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Background: Gastric cancer (GC) represents a major global clinical problem

with very limited therapeutic options and poor prognosis. Necroptosis, a

recently discovered inflammatory form of cell death, has been implicated in

carcinogenesis and inducing necroptosis has also been considered as a

therapeutic strategy.

Objective: We aim to evaluate the role of this pathway in gastric cancer

development, prognosis and immune aspects of its tumor microenvironment.

Methods and results: In this study, we evaluated the gene expression of 55

necroptosis-related genes (NRGs) that were identified via carrying out a

comprehensive review of the medical literature. Necroptosis pathway was

deregulated in gastric cancer samples (n=375) as compared to adjacent

normal tissues (n=32) obtained from the “The Cancer Genome Atlas (TCGA)”.

Based on the expression of these NRGs, twomolecular subtypes were obtained

through consensus clustering that also showed significant prognostic

difference. Differentially expressed genes between these two clusters were

retrieved and subjected to prognostic evaluation via univariate cox regression

analysis and LASSO cox regression analysis. A 13-gene risk signature, termed as

necroptosis-related genes prognostic index (NRGPI), was constructed that

comprehensively differentiated the gastric cancer patients into high- and

low-risk subgroups. The prognostic significance of NRGPI was validated in

the GEO cohort (GSE84437: n=408). The NRGPI-high subgroup was

characterized by upregulation of 10 genes (CYTL1, PLCL1, CGB5, CNTN1,

GRP, APOD, CST6, GPX3, FCN1, SERPINE1) and downregulation of 3 genes

(EFNA3, E2F2, SOX14). Further dissection of these two risk groups by differential

gene expression analysis indicated involvement of signaling pathways

associated with cancer cell progression and immune suppression such as

WNT and TGF-b signaling pathway. Para-inflammation and type-II interferon
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pathways were activated in NRGPI-high patients with an increased

infiltration of Tregs and M2 macrophage indicating an exhausted immune

phenotype of the tumormicroenvironment. Thesemolecular characteristics

were mainly driven by the eight NRGPI oncogenes (CYTL1, PLCL1, CNTN1,

GRP, APOD, GPX3, FCN1, SERPINE1) as validated in the gastric cancer cell

lines and clinical samples. NRGPI-high patients showed sensitivity to a

number of targeted agents, in particular, the tyrosine kinase inhibitors.

Conclusions: Necroptosis appears to play a critical role in the development

of gastric cancer, prognosis and shaping of its tumor immune

microenvironment. NRGPI can be used as a promising prognostic

biomarker to identify gastric cancer patients with a cold tumor immune

microenvironment and poor prognosis who may response to selected

molecular targeted therapy.
KEYWORDS

programmed cell death, tumor microenvironment, molecular targeted therapy,
immunotherapy, cancer prognosis
Introduction

Gastric cancer represents a major clinical problem and is

ranked fifth for incidence and fourth for mortality globally. It is

responsible for 1,089,103 new cases in 2020 and an estimated

768,793 deaths which means one in every 13 deaths (1). The

overall survival remains at 31% within the United States and

25% worldwide (2). Pathogenic infections such as H. pylori,

which is infecting 50% of global population, and Epstein Barr

virus (EBV) have been linked to gastric cancer (3, 4). Eradication

of H. pylori strategies have helped to prevent a significant

proportion of gastric cancer (5). Multidisciplinary approach of

surgery and chemotherapy has improved the survival rate to

60% and 80% in early staged gastric cancer. However, majority

of the cases are diagnosed at an advanced stage for whom the 5-

year survival rate is merely 18% to 50% (3). These figures

indicate the need for more effective molecularly driven

treatment strategies.

Necroptosis is a programmed lytic cell death pathway and is

deregulated in various inflammatory disorders and cancers (6–

8). Receptor-interacting serine/threonine-protein kinase 1

(RIPK1), receptor-interacting protein kinase 3 (RIPK3), and

mixed lineage kinase domain like pseudokinase (MLKL),

which constitutes the core components of necroptosis, are

downregulated in various types of cancers including colorectal

cancer, pancreatic adenocarcinoma, cervical squamous cell

carcinoma, and melanoma (6, 7, 9–13). Downregulation

correlated with histological grade and was shown to be an

independent prognostic factor for overall survival (OS) and

disease-free survival (DFS) (10). Moreover, testing of more
02
than 60 cancer cell lines showed absence of RIPK3 protein

expression in two-thirds of these cancer cell lines, which was

restored upon treatment with the hypomethylating agent

decitabine (14). In glioblastoma cells, RIPK3 downregulation

or inhibition of RIPK1 with Nec-1 were sufficient to abrogate the

necroptosis-mediated cell death induced by edelfosine (15).

