0.85)

0.668 2.40
(0.68)

2.43
(0.87)

0.867

APOA      
Mean
(SD)

0.94
(0.32)

0.96
(0.31)

0.61 0.97
(0.25)

0.97
(0.32)

0.983

APOB      
Mean
(SD)

0.92
(0.26)

0.88
(0.23)

0.061 0.86
(0.23)

0.86
(0.23)

0.97

APOC      
Mean
(SD)

1.11
(0.47)

1.17
(0.52)

0.277 1.18
(0.40)

0.19
(0.49)

0.872

LppA      
Mean
(SD)

0.40
(0.44)

0.36
(0.47)

0.43 0.30
(0.29)

0.30
(0.32)

0.964

PT      
Mean
(SD)

11.71
(1.41)

12.03
(2.54)

0.202 11.61
(1.36)

12.40
(4.27)

0.376

INR      
Mean
(SD)

0.99
(0.12)

1.02
(0.12)

0.159 0.99
(0.12)

1.05
(0.35)

0.387

FIB      
Mean
(SD)

0.99
(0.12)

1.02
(0.19)

0.158 0.99
(0.12)

1.05
(0.35)

0.387

APTT      
Mean
(SD)

33.57
(3.91)

33.23
(4.47)

0.467 32.62
(3.69)

32.91
(6.16)

0.824

TT      
Mean
(SD)

12.35
(1.66)

12.19
(2.06)

0.731 12.78
(2.03)

12.63
(2.80)

0.598

SD, standard deviation; TG, triglyceride; HDL, high-density lipoprotein; LppA,
lipoprotein A; APTT, activated partial thromboplastin time; TT plasma thrombin
time.

Table 4
Univariate logistic regression and multivariate logistic regression were used to
predict tuberculosis sputum smear positive acid-fast bacilli.

Type Univariate OR (95 %
CI)

P-
value

Multivariate OR (95
% CI)

P-
value

Age 1.0069 (0.9938–1.02) 0.3010 / /
ALB 0.9817

(0.9456–1.0185)
0.3291 / /

ALB/
GLB

1.0769 (0.595–1.971) 0.8081 / /

ALP 1.0064
(1.0017–1.0119)

0.0144 1.0044
(0.9978–1.0112)

0.1935

ALT 1.0297
(1.0118–1.0509)

0.0026 1.0274
(1.0065–1.0489)

0.0102

APOA 1.1926
(0.6127–2.3717)

0.6095 / /

APOB 0.4368
(0.1833–1.0507)

0.0623 / /

APOC 1.2751
(0.8401–2.0099)

0.2757 / /

APTT 0.9829
(0.9829–0.9387)

0.4668 / /

AST 1.0117
(1.0117–1.0010)

0.0791 / /

AST/
ALT

0.8825
(0.7172–1.1063)

0.2528 / /

BUN 1.0475
(0.9816–1.1371)

0.2148 / /

Ca2+ 0.3864
(0.0971–1.5180)

0.1746 / /

Ccr 0.9939
(0.9939–0.9876)

0.0622 / /

Cl- 1.0351
(0.9886–1.0830)

0.1367 / /

Cr 1.0013
(0.9988–1.0053)

0.4170 / /

CV 5.4158
(0.0072–7346.00)

0.6308 / /

Cys-C 1.3498
(0.9692–2.1275)

0.1351 / /

DBil 1.0223
(0.9842–1.0785)

0.3400 / /

Dbil/
TBil

0.4101
(0.1138–1.5016)

0.1748 / /

EO 0.4530
(0.0021–75.32.2)

0.7829 / /

ESR 0.9943
(0.9877–1.0011)

0.0996 / /

FIB 3.0660
(0.7769–15.64)

0.1506 / /

GGT 1.0053
(1.0014–1.0099)

0.0145 1.0009
(0.9957–1.0061)

0.7288

GLB 0.9918
(0.9634–1.0222)

0.5845 / /

HCO 0.9444
(0.8943–0.9962)

0.0373 0.9615
(0.9079–1.0182)

0.1789

HCT 0.0345
(0.0012–0.9527)

0.0489 0.0038
(0.0000–2.5473)

0.0933

HDL 1.2655
(0.7634–2.1333)

0.3684 / /

IBil 1.0813
(1.0157–1.1619)

0.0232 1.0204
(0.9493–1.0967)

0.5836

INR 3.0619
(0.7763–15.611)

0.1509 / /

K+ 1.2964
(0.8553–2.0069)

0.2337 / /

LDL 0.9480
(0.7440–1.2133)

0.6678 / /

LppA 0.8526
(0.5764–1.3252)

0.4344 / /

LYM 0.9121
(0.1143–7.7399)

0.9317 / /

MCH 1.0509
(0.9958–1.1079)

0.0671 / /

MCHC 1.0258
(1.0096–1.0425)

0.0018 1.0266
(1.0062–1.0475)

0.0105

(continued on next page)
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obtained using SVM-RFE (Fig. 6A). As can be seen from the fitting curve
of the nomogram (Fig. 6B), the proposed diagnostic model achieved a
good fit. A decision curve was plotted to analyze the clinical utility of the
model; the model exhibited clinical utility when the threshold of the
model was in the range of 38 %–94 %, and the NONE line of the decision
curve was above the ALL line (Fig. 6C). Fig. 6D–F show the AUC values
for each factor in the nomogram diagnostic model.

