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Abstract

Reinforcement learning (RL) models describe how humans and animals learn by trial-and-error to select actions that
maximize rewards and minimize punishments. Traditional RL models focus exclusively on choices, thereby ignoring the
interactions between choice preference and response time (RT), or how these interactions are influenced by contextual
factors. However, in the field of perceptual decision-making, such interactions have proven to be important to dissociate
between different underlying cognitive processes. Here, we investigated such interactions to shed new light on overlooked
differences between learning to seek rewards and learning to avoid losses. We leveraged behavioral data from four RL
experiments, which feature manipulations of two factors: outcome valence (gains vs. losses) and feedback information
(partial vs. complete feedback). A Bayesian meta-analysis revealed that these contextual factors differently affect RTs and
accuracy: While valence only affects RTs, feedback information affects both RTs and accuracy. To dissociate between the
latent cognitive processes, we jointly fitted choices and RTs across all experiments with a Bayesian, hierarchical diffusion
decision model (DDM). We found that the feedback manipulation affected drift rate, threshold, and non-decision time,
suggesting that it was not a mere difficulty effect. Moreover, valence affected non-decision time and threshold, suggesting
a motor inhibition in punishing contexts. To better understand the learning dynamics, we finally fitted a combination of RL
and DDM (RLDDM). We found that while the threshold was modulated by trial-specific decision conflict, the non-decision
time was modulated by the learned context valence. Overall, our results illustrate the benefits of jointly modeling RTs and
choice data during RL, to reveal subtle mechanistic differences underlying decisions in different learning contexts.

Keywords Response time - Decision-making - Motivation - Reward - Decision diffusion model -
Reinforcement learning

Introduction

In cognitive psychology, the sequential sampling modeling
(SSM) framework has enabled the development of models
that jointly account for choice accuracy and response time
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(RT) data in two-alternative forced choice tasks (Gold &
Shadlen, 2007; Bogacz et al., 2006; Smith & Ratcliff,
2004; Ratcliff & Smith, 2004). In this framework, it
is assumed that, when evaluating two choice options,
evidence in favor of one over the other alternative(s) is
accumulated over time and a response is initiated when
this evidence reaches a decision threshold. The crucial
advantage of applying these models to empirical data is
that they can help decompose the correlations between
RTs and accuracy into meaningful psychological concepts.
On the one hand, speed and accuracy can be positively
correlated: e.g., when faced with easy decisions, people
tend to give more correct and faster responses compared to
when facing difficult decisions (Ratcliff & Rouder, 1998).
This effect is captured in SSMs by higher rates of evidence
accumulation. On the other hand, speed and accuracy can
also be negatively correlated: e.g., when asked to make
speedy decisions, people tend to be less accurate (Ratcliff
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& Rouder, 1998). This phenomenon is referred to as the
speed—accuracy tradeoff (Heitz, 2008; Luce, 1986) and is
explained within the SSM framework by a decrease in the
decision threshold and interpreted as reduced cautiousness.
Finally, speed and accuracy can also be uncorrelated: e.g.,
people can differ in how fast or slow they respond, without
being more or less accurate (Ratcliff et al., 2003). These
differences are captured in SSMs by the non-decision time
parameter, which represents motor processes necessary for
the execution of actions as well as time needed for stimulus
encoding. Therefore, SSMs have provided a mechanistic
explanation of these three different correlation patterns of
RTs and accuracy and have been successfully applied in
various psychological domains: from perceptual, to social,
to economic decision-making, as well as in memory and
language research (Ratcliff et al., 2016).

Research in reinforcement learning (RL) aims at character-
izing the processes through which agents learn, by trial-and-
error, to select actions that maximize the occurrence of rewards
and minimize the occurrence of punishments (Sutton &
Barto, 1998). A century-long experimental investigation of
RL processes in human and non-human animals has shown
that learning is accompanied by a simultaneous increase
of the frequency of the selection of the most advantageous
action and by a decrease of the time necessary to select this
action (Pavlov, 1927; Skinner, 1938; Thorndike, 1911).

However, traditional computational RL models only account
for choices and do not consider RTs (but see the recent work of
Frank et al. 2015; Pedersen et al. 2017; Fontanesi et al.
2019). Therefore, how contextual factors in RL paradigms
impact the relation between RTs and accuracy is still relatively
poorly understood (Summerfield & Tsetsos, 2012).