Induction of osteosarcoma cell death via necroptosis has also

been demonstrated by combining the stress-inducing agents and

nuclear factor-kappa B (NF-kB) inhibitors (16). These studies

indicate that necroptosis-induction strategies could be exploited

for cancer therapy. Necroptosis is characterized by simultaneous

swelling of organelles and disruption of plasma membrane

leading to organelle breakdown and leakage of intracellular

contents resulting in a pro-inflammatory response (7, 8).

Carcinogenic effects include its ability to induce inflammation

which has been associated with cancer metastasis and T cell

death (11). On the other hand, due to its inflammatory nature,

necroptosis is also regarded as a potential target for cancer

therapy as necroptosis cells were shown to initiate adaptive

immunity by activating CD8+ T cells via production of

antigens and inflammatory stimuli for dendritic cells (DCs)

(17). Therefore, understanding the molecular dynamics of this

pathway in gastric cancer may unravel its potential as a

therapeutic target.

In this study we investigated the role of necroptosis in

stomach adenocarcinoma by first 1) reviewing the medical

literature for the various molecules involved in the process of

necroptosis and then 2) carrying out comprehensive

bioinformatic analysis of the expression datasets. We

successfully developed a risk model that can not only predict
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the prognosis of gastric cancer patients but also their

immune landscape.
Materials and methods

Datasets

Clinical and mRNA expression data of 375 stomach

adenocarcinoma tissues (STAD) and 32 adjacent normal

tissues was retrieved from TCGA Data Portal (https://portal.

gdc.cancer.gov/repository/). Likewise, RNA-Seq and clinical

data for external validation cohort (GEO ID: GSE84437) were

downloaded from GEO database (https://www.ncbi.nlm.nih.

gov/geo/). Both datasets were subjected to log2(x+1)

transformation and normalization with “limma” package.

Batch effects were removed with “sva” package using

“Combat” function. General characteristics of the two cohorts

are outlined in Supplementary Table 1 (Supplementary Data-

Sheet#1). Genetic alterations data (Simple Nucleotide Variation)

of TCGA STAD cohort was downloaded from the University of

California, Santa Cruz (UCSC) Xena website (https://

xenabrowser.net/). The oncoplot was constructed using the R

package “maftools” to analyze the number and categories of gene

mutations in two NRGPI subgroups. Protein-protein interaction

(PPI) network was constructed with the Search Tool for the

Retrieval of Interacting Genes (STRING) database, version 11.5

(https://string-db.org/). STRING is a database of known and

predicted protein-protein interactions. Interactions in STRING

are derived from five main sources: genomic context predictions;

high-throughput lab experiments; (conserved) co-expression;

automated textmining; and previous knowledge in databases.

The TIMER 2.0 website (http://timer.comp-genomics.org/) was

utilized for estimation of association between NRGPI risk genes

and macrophage infiltration.
Identification of necroptosis-related
genes

A total of 55 necroptosis-related genes (NRGs) were

extracted from The Molecular Signatures Database (MSigDB)

and previously published reviews and research articles

(Supplementary Data-Sheet#2: Supplementary Table 2) (18–

58). RIPK1, RIPK3 and MLKL constitutes the core

components of this pathway. Mainly three receptor pathways

were identified in regulation of necroptosis, namely: tumor

necrosis factor receptor 1 (TNFR1), FAS receptor (TNFR6)

and toll-like receptors (TLR3/4) (30–33). Moreover, negative

and positive regulators of RIPK1, RIPK3, MLKL and necrosome

(RIPK1-RIPK3-MLKL complex) were also studied (18–58).
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Differentially expressed genes (DEGs) were determined with

the application of “limma” package with p value <0.05.
Consensus clustering

Consensus clustering analysis, which is a rigorous

unsupervised classification technique, was carried out to

identify distinct necroptosis patterns based on the expression

of 55 NRGs. R package “ConsensuClusterPlus” was utilized for

measuring similarity between and within each group via

Euclidean distance with 1000 times repetition (59). Optimum

cluster number (k) and level of consensus stability was

determined according to the cumulative distribution function

(CDF) plots and the atness of the CDF curve, respectively.