In the validation cohort, we verified the nomogram diagnostic
model, and the diagnostic model achieved a good fit (Fig. 7A), with an
AUC value of 0.758 (Fig. 7B) and a C value of 0.758.

4. Discussion

AFB-positive sputum smear is very important for the diagnosis and
treatment of pulmonary TB[20,21]. AFB are found in the sputum of only
27 % of patients with TB because TB bacilli are difficult to eliminate
from the bronchi deep in the lungs [22]. However, AFB-positive TB
patients are considered to be highly infectious in clinical practice and
usually need to be isolated and treated in time to avoid serious com-
plications[23]. In this study, we compared the blood samples of 769
patients with pulmonary TB who had undergone AFB examination. We
used ML methods to process the data and found multiple differences in
the blood examination data between AFB-positive and AFB-negative
patients. We selected multiple machine learning methods (SVM-RFE,
LASSO, and Random Forest) for feature selection and model construc-
tion. The main objective was to fully explore the relationship between
blood biomarkers and AFB status while improving the model’s predic-
tive performance.

In terms of gender, we found that male patients with TB were greater
in number than female patients; however, the AFB positivity rate was

Table 4 (continued )

Type Univariate OR (95 %
CI)

P-
value

Multivariate OR (95
% CI)

P-
value

MCV 1.0118
(0.9907–1.0328)

0.2671 / /

Mg2+ 0.7054
(0.1804–2.9001)

0.6216 / /

MO 0.0954
(0.0007–16.9341)

0.3615 / /

Na+ 1.0447
(0.9924–1.0988)

0.0910 / /

NEUT 1.4543
(0.2722–7.7255)

0.6603 / /

PAB 0.9995
(0.9965–1.0026)

0.7574 / /

PCT 0.0873
(0.0114–0.6847)

0.0191 3.2119
(0.0089–163.45)

0.6979

PDW 551.6
(0.6066–2803839)

0.1573 / /

PLT 0.9981
(0.9967–0.9996)

0.0130 0.9970
(0.9928–1.0013)

0.1698

PT 1.0841
(0.9754–1.2346)

0.1907 / /

RBC 0.7300
(0.5635–0.9429)

0.0163 1.0645
(0.6461–1.7536)

0.8063

Sex 0.8305
(0.5418–1.2858)

0.3983 / /

TBA 0.9997
(0.9914–1.0107)

0.9563 / /

TBil 1.0274
(0.9983–1.0658)

0.1080 / /

Tch 0.9668
(0.9729–1.1816)

0.7398 / /

TG 0.8288
(0.6271–1.1179)

0.1976 / /

TP 0.9835
(0.9577–1.0101)

0.2214 / /

TT 0.9816
(0.9185–1.0640)

0.5996 / /

UA 0.9982
(0.9971–0.9992)

0.0005 0.9984
(0.9973–0.9995)

0.0051

WBC 1.01612
(0.9749–1.0723)

0.5090 / /

Fig. 2. Lasso regression results. (A) Results of LASSO regression for all variables. (B) There were significant differences in nine factors between bone and joint TB
and TB.

Table 5
Lasso regression results.

HCT MCHC PLT

IBil GGT ALT
ALP HCO UA
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not statistically different between the genders. In some studies, it has
been suggested that the risk factors of TB include engaging in manual
labor, complex outdoors working environments, and smoking and
drinking. The elderly and people with weakened immunity are also at a
high risk of TB[24,25]. The ESR of AFB-positive patients was higher than
that of AFB-negative patients in both the training cohort and the vali-
dation cohort. ESR is an indicator of infection and tissue damage and is
used to evaluate the effect of TB treatment, indicating that the degree of
TB infection and damage in AFB-positive patients is higher than that in

AFB-negative patients[26].
RBC, PLT, PCT, MCHC, and HCT are items of blood routine exami-

nation. The mean values of RBC and HCT in AFB − positive patients were
higher than those in AFB- negative patients. RBCs are the largest blood
cells in the blood and contain hemoglobin which transports oxygen and
expels carbon dioxide[27]. HCT is the relative ratio of the volume
occupied by RBCs in a given volume of blood. When the number of RBCs
goes up, so does the percentage of whole blood. RBC count is often
slightly elevated in patients with diarrhea, vomiting, and dehydration.
platelet distribution width (PDW) did not differ between AFB-positive
and AFB-negative patients. No in-depth study has been conducted on
whether AFB-positive patients have increased RBC and HCT due to
blood concentration or whether other reasons promote the relative in-
crease of RBC [28].