In a series of recent studies, Palminteri and colleagues
(Palminteri et al. 2015, 2016, 2017) developed an RL
paradigm where they orthogonally manipulated two impor-
tant contextual factors: feedback information and outcome
valence. Feedback information was modulated by showing
(i.e., complete feedback) or not showing (i.e., partial feed-
back) the outcome associated with the unchosen option.
Outcome valence was modulated by reversing the sign of the
outcome (i.e., gains vs. losses), which directly impacted the
goal of learning: reward-seeking vs. punishment-avoidance.
Independent analyses reported in the aforementioned stud-
ies consistently show that: First, and as expected, par-
ticipants display a higher accuracy in complete feedback
contexts, where more information is available to learn the
value of options; second, participants learn equally well
to seek rewards and to avoid punishments. This second
finding is more surprising because losses have been demon-
strated to have a greater psychological impact than gains—a
phenomenon called loss aversion in behavioral economics
(Kahneman & Tversky, 1979). Hence, one could expect that

learning would be quicker in the loss contexts. Importantly
though, RTs in the same task follow a different pattern:
Participants are slower in the punishments contexts and in
partial-feedback contexts. Therefore, despite apparent sim-
ilarities in the choice pattern, we hypothesized that hidden
asymmetries might exist between learning to seek reward,
and learning to avoid losses.

Sequential sampling models (SSMs) can be used to inves-
tigate how different components of the decision process
underpin the behavioral patterns observed in previous stud-
ies (Smith & Ratcliff, 2004). In the present paper, we
first re-assess the effects of the contextual factors on RTs
and accuracy using a meta-analytical approach involving
data from four behavioral experiments employing the same
RL paradigm. In a second step, we moved to the SSM
framework and used a hierarchical Bayesian version of the
standard diffusion decision model (DDM, Ratcliff 1978)
to assess the effects of the contextual factors (i.e., feed-
back information and valence) on the model’s parameters
(i.e., drift rate, threshold, and non-decision time). We found
that the rate of evidence accumulation was higher in full-
feedback compared to partial-feedback contexts, cautious-
ness was the lowest in the gain domain when the feedback
information was partial, and the non-decision time increased
in the loss domain as well as when the feedback was partial.
While this first set of analyses confirms that the decision
processes used in learning to seek rewards and learning to
avoid losses might differ, the factorial DDM analyses do
not take into account the sequential nature of reinforcement
learning data and the trial-by-trial evolution of the underly-
ing latent variables. To overcome these limitations, we fit
a combination of the RELATIVE (Palminteri et al., 2015)
model and the DDM, using an approach similar to Peder-
sen et al. (2017) and Fontanesi et al. (2019). Briefly, the
RELATIVE model is a context-dependent reinforcement-
learning model which efficiently accounts for the similar
performances observed in gains and loss contexts, by using
context value (i.e., an approximation of the overall value of
a pair of choice options) as a reference point to compute
prediction errors (Palminteri et al., 2015).

In line with previous findings (Fontanesi et al. 2019), we
found that, in each trial, the difference in learned values
determines the accumulation-rate, and the learned conflict
increases the threshold. Most importantly, we also report for
the first time that the learned contextual value decreases the
non-decision time, thereby accounting for the slower RTs
observed in loss contexts. Altogether, our results illustrate
how RTs can be used to provide valuable information about
the decision processes in instrumental learning paradigms.
In particular, effects similar to the valence effects might
be overlooked when considering choice data alone, thus
providing a limited view of the decision processes at play.
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Table 1 Participants

Experiment 1

Experiment 2

Experiment 3 Experiment 4

Sample size 20 25

Mean age 254 239
Percentage males 55 36
Response window (s) 3

N sessions

N trials per session 80 96

Center Paris - ENS Paris - ENS
Source Pilot for Pilot for
Reference Palminteri et al. (2015)

Palminteri et al. (2015)

20 24
324 22.2
55 38
1.5
2
96 80
Paris - ICM London- UCL
Controls Controls

Salvador et al. (2017) Palminteri et al. (2016)

Note. Demographics, task characteristics, and investigation centers of the four experiments (N: sample size, ENS: Ecole Normale Supérieure;
ICM: Institut du Cerveau et de la Moélle; UCL: University College London)

Methods
Participants

We analyzed data from four behavioral experiments, realized
in three different research centers in France and UK (final
N = 89; Table 1). The local ethical committees approved
the studies and participants provided written informed
consent; see the original publications for additional details
(Palminteri et al., 2015; Salvador et al., 2017).