Overall survival difference between the clusters was obtained

using the R package “survival”. Survival risk was estimated using

Cox Proportional-Hazards model and statistical difference was

assessed by log-rank test. The DEGs between the clusters were

estimated with “limma” package according to the criteria: log

fold change (logFC) = 1, and the false discover rate (FDR) < 0.01.
Development and validation of
necroptosis-related prognostic model

Next, univariate cox regression analysis was carried out to

estimate the prognostic significance of the DEGs (n=1056)

identified between the clusters. In total, 124 DEGs showed

prognostic association when significance level was set at

p<0.01. Using the R package “glmnet”, these DEGs were

subjected to the least absolute shrinkage and selection

operator (LASSO) penalized Cox regression analysis to

construct the prognostic model by narrowing down the

candidate genes (60). Normalized candidate DEGs expression

and survival data (time and status) constituted the independent

and independent variable of the LASSO regression,

respectively. Penalty parameter (l) was determined with the

minimum criteria by using a ten-fold cross-validation. The risk

score was calculated for each patient according to the

expression level of DEGs and their corresponding coefficient.

The formula was as follows: risk score = (expression of mRNA1

× coe ffi c i en tmRNA1 ) + ( exp r e s s i on o f mRNA2 ×

coefficientmRNA2) + … + (expression of mRNAn ×

coefficientmRNAn). The median risk score was used to

determine the subgroups into low- and high-risk cohorts.

The Kaplan-Meier analysis was performed to compare the

overall survival between the risk groups. Receiver operating

characteristic (ROC) curve to evaluate diagnostic efficacy of the

risk model was obtained via ROC curve analysis using the R

packages “survival” , “survminer” and “ t ime-ROC” .
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Furthermore, principal component analysis (PCA) and t-

distributed stochastic neighbor embedding (t-SNE) were also

performed to further visualize spatial dimensions between the

risk groups. PCA was performed using the “prcomp” function

in the “stats” R package and t-SNE with the R package “Rtsne”.

All of the steps were repeated for validation in the GEO cohort.
Independent prognostic analysis

We further sought to validate the prognostic model by

undertaking independent prognostic analysis in the TCGA and

GEO cohorts along with other variables such age, gender, tumor

grade and tumor stage (TNM staging data). Univariate and

multivariate cox regression models were employed.
Functional enrichment analysis

Differential expression of genes was investigated between the

low- and high-risk subgroups in the TCGA cohort to assess the

biological processes and pathways differentiating the risk

subgroups. DEGs were filtered according to logFC = 1 and

FDR < 0.05. Gene ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis was performed based on

these DEGs by applying the “clusterProfiler” package. Immune

landscape was evaluated in term of immune cell infiltration as

well as the immune-related pathways. Infiltration of major

immune cells and the status of immune-related pathways was

evaluated by employing the “gsva” package to conduct the

single-sample gene set enrichment analysis (ssGSEA). Score

for the activity of each immune-related pathways was

calculated. Furthermore, to elucidate on the subtypes of

various immune cells, a quantitative analysis of the relative

abundance of 22 types of immune cells in the TCGA cohort

was achieved using the CIBERSORT algorithm. The results were

used to quantify the difference in the infiltration of each cell in

the risk groups. Moreover, the prognostic significance of each

immune cell and immune-related pathway was also elaborated

by employing the K-M survival analysis. Significance level was

set at p<0.05. In an attempt to establish the immune subtype of

the risk groups, we used the immune subtype information

available from the previous paper to establish the enrichment

of each subtype in the high- and low-risk groups (61).
Construction of competing endogenous
RNA network

To construct the competing endogenous RNA network, the

miRNA targets for the risk genes were predicted using miRWalk

3.0 (http://mirwalk.umm.uni-heidelberg.de/), which provides

the predicted and experimentally verified results of
Frontiers in Immunology 04
TargetScan, MirTarbase and miRDB. A cutoff criterion

(≥ 0.95) was set for the prediction analysis in miRWalk. The

miRNA targets obtained were further screened for negative

correlation with the risk genes in the TCGA STAD cohort

which was followed by further prognostic significance. The

starbase v2.0 (http://starbase.sysu.edu.cn/) was investigated for

miRNA-lncRNA targets which were then screened for their

positive correlation with risk genes and negative correlation

with miRNA targets in the TCGA STAD cohort (62). The

ceRNA network was plotted with Cytoscape v3.6.0 (63).