MCHC was significantly increased in AFB-negative patients. MCHC
reflects the average hemoglobin concentration per RBC. There are a
variety of possibilities for high MCHC, such as RBC aggregation, he-
molytic diseases, inflammatory diseases, and electrolyte abnormalities
[29]. Anemia was considered when both MCHC and total hemoglobin
were low[30]. Due to the lack of hemoglobin collection for technical

Fig. 3. Random forest. (A) Ranking of two different algorithms for random forest. (B) The regression curve of random forest.

Table 6
Importance ranking of SVM-RFE screening.

TYPE AvgRank TYPE AvgRank

ALT 2.4 PCT 3.0
PLT 4.8 RBC 5.4
MCHC 5.8 HCO 6.0
ALP 6.2 HCT 7.0
IBil 7.4 GGT 8.8
UA 9.2  

Fig. 4. (A)The optimal diagnostic efficiency in SVM-RFE was achieved with all 11 factors in the model. (B) Bar chart visualizing the importance ranking of the SVM-
RFE screening based on the “AvgRank” values.
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reasons, we could not deeply explore whether AFB-positive patients
were relatively more anemic compared with AFB-negative patients.

PLT and PCT were significantly increased in AFB-positive patients.
Platelets are small cytoplasm shed from mature megakaryocyte cyto-
plasm in the bone marrow. Platelets play a crucial role in coagulation,
repair of damaged blood vessels, thrombosis, and inflammatory
response in the human body[31]. PCT is the percentage of platelet
volume in peripheral blood to total blood volume. An increase in PLT
leads to an increase in PCT, which can also be seen in the correlation
diagram. In the study by Chen et al., PLT was higher in patients with
pulmonary TB than in those with spinal TB[32]. PLT is significantly
associated with liver fibrosis in HIV/HCV co-infected patients; pulmo-
nary fibrosis caused by TB is one of the outcomes of TB[33]. We suspect
that pulmonary fibrosis in AFB-positive patients may be more severe
than in AFB-negative patients, which is the direction of our further
research in the future.

IBil, GGT, ALT, and ALP are part of the liver function test, and they
are decreased in AFB-positive patients. IBil is bilirubin that is not
tuberculated with glucuronic acid in humans[34]. IBil and DBil were
decreased in AFB-positive patients, indicating that less bilirubin was
produced in the body. Low bilirubin can be caused by anemia, fatigue,
and poor appetite; loss of appetite can also cause low bilirubin. GGT
mainly exists in the liver cell membrane and microsomes. Serum GGT
mainly comes from the liver and is often used to identify liver system
diseases[35]. Elevated GGT is often observed in acute hepatitis, active
chronic hepatitis, liver cancer, and obstructive jaundice. High GGT is

also associated with coronary heart disease risk[36]. ALT is an enzyme
involved in human metabolism and is mainly concentrated in the
mitochondria of the liver. When the liver is damaged, ALT is released
into the blood. ALP is a zinc-containing protein that is widely distributed
in the human body, with the highest content in the liver. ALP is an
important indicator of liver diseases. ALP in the sputum and blood of
patients with pulmonary TB is higher than that in patients with lung
cancer[37]. The ALP content in tuberculous pleural effusions is also
higher than that in other pleural effusions[38]. Patients with TB have a
20 % increase in GGT values in the first week after using anti-TB drugs
[39]. AFB-positive patients had less hepatotoxicity than those AFB-
negative patients; however, we did not collect information regarding
the use of antituberculosis drugs, preventing further analysis.

In renal function examinations, UA and HCO were elevated in AFB-
positive patients. UA is the end product of purine metabolism and is the
main cause of gout. Excessive purine intake increases endogenous pu-
rine production, and increased purine metabolism can lead to elevated
UA. Uric acid excretion is reduced when the antituberculosis drug
ofloxacin is used[40]. Elevated uric acid is a common adverse reaction of
antituberculosis drugs in elderly patients with TB[41]. HCO is a
commonly used indicator of acid-base balance in the human body. There
are no studies on HCO in patients with TB. We found that blood urea
nitrogen (BUN) and creatinine (Cr), which are commonly used to eval-
uate renal function in clinical practice, were higher in AFB-negative
patients than in AFB-positive patients, and the renal burden of AFB-
negative patients was higher than that of AFB-positive patients, as was
the liver burden.