Task

Participants performed a probabilistic instrumental learning
task designed to manipulate both feedback valence (reward
vs. punishment) and feedback information (partial vs.
complete) using a 2 x 2 factorial design (Fig. la).
Participants had to choose one of two abstract cues (letters
from the agathodaimon font). Each trial (Fig. 1B) started
with a fixation cross, followed by presentation of the
cues during which participants indicated their choice. After
the choice window (either 3 or 1.5 s, depending on the
experiment), a red arrow highlighted the chosen option.
Then, the outcome was revealed, and participants moved
to the following trial. In each session, there were eight
different cues, divided into four fixed pairs, corresponding
to four choice contexts: reward-partial, reward-complete,
punishment-partial, and punishment-complete. In reward
contexts, the best cue had 75% probability of yielding a
reward (points or money) and 25% probability of yielding
nothing; while the worst cue, on the other hand, had 25%
probability of yielding a reward and 75% probability of
yielding nothing. In punishment contexts, the best cue had
25% probability of yielding a loss and 75% probability of
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yielding nothing, while the worst cue had 75% probability
of yielding a loss and 25% probability of yielding nothing.
In partial feedback contexts, participants were presented
with only the outcome of the chosen cue, while in complete
feedback contexts they were presented with the outcomes
of both the chosen and forgone cues. The number of trials
per context, the number of sessions, and the timing slightly
differed across experiments (see Table 1).

Dependent variables

Our main dependent variables were the correct choice rate
(accuracy) and RTs. A correct response is defined as a
choice directed toward the best (reward maximizing or
punishment minimizing) cue of a pair. The RT is defined
as the time between the presentation of the options and the
button press.

Bayesian analysis of the variance

Accuracy and RTs were analyzed in two independent
ANOVAs, which modeled the main effects of—and the
interaction between—the experimental manipulations (i.e.,
valence and feedback information). We adopted a Bayesian
mixed model meta-analysis approach, where the different
experiments could be modeled as fixed effects (Singmann
et al., 2014). By doing so, we could test whether, across
the four experiments, mean accuracy and RTs differed
and whether the learning contexts were similar across the
experiments.

This approach entails a comparison of different Bayesian
models using Bayes factors (BFs) (Kass & Raftery, 1995;
Wagenmakers, 2007) in a two-step procedure. First, we
assessed whether the experiments should be treated as
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Fig. 1 Task factors and learning curves. a The learning task 2x2 fac-
torial design. Different symbols were used as cues in each context,
and symbol to context attribution was randomized across participants.
The colored frames are purely illustrative and represent each of the
four context conditions throughout all figures. “Reward”: gain domain;
“Punishment”: loss domain; “Partial”: only feedback of the chosen
option is provided; “Complete”: both feedback of chosen and uncho-
sen options are provided; Pgain= probability of gaining 1 point;

fixed effects by comparing such a model to a model with
only the random effect of participants. The winning model
was then used as a baseline model in the second step,
where we assessed which combinations of fixed-effects
and interactions gave the most parsimonious, but complete
account of the data. Once we identified the best model, we
inspected the estimated posterior distribution of its main
effects and interactions (see Appendix A). The models were
all fit using the R package BayesFactor (Morey et al., 2015)
and adapted code previously provided by Singmann et al.
(2014).

Diffusion decision model architecture

The DDM (Ratcliff 1978, 1998) assumes that, when
deciding between two alternatives, evidence in favor of one
relative to the other is accumulated in time, according to the
following differential equation:

dx =N -dt,c-di), xo=a/2 (1)

Trial number

Pj oss= probability of losing 1 point. b Time course of example trials
in the reward-partial (fop) and reward-complete (bottom) conditions.
Stimuli durations are given in seconds. ¢ Average response times dur-
ing learning. d Cumulative accuracy during learning. Shaded areas in
c and d represent the 95% Bayesian credible intervals. The horizontal
dotted line in d indicates chance level

where dx is the change in the accumulated evidence in
the time interval d¢, v is the mean accumulated evidence
across the time intervals, and c is the noise constant, usually
fixed to 1 '. A decision is executed when enough relative
evidence in favor of an alternative has been collected, which
is when x is either lower than O or higher than the decision
threshold a. When the decision is unbiased (i.e., there is
equal initial evidence in favor of both options), then the
evidence accumulation starts from half the threshold a. In
the experiments that were considered in the present study,
the upper boundary corresponded to the correct option
(i.e., the option with the highest mean payoff) and the
lower boundary corresponded to the incorrect option (i.e.,
the option with the lowest mean payoff) within a context.
Because these options were randomly assigned to the right
and left sides of the screen, we assumed that decisions
were always unbiased, and coded responses as correct and
incorrect.