Correlation scrutiny was tested with Spearman’s correlation

test with the following criteria: R=0.2 and p value <0.001.
Immunohistochemistry

Formalin-fixed, paraffin-embedded 4-mm thick tumor tissue

sections were deparaffinized in xylene and ethanol. Antigen

retrieval was performed by boiling in a microwave oven (citrate

buffer, pH 6.0) which was followed by blocking of endogenous

HRP activity with 0.3% hydrogen peroxide. After washing with

10% phosphate buffered saline (PBS), the sections were blocked

with 5% BSA and incubated with primary antibodies against

RIPK1 (Proteintech, #17519-1-AP, Rabbit, 1:50), RIPK3

(Proteintech, #17563-1-AP, Rabbit, 1:100), MLKL (Proteintech,

#21066-1-AP, Rabbit, 1:50), SERPINE1 (Proteintech, #13801-1-

AP, Rabbit, 1:50), FCN1 (Proteintech, #11775-1-AP, Rabbit, 1:50),

CNTN1 (Proteintech, #13843-1-AP, Rabbit, 1:50), CYTL1

(Proteintech, #15856-1-AP, Rabbit, 1:50), PLCL1 (Abcam,

#EPR11213, Rabbit, 1:100), GRP (Proteintech, #28482-1-AP,

Rabbit, 1:500), GPX3 (Affinity Biosciences, #DF6765, Rabbit,

1:50), APOD (Proteintech, #10520-1-AP, Rabbit, 1:50), TGFB1

(Affinity Biosciences, #AF1027, Rabbit, 1:100), TGFB3

(Proteintech, #18942-1-AP, Rabbit, 1:50), WNT2B (Affinity

Biosciences, #DF12538, Rabbit, 1:100), WNT9A (Affinity

Biosciences, #DF9044, Rabbit, 1:100), CD68 (Abcam,

ab955,1:3000), CD206 (Cell Signaling,#24595,1:200), and CD163

(Cell Signaling,#93498,1:250) at 4°C overnight. Next, the sections

were incubated with a biotinylated goat anti-rabbit IgG secondary

antibody for 20 min at room temperature and visualized with 3, 5-

diaminobenzidine (DAB) Substrate Kit and finally counterstained

with Hematoxylin. The staining intensity was scored using a semi-

quantitative approach as follows: 0, negative; 1, weak; 2, moderate;

and 3, strong. The frequency of positive cells was defined as

follows: 0, less than 5%; 1, 5–25%; 2, 26–50%; 3, 51–75%; and 4,

greater than 75%. The final IHC scores were obtained by

multiplying the staining intensity and the frequency of positive

cells. When tissue staining was heterogeneous, each area was

scored independently and the scores of each area were added

together as the final result. Patient informed consents were

obtained and approval of the internal review and ethics boards

of the Affiliated Cancer Hospital and Institute of Guangzhou

Medical University was also acquired.
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Cell lines and cell culture

Human gastric cancer cell l ines (human gastric

adenocarcinoma AGS & MNK45 cell lines) were obtained

from Committee of Type Culture Collection of Chinese

Academy of Sciences (Shanghai, China). Cells were grown in

DMEM medium supplemented with 10% fetal bovine serum

(FBS), penicillin (100 U/ml), and streptomycin (100 mg/ml).

Cells were maintained at 37°C in a humid incubator (37°C,

5% CO2).
Necroptosis induction

Necroptosis was induced in cells by treating them with a

combination of recombinant human tumor necrosis factor-a
(TNF-a) (Peprotech, New Jersey, USA; 10 ng/ml), second

mitochondrial- derived activator of caspases (SMAC) mimetic

(BV6; Selleck Chemicals, Houston, USA; 1 nM) and pan-caspase

inhibitor (zVAD-FMK; ENZO Life Science, New York, USA; 40

mM). Necrostatin-1 (Enzo; 30 mM) was added an hour before

treating with the above agents to inhibit necroptosis. To collect

culture media, the cells were washed twice with PBS and media

was replaced with fresh media after being treated for 3 hours

with the aforementioned agents, which was followed by 12

hours’ incubation at 37 °C. The culture media (CM) was then

collected and filtered with a 22-mm syringe filter (Merck,

Darmstadt, Germany). Supernatants were collected after

centrifugation at 1500 rpm for 5 minutes and stored at 4°C.
Quantitative real-time PCR

Total RNA was extracted and purified using Trizol Reagent

(Takara, Otsu, Japan) and it was reverse transcribed to cDNA

and qRT-PCR were conducted by using a SYBR Green PCR Kit

(Takara, Otsu, Japan). The expression of mRNA was

standardized by internal control Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH), and relative mRNA level of the

treated group was based on the control group. The Primers

used in the study are presented in Supplementary Table 3

(Supplementary Data-Sheet#3).
Drug sensitivity

To predict the therapeutic vulnerability of high-risk group, the

“pRRophetic” package in R was used to estimate the half-maximal

inhibitory concentration (IC50) of drugs in the STAD patients

(64). The pRRophetic algorithm uses the gene expression and
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drug sensitivity data from the cancer cell lines in the Cancer