Furthermore, we compared the blood lipid and coagulation function
between AFB-positive and AFB-negative patients and found no signifi-
cant difference between the two tests. Finally, after screening and
comparing various ML methods, we selected SVM-RFE as the best ML
method. We used univariate logistic regression and SVM-RFE to screen
out 11 factors to construct a nomogram diagnostic model and achieved
good diagnostic efficiency. The nomogram diagnostic model developed
using SVM-RFE has proven to be a valuable tool in predicting AFB
positivity, demonstrating robust AUC values of 0.721 and 0.758 in the
training and validation cohorts respectively. Its implementation offers a
practical approach for streamlining TB diagnosis by quantifying risk
based on predictive biomarkers, which is particularly beneficial in
resource-limited settings. The model’s decision curve analysis confirms

Fig. 5. AUC values of different ML in the training and validation cohort.

Table 7
AUC（95 %CI）values of different machine learning models.

Type Training cohort Validation cohort

Multivariate logistic regression
analysis

0.683
（0.612–0.737）

0.714
(0.540–0.826)

Lasso regression 0.720 (0.640–0.760) 0.744
(0.571–0.847)

%IncMSE 0.714 (0.633–0.760) 0.741
(0.585–0.838)

IncNodePurity 0.703 (0.624–0.752) 0.713
(0.583–0.807)

SVM-RFE 0.721 (0.644–0.758) 0.758
(0.645–0.824)
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Fig. 6. SVM-RFE diagnosis model. (A) Nomogram to predict the probability of AFB result. (B) Calibration curves for predicting AFB result. (C) Decision curve
analysis for the SVM-RFE prediction model. (D) The AUC values of RBC, HCT, MCHC and PLT. (E) The AUC values of PCT, IBil, GGT and ALT. (F) The AUC values of
ALP, HCO and UA.

Fig. 7. Validation cohort. (A) Calibration curves for predicting AFB in the validation cohort. (B) The AUC value of SVM-RFE diagnostic model in the cohort
was verified.
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its clinical utility, supporting its integration into routine diagnostic
workflows to enhance the accuracy and efficiency of TB management.

In this study, we collected a large amount of blood data from patients
with TB. Liver function test, renal function test, blood lipid test, and
coagulation function have rarely been included in previous research on
TB. We collected data from different hospitals to validate this study.
Nevertheless, this study has some limitations; First, not all potential
confounding factors, such as comorbidities and lifestyle, were
controlled, which may affect the model’s performance. Additionally, the
small sample size may limit the robustness and generalizability of the
results. Future studies should consider larger sample sizes and control
for confounding factors to further validate the model.

And, the number of AFB-positive patients was small. In addition, we
did not collect information regarding the use of anti-TB drugs in patients
with TB, and the diagnostic efficacy of the final model was not good
enough. The patient data in this study were collected from two hospitals
in the same city, which may introduce selection bias due to differences
in clinical practices and patient demographics, affecting the represen-
tativeness of the sample. Additionally, the study did not control for
disease stage or prior treatment history, which may introduce bias and
impact the generalizability of the results. Future studies should validate
these models in different hospitals and regions while controlling for
these factors.

To provide more context, we compared our results with other studies
that applied machine learning to TB diagnostics. Many studies using
models like SVM and Random Forest achieved strong AUC values[42].
However, the generalizability of their findings may be limited due to
differences in sample size or data quality. Similarly, while our study
showed strong predictive ability with a smaller sample, the limited
sample size and potential confounding factors may affect the general-
izability. Future research should validate our model on larger datasets to
improve its generalizability. We compared the difference between AFB-
positive and AFB-negative patients by using different ML methods and
screened blood data to construct a nomogram diagnostic model to help
doctors more easily infer the AFB results in patients with TB in the
absence of testing equipment and help patients with TB to obtain timely
treatment and avoid complications. In our study, various machine
learning algorithms were explored to construct the most effective
diagnostic model. After evaluating the diagnostic performance of each
model, the SVM emerged as the optimal choice due to its superior ability
to handle high-dimensional data and its robustness in classification
tasks. The SVM model was specifically selected for its accuracy in dis-
tinguishing between AFB-positive and AFB-negative patients, which is
critical in guiding timely treatment decisions. The incorporation of SVM
into our nomogram enhances the reliability of the diagnostic tool,
making it a valuable resource in clinical settings where traditional
testing may be limited.

The model can assist in the rapid screening of TB patients, particu-
larly in resource-limited areas. For real-world application, it needs to be
validated on multi-center and diverse datasets to ensure stability across
different populations. Additionally, clinical factors such as patient his-
tory and disease stage must be considered, making further data expan-
sion and analysis of false positives/negatives essential. Lastly,
collaboration with clinicians for real-time feedback and improvements is
needed to ensure its effectiveness and broader clinical applicability. The
final diagnosis and medication for TB should, however, be based on
established guidelines and the clinical judgment of healthcare
professionals.

5. Conclusion

In this study, we used ML to construct a diagnostic model to infer
AFB results and achieved good diagnostic performance.
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