I'This is done to be able to identify the other parameters. One could
decide to fix a different parameter, e.g., the decision threshold, to
estimate this variable instead.
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Therefore, the execution time and probability of choosing
the option with the highest payoff depended on three
main parameters. The first is the decision threshold a:
lower thresholds lead to faster but less accurate decisions,
while higher thresholds lead to slower but more accurate
decisions. The threshold is usually interpreted as response
caution, with higher thresholds corresponding to higher
cautiousness. The second parameter is the drift rate v, which
is the amount of evidence accumulated per unit of time.
This can reflect the difficulty of the decision problem, as
well as participants’ efficiency in the task: higher drift
rates lead to faster as well as more accurate responses.
The third parameter that we take into account is referred
to as non-decision time (NDT), and reflects the processes
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Fig.2 Performance and behavioral effects across learning. a Summary
of the behavioral performance. Mean accuracy (top) and response
times in seconds (bottom) are plotted, separately for experiments and
conditions, as well as across experiments (right column). The bars rep-
resent 95% confidence intervals. Bottom row: 95% Bayesian credible
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Experiment 3

that influence the decision time, but does not pertain to
evidence accumulation per se, such as motor and stimuli
encoding processes. The non-decision time therefore affects
RTs without affecting accuracy.

Diffusion decision model fitting

For each of the DDM parameters (i.e., v, a, and NDT),
we fitted an intercept and three slopes, corresponding to
the two main effects—valence and feedback information—
and their interaction. This allowed us to test the effects of
the experimental manipulations on the model parameters.
To account for all levels of variability, we used a three-
level version of the hierarchical Bayesian DDM, where

Experiment 4 All experiments
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Coefficient value

intervals of the posterior distributions of the feedback, valence, and
feedback—valence interaction effects on accuracy (b) and RTs (c¢) of
the preferred models in the ANOVA model comparison analyses
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the first level corresponds to the participants, the second
corresponds to the experiments, and the third corresponds to
the whole dataset, thus mimicking the meta-analysis approach
described for the Bayesian analysis of the variance.

To fit the Bayesian DDM and estimate its joint posterior
distribution, we used sfan, a probabilistic programming
language for Bayesian parameter estimation (Carpenter
et al., 2017). In particular, we ran four independent chains
with 10,000 samples each, and discarded the first half
of each chain. To test for convergence, we checked that
the R statistic (Gelman & Rubin, 1992)—a measure of
convergence across chains—was lower than 1.01 for all
parameters. See the Appendix B for details about the
prior distributions. To test the reliability of the parameter
estimates, we performed parameter recovery on a simulated
dataset (Palminteri et al., 2017) (see the Appendix C).

Finally, to assess the model fit of the DDM, we computed
the posterior predictive distributions (Gelman et al., 1996)
for mean accuracy and RTs, as well as for RT quantiles
(separately for correct and incorrect responses; Fig. B2).

Reinforcement learning architecture

To capture the trial-by-trial dynamics due to learning-by-
feedback, we fitted a combination of the “RELATIVE”
model, proposed by Palminteri et al. (2015), and of the
DDM. The RELATIVE model is based on a simple
Q-learning model (Sutton & Barto, 1998), but allows
separate learning-rate parameters for outcomes of chosen
and forgone options, and includes a contextual module, so
that option values are updated relative to the learned value
of the choice context.

In the RELATIVE model, at each trial 7, the option
values Q in the current context s are updated with the
Rescorla—Wagner rule (Rescorla & Wagner, 1972):

Qc,s,t = Qc,s,t—l + o - 8¢
Qu,s,t = Qu,s,t—l + oy - Oy 2)

where «, is the learning rate for the chosen option Q.—
updated in both partial and complete feedback contexts—
and «, the learning rate for the unchosen option Q,—
updated only in complete feedback contexts. §. and §, are
prediction error terms, calculated as follows:

ac = Rc,s,l - Vs,t—l - Qc,s,t—l

814 - Ru,s,t - Vs,t—l - Qu,s,t—l (3)
Vi represents the context value that is used as the reference
point for the updating of option values in a particular

context, and R is the feedback received in a trial. Context
value is also learned via a delta rule:

Vs,t = Vs,t—l +ay - dy 4)

where ay is the learning rate of context value and Jy is a
prediction error term. In complete feedback contexts:

_ (Reyi+ Rusi)
- 2

In partial feedback contexts, since R, s, is not provided, its
value is replaced by its expected value Q,, s, hence:

~ (Rei 4 Quist)
o 2

The decision rule was implemented as in Eq. 1 (i.e.,
according the diffusion decision model). This approach, of
tightly linking RL models to the DDM, was previously
proposed by Pedersen et al. (2017) and Fontanesi et al.
(2019). In this way, we could test specific hypotheses of how
the latent learning variables affect the decision components.