Genome Project (CGP) (65). The CGP investigated the

therapeutic sensitivity of 130 drugs in more 639 cancer cell

lines. The therapeutic targets, primary functions, or cellular

functions of the 130 drugs included the following: serine/

threonine kinase, receptor tyrosine kinase, cytoplasmic tyrosine

kinase, cytoskeleton, metabolism, apoptosis, mitosis, replication,

cell cycle, DNA repair, stress pathways, adhesion, transcription,

angiogenesis, and chromatin. The panel of 130 encompassed 114

targeted and 13 cytotoxic chemotherapeutic agents. Of these, 31

are clinically approved, 47 in development undergoing clinical

trials, and 52 were experimental tool compounds.
Statistical analysis

Comparison of the gene expression level and drug sensitivity

between the groups was accomplished using Wilcoxon test. Chi-

square test was used to compare the categorical variables. Overall

survival difference between the groups were estimated using the

Kaplan-Meier method with log-rank test. Univariate andmultivariate

factor analyses were carried with cox-regression hazard models. All

statistical analyses were performed with R software (v4.0.2).
Results

Differential expression of necroptosis-
related genes between normal and
tumor tissues

Comparison of expression levels of the 55 necroptosis-related

genes (NRGs) between 375 gastric cancer and 32 paired normal

tissues obtained from the “The Cancer Genome Atlas (TCGA)”

revealed 38 differentially expressed genes (DEGs) (all P < 0.01).

Majority of the NRGs were deregulated in cancer tissues as

compared to normal tissues which showed a uniform

downregulated expression pattern except for NDRG2, BCL2,

PRKN, TLR3, and STUB1. The mRNA levels of these genes are

presented as heatmap in Figure 1A. A similar outlook was obtained

when paired samples (n=32) from TCGA STAD cohort were

considered only (Figure 1B). A protein-protein interaction was

assessed for further exploration revealing a strong interaction

activity among these molecules at protein level as demonstrated

in Figure 1C. Likewise, the correlation network constructed based

on the mRNA expression level in TCGA STAD demonstrated

negative (blue) and positive (red) correlation among these NRGs as

shown in Figure 1D. A strong positive correlation can be observed

between majority of these NRGs. These results indicate a critical

deregulation of necroptosis in gastric cancer.
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Identification of molecular subtypes

Molecular subtypes were identified by subjecting

necroptosis-related genes expression to consensus clustering.

The 375 gastric patients were divided into two clusters

(Cluster 1[C1] = 248 and Cluster 2[C2] = 123) as the

intragroup correlations were the highest and the inter-group

correlations were low when clustering variable (k) was equal to 2
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(Figure 2A). The overall survival was significantly better for C1

as compared to C2 (p=0.007) (Figure 2B). Significant differences

were also observed for clinical features such as tumor grade

(degree of differentiation) and T stage (primary tumor) as

highlighted in the Figure 2C and Supplementary Table 4

(Supplementary Data-Sheet#4). We further sought the

distribution of NRGs between the clusters. As shown in

Figure 2D, cluster 1 was mainly characterized by the
B

C D

A

FIGURE 1

Expression and interaction of 55 necroptosis-related genes. (A) Heatmap of the NRGs between TCGA STAD tumor (n=375) and normal samples
(n = 32). Red and blue represent upregulation and downregulation respectively. P values are shown as: *P < 0.05; **P < 0.01; ***P < 0.001.
(B) Heatmap of NRGs between TCGA STAD paired normal (n = 32) and tumor samples (n = 32). Red and blue represent upregulation and
downregulation respectively. P values are shown as: *P < 0.05; **P < 0.01; ***P < 0.001. (C) Protein-protein interaction (PPI) network
demonstrating the interaction of NRGs (interaction score = 0.4). The interactions include direct (physical) and indirect (functional) associations;
they stem from computational prediction, from knowledge transfer between organisms, and from interactions aggregated from other (primary)
databases. (D) The correlation network of the NRGs based on mRNA expression in the TCGA STAD cohort. Red and blue lines indicate positive
and negative correlation respectively. Color depth depicts the strength of the correlation.
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upregulation of RIPK3, inositol phosphates (IPMK, ITPK1,

IPPK) and enhanced expression of negative regulators such as

PPMIB, AURKA, OGT, TBK1, IKKa/b, IKKe, and TRAF2.

