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The extracellular accumulation of Aβ 
peptides (generated by enzymatic cleav-
age of the amyloid precursor protein by β- 
and γ-secretases) in form of dense amyloid 
plaques in the brain is considered one of the 
histological hallmarks of sporadic and ge-
netic Alzheimer’s disease (AD) as well as of 
Down syndrome. These deposits disrupt the 
surrounding neuronal processes in the grey 
matter neuropil and generate dystrophic neu-
rites (= neuritic plaques) and neuronal dys-
function. It is known that Aβ may have dif-
ferent assembly states: monomers, dimers, 
trimers that arrange in protofibrils and fibrils, 
or globulomeres and unstructured oligomers 
into fibrils, with different physiopathological 
consequences, oligomers most likely with 
being the most toxic species [1]. Diffuse 
Aβ deposits are observed in the aging brain 
throughout the cortical and subcortical grey 
matter and in subpial regions, especially in 
areas affected by cerebral amyloid angiopa-
thy. Whether diffuse deposits progressively 
condensate and eventually evolve into cored 
or dense plaques is a matter of debate [2]. 
Moreover, the presence of intracellular Aβ 
peptides has been widely discussed, especial-
ly whether its detection depends on technical 
issues (e.g., tissue pretreatment and fixation 
strategies) [3, 4] and whether it represents a 
physiological or pathological state. But it is 
increasingly suggested, especially from ani-
mal models, that intracellular Aβ accumula-
tion may represent an early phenomenon in 
the pathogenic cascade of AD [5, 6, 7, 8, 9], 
that would lead to early neuronal and synap-
tic dysfunction [10].

Microglia, as part of the innate immune 
system of the CNS, could be considered to 
be one of the cellular elements responsible 

for environmental supervision, and as such, 
capable of scavenging abnormal protein 
aggregates including Aβ in its activated, 
phagocytic, and proinflammatory state. At 
the same time, the release of cytokines and 
other inflammatory mediators by microglia 
contributes to Aβ oligomerisation, cross-
seeding and aggregation [11], and to synaptic 
damage. Concurrently, Aβ peptides are able 
to activate microglia, which in turn gener-
ates a vicious cycle between microglia and 
Aβ [12].

Here we show that macrophages, com-
ing from peripheral blood, are also capable 
to phagocytose extracellular Aβ peptides, 
either diffuse, primitives, or cored plaques 
[13]. This can be well identified in areas af-
fected by an ischemic infarction, as shown in 
Figure 1A1, A2, and A3, where macrophages 
are filled with Aβ peptides (Figure 1A3), 
suggesting their digestion and degradation.

As already described before [15] we 
show in the lower figure panel (Figure 1B1, 
B2, B3) early diffuse cloudy extracellular 
deposits of Aβ peptides in cerebral cortex 
surrounding neurons and astroglial cells that 
accumulate Aβ within their cytoplasm (Fig-
ure 1A1) [15]. This is frequently observed 
in postmortem brains of elderly subjects. In 
contrast, while extracellular plaques conden-
sate (Figure 1A2, A3), the intracellular Aβ 
component progressively disappears or gets 
– at least – less evident.

Wisniewski et al. [16] already observed 
in ultrastructural studies that Aβ peptides in 
macrophages are located in lysosomes, sug-
gesting phagocytosis, while in microglia they 
were observed in the reticulum, suggesting 
production. Some studies have suggested 
that microglia scavenging of Aβ peptide is 
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less efficient than that by macrophages [13]. 
However, it is unclear whether peripheral 
macrophages can easily infiltrate the brain in 
AD patients. Efficiency of microglia clearing 
has been experimentally increased in a pro-
inflammatory state. Therefore, disrupting the 
vicious cycle between Aβ and microglia and 
enhancing immunocompetency in the CNS 
regulating the imbalance between protection 
and toxicity, might be an important thera-
peutic approach in AD and other Aβ-related 
conditions.
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