The first hypothesis is that the drift rate is determined by
the trial-by-trial difference in the learned values, A Q;. To
test this hypothesis, we defined the drift rate in each trial v;
as:

AQt = (Qcor,t - Qinc,t) (7)
Vr = Veoetf - AQ; (8)

where veoerr is the drift-rate coefficient and Qcor,r and Qine, s
are the learned expectations of the correct and incorrect
options in a trial. This hypothesis was also tested and
confirmed in previous instances of RLDDM (Pedersen
et al., 2017; Fontanesi et al., 2019). This mechanism could
help to explain the feedback effect on both accuracy and
RTs.

The second hypothesis is that the threshold is modulated
by the trial-by-trial conflict, defined as the inverse of the
absolute difference between the Q values of the options

1/(1A Q] + 1):
a; = aing - {1 + acoett - [1/(1AQ |+ 1) — 11} €))

where ajy; is the threshold intercept and aceefr is the
threshold coefficient, where 0 < acoeff < 1. Since conflict is
bounded between 0 and 1, the more the threshold coefficient
approaches 1, the more the threshold intercept is discounted
by lower conflict. When the threshold coefficient is 0,
conflict does not affect the threshold intercept. This
parameterization also prevents the threshold from being
negative. This hypothesis is in line with previous models
that proposed modulations of the threshold parameters due
to conflict (Frank et al., 2015; Cavanagh et al., 2014),
although it has not been tested yet in a simultaneous RL
and DDM fitting. This mechanism could help to explain a
possible interaction of feedback and valence on RTs.

The third and last hypothesis is that the non-decision
time is modulated by the trial-by-trial contextual valence V;,
defined in Eq. 4:

Sy — Vi1 4)

Sy — Vi1 (6)

NDT, = exp(N DTing + N DTcoett - Vi) (10
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where N DTy, is the threshold intercept and N D Teqeft 1S the
threshold coefficient. The non-decision time is exponentially
transformed to ensure that it is always positive. A possible
non-decision time modulation of valence was previously
proposed by Ratcliff and Frank (2012) but was never tested
in a simultaneous RL and DDM fitting.

Reinforcement learning model fitting

We fitted a hierarchical Bayesian version of the RLDDM
simultaneously on the choice and response times data,
separately for each experiment. See the Appendix D for
details about the prior distributions. The RL model was
coded and fitted using stan, using the same parameters and
procedures described above for DDM fitting.

To assess the model fit of the RLDDM, we computed
the posterior predictive distributions (Gelman et al., 1996)
for mean accuracy and RTs, separately by bins of trials and
learning context, and for experiment (see Fig. D2).

Statistical reporting

In all analyses (i.e., ANOVA, linear mixed-effect regres-
sion and DDM), we report the estimated Bayesian credible
interval (BCI) of the posterior distributions of the parame-
ters of interest, computed as the 95% central interval of the
distributions.

In all analyses, valence was coded as O for reward and
1 for punishment, and feedback was coded as 0 for partial
and 1 for complete. Intercepts therefore correspond to the
reward-partial context. The interaction was obtained by
multiplying valence and feedback.

Results
Bayesian analysis of the variance

We assessed the effects of outcome valence and feedback
information on learning performance (i.e., mean accuracy
and RTs, Fig. 2A), using a Bayesian mixed model meta-
analysis approach (see Methods).

For the accuracy, our approach favored a model with (1)
a single main effect accounting for feedback information,
(2) no main effect of the experiment, (3) no interactions
between experiment and experimental manipulations (M3
in Table Al). These results indicate that only feedback
and not valence had an effect on accuracy, and that this
effect had a similar size across the experiments. The model
parameters confirmed that accuracy was higher in the
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complete feedback information contexts (BClgeedback = [.03
—.06]) (see Fig. 2 B).

For the RTs, our approach favored a model that includes
(1) both main effects of valence and feedback information
as well as their interaction, (2) a main effect of the
experiment, (3) and no interaction between experiment
and experimental manipulations (M5 in Table A2). These
results indicate that both valence and feedback information,
as well as their interaction, had an effect on RTs, in a
similar way across the experiments. The main effect of the
experiment indicates that participants had different mean
RTs across the experiments. The model parameters revealed
that participants were slower in the loss domain (BClvaience
= [.05 — .07]) and faster in the complete feedback contexts
(BClgeedback = [-.020 — -.002]). In addition, the effect of
valence was weaker in the complete feedback contexts
(BClnteraction = [--02 —-.01]).