While a stronger activity of TAM kinases (AXL and MERTK)

and the main pathways receptors such as TNFR1, TLR3, TLR4,

and FAS was demonstrated in the cluster 2. There was no

significant difference between the clusters for RIPK1 and

MLKL which indicates that both clusters may have undergone

necroptosis via distinctive regulatory mechanisms which might

have prompted differential negative regulation and prognosis.
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Development and validation of
prognostic gene model

To evaluate the differences between the clusters, differential

gene expression analysis was carried out which yielded 1055

differentially expressed genes (DEGs) according to the criteria

(log fold change (logFC) = 1, and the false discover rate (FDR) <

0.01) (Figure 3A and Supplementary Data-Sheet#5:

Supplementary Table 5). Both TCGA and GEO cohorts were

screened for these DEGs (n=1055) and only gene expression of
B

C

D

A

FIGURE 2

Molecular subtypes based on the necroptosis-related genes expression. (A) Consensus clustering matrix (k=2) identified two clusters (C1 = 248;
C2 = 123) based on the expression of the 55 NRGs. (B) The clusters demonstrated significant difference in overall survival (p<0.007). (C)
Heatmap illustrating association between the clusters and their clinicopathological features of the gastric cancer patients (TNM staging. T:
primary tumor; N: lymph node; M: metastasis. Degree of differentiation. G1: highly differentiated; G2: moderately differentiated; G3: poorly
differentiated). P value are shown as *P < 0.05; **P < 0.01. (D) Distribution of NRGs expression between the clusters (P values are shown as:
*P < 0.05; **P < 0.01; ***P < 0.001).
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shared DEGs (n=860) was retained. After incorporation of

survival information, both cohorts were subjected to prognostic

analysis. Univariate cox regression analysis identified a total of

123 genes that showed a significant correlation with OS

(Supplementary Data-Sheet#6: Supplementary Table 6). Among

123 survival genes, 119 survival genes were associated with
Frontiers in Immunology 08
increased risk (HR>1) and only four genes were protective

genes with HR<1. Next, least absolute shrinkage and selection

operator (LASSO) cox regression analysis was performed and a

13-gene risk signature, termed as necroptosis-related genes

prognostic index (NRGPI) was obtained according to the

optimum lambda (l) value (Figures 3B, C). The risk score was
B
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A

FIGURE 3

Risk signature construction. (A) Volcano plot depicting the differentially expressed genes (DEGs) between the necroptosis-based clusters. DEGs.
Were defined according to the following criteria: log fold change (logFC) = 1, and the false discover rate (FDR) < 0.01. (B) LASSO regression of
the 123 OS-related genes identified via uni-cox regression analysis. (C) Cross-validation for tuning the parameter selection in the LASSO
regression. (D) Kaplan–Meier curves for the OS of NRGPI-High and NRGPI-Low patients in the TCGA cohort and (E) GEO cohort. (F) Time-
dependent receiver operating characteristic (ROC) curves and area under curve (AUC) analyses depicting the predictive efficiency of risk score in
TCGA cohort and (G) GEO cohort.
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calculated as follows: risk score = (0.0461 * CYTL1 expression) +

(0.1313 * PLCL1 expression) + (0.1589 * CGB5 expression) +

(0.0534 * CNTN1 expression) + (0.0104 * GRP expression) +

(-0.0128 * EFNA3 expression) + (-0.0012 * E2F2 expression) +

0.0383 * APOD expression) + (-0.2798 * SOX14 ;expression) +

(0.0044 * CST6 expression) + (0.0168 * GPX3 expression) +

(0.0019 * FCN1 expression) + (0.1688 * SERPINE1 expression).

Based on themedian value of the risk score, samples were rated as

low and high risk. A K-M plot, as depicted in Figures 3D, E,

showed significantly worst survival for high-risk patients

(NRGPI-High) versus low-risk patients (NRGPI-Low) in both

TCGA and GEO cohorts (p<0.001). Diagnostic value of the

prognostic model was evaluated with time-dependent receiver

operating characteristic (ROC) analysis. The area under the

curves (AUCs) were 0.651/0.722/0.753 at 1/3/5 years in the

TCGA cohort, and 0.557/0.611/0.607 at 1/3/5 years in the GEO

cohort (Figures 3F, G). Plotting of the risk scores indicated an

equal distribution of patients into low- and high-risk groups

(Supplementary Figures 1A, B). Patients in the NRGPI-High

subgroup experienced more deaths and a shorter survival time

(negative correlation) than those in the NRGPI-Low subgroup as

demonstrated in Supplementary Figures 1C, D. Overall, a

negative correlation was evident between survival time and risk

score for both cohorts (Supplementary Figures 1E, F). Similarly,

principal component analysis (PCA) and t-distributed stochastic

neighbor embedding (t-SNE) showed well-separated clusters for

the two risk groups (Supplementary Figures 1G–J).
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Independent prognostic assessment of
the risk model

Independent prognostic value of the risk model and

assessment of other clinical features as independent prognostic

factors was evaluated by carrying out uni- and multi-variate cox

regression analyses. Risk score was established as independent

prognostic factor on univariate cox regression analysis in both

cohorts (Figure 4). Risk score prognostic value was remained

significant (only in TCGA and tended towards significance in

GEO) after adjusting for confounding factors by undertaking

multivariate analysis. Age and tumor stage also showed

independent prognostic value in TCGA (univariate: T, N, and

M; multivariate: N, and M) and GEO cohort (uni & multivariate:

T and N).
Risk model clinical and
mutational evaluation

The expression level of the 13 risk genes and its correlation

with clinical features are illustrated in heatmap (Figure 5A). No

significant differences between NRGPI-risk subgroups for the

clinical features were observed (Supplementary Data-Sheet#7:

Supplementary Table 7). Of the 13 risk genes, expression of 10

genes (CYTL1, PLCL1, CGB5, CNTN1, GRP, APOD, CST6,

GPX3, FCN1, SERPINE1) was unregulated in NRGPI-High
FIGURE 4

Univariate and multivariate cox-regression analysis to evaluate the independent prognostic value of the risk score in TCGA and GEO cohorts.
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subgroup. Overall, a positive correlation was evident between the

55 NRGs and 13 risk genes (Figure 5B and Supplementary

Figure 2A). Significant differences in the 23 NRGs described

the NRGPI-risk groups as compared to the clusters (significant
Frontiers in Immunology 10
difference in 31 NRGs between the clusters) (Figure 5C).

Expression level of NRGs in the NRGPI-risk subgroups

mirrored their expression status in the prognostic clusters.

NRGPI-High subgroup showed significant elevated expression
B C

D

A

FIGURE 5

Expression and distribution of the risk signature genes and their correlation with clinical features. (A) Heatmap illustrating the expression of 13
risk genes (Red: upregulation; Blue: downregulation) in the NRGPI subgroups (Red: high-risk; Blue: low-risk) and correlation between NRGPI
subgroups and clinicopathological features (TNM staging. T: primary tumor; N: lymph node; M: metastasis. Degree of differentiation. G1: highly
differentiated; G2: moderately differentiated; G3: poorly differentiated). (B) Spearman’s correlation between 55 NRGs and NRGPI (13 risk genes)
signature. (C) The expression levels of necroptosis-related genes between NRGPI-High and NRGPI-Low subgroups in the TCGA cohort (P values
are shown as: *P < 0.05; **P < 0.01; ***P < 0.001). (D) Oncoplot depicting the mutation frequency of top 20 mutated genes in the high- and
low-risk groups.
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of TAM kinases (AXL and MERTK) and pathways receptors

(TNFR1, FAS, and TLR4) as observed in the cluster 2. Likewise,

inositol phosphates (IPMK, ITPK1) and negative regulators

(PPMIB, AURKA, OGT, IKKe, and TRAF2) were expressed

NRGPI-Low subgroup. These results indicate differential

regulation of necroptosis in stomach adenocarcinoma.

Moreover, mutations were less frequent in the NRGPI-High

subgroup (91.94%) as compared to the NRGPI-Low subgroup

(84.09%) (Figure 5D). Except for the TP53 gene, all the top 20

mutated genes showed lower frequency (up to 50% decrease) in

the NRGPI-High subgroup in comparison to NRGPI-Low

subgroup. Mutation frequency of the TP53 gene (second most

mutated gene in gastric cancer) showed no difference at all

between NRGPI subgroups and constituted the top mutated

gene in the NRGPI-High subgroup (41%).
Risk model functional implications

To evaluate functional implications of risk model, DEGs

between the NRGPI subgroups defined by the risk model was

obtained for evaluating differences between gene functions and

pathways. The “limma” package was utilized with defined

criteria: FDR < 0.05 and |log2FC | ≥ 1. According to this

criterion, a total of 118 DEGs were identified between the

NRGPI-High and NRGPI-Low subgroups in the TCGA cohort

(Supplementary Data-Sheet#8: Supplementary Table 8). These

DEGs were then subjected to Gene ontology (GO) enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis. Main biological process identified

included extracellular matrix (ECM) structural organization,

ECM-receptor interaction, cell-substrate adhesion and its

regulation, negative regulation of cell motility and cellular

component movement (Supplementary Figures 2B, C).