Diffusion decision model analyses

Although the two ANOVAs depict a picture of the effect
of different learning contexts on both RTs and accuracy
that is consistent across the experiments, they do not model
the interactions between accuracy and RTs. To decompose
the simultaneous effects of contextual effects on RTs
and accuracy, we therefore fitted a three-level hierarchical
Bayesian version of the DDM to the data of all four
experiments.

The increase in accuracy and speed in the complete
feedback contexts was captured by an effect on all three
DDM parameters (Fig. 3): Providing participants with
complete feedback increased the drift rate (BCI = [-.01
— .69]), increased the threshold (BCI = [.02 — .16]), and
decreased the non-decision time (BCI = [-.151 - .016]).
Compared to the gain domain, decisions in the loss domain
showed higher threshold (BCI = [-.05 — .22]) and non-
decision time (BCI = [-.013 - .168]). Valence did not
affect the drift rate (BCI = [-.34 — .24]). Importantly, the
valence effect on the threshold was different across the four
experiments, with a stronger effect in experiment 3, and
a weaker effect in experiment 4 (Fig. B1). This might be
due to the higher time pressure in experiment 4. Yet, we
found a negative interaction between feedback information
and valence on the threshold (BCI = [-.13 — -.02]). A closer
examination of the threshold parameter by context (Fig. 3,
right column) revealed that the threshold was particularly
low in the reward-partial condition. There was no interaction
effect on the non-decision time (BCI = [-.128 — .201]), nor
on the drift rate (BCI = [-.31 —.31]). Finally, while the drift-
rate intercepts were similar across experiments, threshold
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Coefficients Parameters by context
1
: Reward/Partial
Feedback 1
| Reward/Complete
Valence :
1 Punishment/Partial
Interaction :
: Punishment/Complete
0.0 0.5 04 06 08 1.0 1.2
Drift-rate Drift-rate
1
: Reward/Partial
Feedback I
| Reward/Complete
Valence :
1 Punishment/Partial
Interaction :
: Punishment/Complete
-0.1 00 0.1 0.2 14 1.5 1.6 1.7
Threshold Threshold
1
: Reward/Partial
Feedback 1
| Reward/Complete
Valence :
1 Punishment/Partial
Interaction :
: Punishment/Complete
-0.1 00 041 0.2 0.40 0.45 0.50
NDT NDT

Fig. 3 Estimated diffusion decision model (DDM) parameters. Left
column: 95% Bayesian credible intervals of the estimated posterior
distributions of the effects of the experimental manipulations (i.e.,

and non-decision time varied across experiments, with a
lower threshold in experiment 4, and a higher non-decision
time in experiment 3 (see Fig. B1, top row). In Fig. B1 we
report the posterior distributions of the group parameters
separately for experiments as well as for the overall dataset.

Reinforcement learning model analyses

A limit of both the ANOVAs and of the DDM analyses is
that they do not take into account the sequential nature of
the data and the trial-by-trial evolution of the underlying
latent variables. To overcome this limitation, we fit a
combination of a RL model and the DDM that allows us

feedback information, outcome valence, and their interaction) on
the DDM parameter coefficients at the dataset level. Right column:
estimated mean parameters at the dataset level, separately by context

to test the relationship between latent learning and decision
processes. Regarding the RL model implementation, we
chose the RELATIVE model, first proposed by Palminteri
et al. (2015). The crucial ideal behind the model is that the
agent learns values on a relative (i.e., context-dependent)
scale. To achieve context-dependence, the model tracks, in
addition to action values Q, the context values V.

In particular, we were interested in linking three latent
variables of the RELATIVE model with the drift rate,
threshold, and non-decision time parameters of the DDM.
Based on previous behavioral findings, we focused on the
learned difference between the correct and incorrect
options’ values AQ;, on the learned decision conflict
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1/(JAQ¢] + 1), and on the context value V;, separately by
experiment.

The AQ; started at zero and increased throughout
learning in all learning contexts, the more so in complete
as opposed to partial feedback contexts (Fig. 4, top left), as
predicted by the learning rules of the RELATIVE model.
The drift-rate coefficients for A Q; were positive in all four
experiments (BCI = [0.33 — 1.09], [1.11 — 1.56], [0.91
— 1.83], [0.93 — 1.44]), meaning that the drift rate was
positively modulated by the learned difference in values
(Fig. 4, top right).

The conflict 1/(JA Q;|+1) tended to decrease throughout
learning in all learning contexts, the more so in complete as
opposed to partial feedback contexts (Fig. 4, middle left).
The threshold coefficients for conflict were negative in all
experiments (BCI = [-2.54 — -1.12], [-3.08 — -1.56], [-2.07
—-0.41], [-2.40 — -0.85]), meaning that the threshold was
negatively modulated by the learned conflict (Fig. 4, middle
right).

Finally, contextual value V; tended to increase in rewarding
and to decrease in punishing contexts throughout learning,

Learning variables

-

(Fig 4, bottom left). The non-decision time coefficients
for V; were negative in all but one experiment (BCI =
[-0.66 — -0.13], [-0.42 — 0.12], [-0.27 — -0.04], [-0.59 — -
0.19]), meaning that the non-decision time was negatively
modulated by the learned contextual value (Fig. 4, bottom
right).

The complete set of group level parameter posterior
distributions of the RLDDM can be seen in Fig. DI.
Posterior predictive checks indicated that the RLDDM also
showed a good fit to the data, as can be seen in Fig. D2, for
both mean RT's and accuracy, across experiments, learning,
and contexts.

Discussion

In the present study, we looked at how different RL contexts
(i.e., partial vs. full feedback, and gains vs. losses) affect
accuracy and RTs. To do so, we used different methods
and a relatively large dataset, composed of four separate
experiments carried out in different centers.

Coefficients

=@- Reward/Partial

1
|
— |
% 1 =@- Reward/Complete
£2 : =@- Punishment/Partial
§3 : =@- Punishment/Complete
w 1
4|1
1
1723 456 7 8 9 101112 0.0 0.5 1.0 1.5
bin Drift-rate AQ; coefficient
1
1 1
— |
S |
E? :
Q 1
23 I
w 1
4 1
1
-3 -2 -1 0
bin Threshold 1/(|AQ¢|+1) coefficient
1
1 |
— 1
S 1
E? !
Q 1
23 I
w 1
4 1
1
123 456 7 8 9 101112 -0.6 -0.4 -0.2 0.0
bin NDT V; coefficient

Fig. 4 Estimated reinforcement learning diffusion decision model
(RLDDM) parameters. Left column: development of the latent learning
variables (i.e., difference in learned Q values, trial-conflict, contextual
value) throughout learning, as predicted by the RLDDM (by context,
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and across experiments). Right column: 95% Bayesian credible inter-
vals of the estimated posterior distributions of the effects of the latent
learning variables on the DDM parameters (respectively, drift rate,
threshold, and non-decision time) at the experiment level
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First, we used a meta-analytic Bayesian approach to the
analysis of variance of accuracy and RTs. Replicating pre-
vious reports (Palminteri et al., 2016; Salvador et al. 2017),
we showed that participants were slower in the loss (as com-
pared to the gain) domain, and that they were more accurate
and faster when complete (as compared to partial) feedback
was provided. Interestingly, the similar accuracy observed
in the gain and loss domains is at odds with the notion of loss
aversion (Kahneman & Tversky, 1979): If in our task “losses
loomed greater than gains”, we would expect higher accu-
racy in the loss domain. However, by inspecting the RTs,
we found that losses made participants slower, showing the
importance of simultaneously considering complementary
aspects of performance (i.e., choice and response time) to
build psychological theories.

framework to value-based decision-making have shown
how the difficulty effect can be captured by a decrease in
the mean accumulation rate (Milosavljevic et al., 2010;
Cavanagh et al., 2014; Frank et al., 2015; Krajbich et al.,
2010). However, previous studies investigating the valence
effect have given mixed interpretations (Ratcliff & Frank,
2012; Cavanagh et al., 2014). We found that the effect
of feedback information (i.e., higher accuracy and speed
in the complete contexts) appeared to be driven by an
increase of the drift rate and of the threshold parameters,
and by a decrease of the non-decision time in the complete
compared to partial conditions (thus transcending mere
difficulty effects). On the other hand, valence had a main
effect on the non-decision time and threshold, and there
was an interaction of feedback and valence on the threshold

Because the ANOV As do not allow to inspect RTs and accuracy (with lowest threshold in the reward-partial condition). The

simultaneously, and to better understand this effect on RTs
(as well as the interaction between valence and feedback
information on RTs), we turned to the SSM framework and
fitted the DDM simultaneously to accuracy and RTs across
the four experiments. Previous studies that applied the SSM

Threshold

Conflict = 1/(1AQil + 1)

Context value = Vs

Value difference = AQ:

LEARNING VARIABLES

Decision

effect of valence on threshold (higher thresholds in the loss
domain) was not consistent across experiments, and it was
higher in experiments with less time pressure.

These results were further supported by the RLDDM
analyses (see Fig. 5): The learned context values derived

ACTION

0 2 4 6 8 10
Response time (seconds)

OUTCOME

Update value expectations

Qt,chosen

Qt,unchosen Vs

Fig. 5 Illustration of the reinforcement learning diffusion decision
model (RLDDM). In each trial, the learned conflict, context value,
and value difference modulate, respectively, the decision threshold, the

non-decision time, and the drift rate of the drift diffusion model. After
experiencing the actions’ outcomes, the value expectations are updated
following the RELATIVE model learning rules
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from the RELATIVE model (Palminteri et al., 2015)
affected RTs on a trial-by-trial base by modulating the
non-decision time parameter of the DDM (in all but one
experiments). In the RELATIVE model, context value is
used as reference point in a particular context to update the
Q values in each trial. (Palminteri et al., 2015) showed that
including context value in the RELATIVE model improves
the model fit to choice data (by comparing the RELATIVE
model to similar RL. models without contextual learning).
Here we showed that context value can also be used to
explain RTs data. Because the RELATIVE model decision
rule (i.e., the softmax choice rule) does not predict RTs, this
relationship had not been investigated so far. In addition to
the context values, other psychologically relevant quantities
can be derived from the RELATIVE model latent variables.
Here, we derived conflict in each trial (Cavanagh et al., 2014)
as the inverse of the absolute difference of the learned val-
ues of the available options. In line with previous studies (e.g.,
Cavanagh et al. 2014; Frank et al. 2015), we show that con-
flict modulates the decision threshold parameter of the DDM:
participants were more cautious in higher conflict trials. Finally,
confirming previous RLDDM approaches (Fontanesi et al.,
2019; Pedersen et al., 2017), the learned differences in
values determined the drift rate on a trial-by-trial basis.

While drift-rate difficulty effects have been docu-
mented in both economic and perceptual decision- making
(Milosavljevic et al., 2010; Krajbich et al., 2010; Ratcliff
& Rouder, 1998), the decrease in threshold in partial feed-
back contexts may appear counter-intuitive at first glance,
as less information, and therefore higher uncertainty, could
increase cautiousness. Moreover, previous studies have
found that higher difficulty also leads to an increase in the
threshold (e.g., Frank et al. 2015). Yet, a possible psycho-
logical interpretation for this effect is that the outcomes
corresponding to the unchosen options are known to elicit
regret, which can increase cautiousness in decision-making
(Zeelenberg, 1999; Shenhav et al., 2014). This can thus
explain the interaction effect on the threshold, since regret
should be the lowest in the reward-partial condition.

The two effects on the non-decision time (of both
feedback and valence) are less standard: non-decision time
effects are not very common in the SSM literature, as
they are thought to reflect stimulus encoding or purely
motor processes (Ratcliff & Rouder, 1998). Alternative
accounts of the RT slowing in the loss domain typically
predict higher accuracy for losses. In decision field theory
(Busemeyer & Townsend, 1993), for example, choices in
the loss domain are characterized by a slowing down of the
evidence accumulation process dependent on the distance
from the decision threshold, thus causing slower and more
accurate responses. SSMs that assume a race between the
evidence accumulation of competing options (e.g., Brown
& Heathcote 2008), also predict differences in accuracy.

@ Springer

Finally, Hunt et al. (2012) proposed a biophysically
plausible network model that predicted slower decisions
when choosing between options with overall lower value.
Since all these models concomitantly predict response time
slowing and an increase in accuracy, they are not perfectly
suited to explain the phenomena we observed.

A possible explanation of the increase in non-decision
time in the loss domain is that negative valence contexts
might induce motor inhibition, similarly to a Pavlovian
bias (Boureau & Dayan, 2011; Huys et al., 2011). This
effect is also similar to the modulating function of the
subthalamic nucleus in the basal ganglia circuit, which
causes a “hold your horses” response (Frank, 2006) in the
presence of conflict. This would explain why responses
could be delayed without affecting accuracy.

A competing explanation might link the slowing down
in the presence of losses to the loss attention framework
(Yechiam & Hochman, 2013), i.e., the idea that losses
receive more attention. However, increased attention has
been previously linked to increases in the drift rate and
threshold parameters, and not in the non-decision time,
since higher attention is typically accompanied by higher
accuracy (Krajbich et al. 2010, 2012).

Finally, both effects of losses and partial feedback might
not only be present in RTs, but also in meta-cognitive
judgments like decision confidence. This idea is supported
by a growing body of evidence showing how losses reduce
confidence judgments in a variety of tasks (Lebreton
et al., 2018, 2019).

In conclusion, RTs and accuracy are two behavioral
manifestations of internal decision processes. These two
variables provide complementary and equally important
clues on the computations underpinning affective decision-
making, and should be jointly considered in order to build a
comprehensive account of goal-directed behavior.
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