Angiogenesis-related processes and pathways were also

detected such as regulation of angiogenesis, vascular smooth

muscle contraction, and cGMP-PKG signaling pathway. DEGs

were also associated with complement and coagulation cascades,

and proteoglycans in cancer. Moreover, signaling pathways

implicated in cancer progression and immune suppression

such as Wnt signaling pathway and TGF-b signaling pathway

were also correlated.
Immunological significance

Immunological significance was sought by undertaking

immune enrichment analysis in terms of immune cells and

immune-related pathways for the differences between NRGPI

subgroups. Results of the single-sample gene set enrichment

analysis (ssGSEA) involving TCGA and GEO cohorts indicated

higher infiltration of various immune cells including B cells,

dendritic cells (DCs), macrophages, mast cells, neutrophils, T
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helper cells, tumor infiltrating lymphocytes (TIL), and

regulatory T cells (Treg) in NRGPI-High subgroup as

compared to the NRGPI-Low subgroup (Figure 6A and

Supplementary Figure 3A). Survival analysis based on the

infiltration of immune cells indicated that a higher infiltration

of immature dendritic cells (iDCs), mast cells, and neutrophils

was associated with a worst prognosis (Figures 6B–D). All these

three cells were more abundant in the NRGPI-High subgroup.

To further dissect the various subtypes of immune cells, the

CIBERSORT algorithm was used (Figures 7A–H). Results

revealed that mainly M2 phenotype of the macrophages was

more abundant in NRGPI-High subgroup and their infiltration

was associated with a worst prognosis (Figures 7B, C). Resting

DCs were also significantly abundant in the NRGPI-High

subgroup, which was also associated with a worst outcome

(Figures 7B, D). Likewise, different types of mast cells (resting

and activated) also had prognostic significance (Figures 7B, F).

Immune-related pathways that were significantly

upregulated in NRGPI-High subgroup (investigated in the

TCGA cohort and validated in the GEO dataset) included

APC co-stimulation, Chemokine receptors (CCR), checkpoint,

para-inflammation, T cell co-stimulation, and type-II interferon

(IFN) response. Upregulation of para-inflammation and type-II

interferon pathways were associated with a worst prognosis

(Figures 6E, F). On the other hand, checkpoint and T cell co-

inhibition pathways, that were also slightly activated in the

NRGPI-High subgroup, were associated with a better

prognosis (Figure 6G and Supplementary Figure 3F). Other

pathways and immune cells that had no significant differences

between the cohorts had also significant impact on the prognosis

(Figure 6G and Supplementary Figures 3B-E, G). Moreover,

immune subtype analysis indicated that the main difference

between the NRGPI subgroups was the comparative

enrichment of inflammatory subtype in the NRGPI-High

subgroup (C3: 6(4%) versus 27(16%, p=0.001) (Figure 6H).
Construction of a ceRNA network

The potential molecular mechanism of NRGPI genes was

elucidated by constructing the network of mRNA–miRNA–

lncRNA interactions as illustrated in Figures 8A–C (Supplementary

Data-Sheet 9-12: Supplementary Tables 9–12). A total of 72 miRNA

targetswithprognostic significancewere identified after screening for

negative correlation with individual NRGPI genes (Supplementary

Data-Sheet#9, 10: Supplementary Tables 9, 10). LncRNA targets

(obtained from starbase v2.0) were screened for positive correlation

with NRGPI genes and negative correlation with miRNA targets,

which yielded 32 lncRNAs regulating the expression of 21 miRNAs

and 9 NRGPI genes (Supplementary Data-Sheet#11, 12:

Supplementary Tables 11, 12). Main miRNA families (miR-200,

miR-15/107, let-7) were identified as regulator of NRGPI genes. For

example,miRNA-200 familymembers (hsa-miR-200a-3p, hsa-miR-
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FIGURE 6

Immune landscape of NRGPI subgroups based on the single sample gene set enrichment analysis (ssGSEA) scores. (A) Comparison of
enrichment scores of 16 types of immune cells and 13 immune-related pathways in the TCGA cohort between NRGPI-High and NRGPI-Low
subgroups. (B-D) Kaplan-Meier curves for survival difference between TCGA patients with high and low- infiltration of immune cells. (E-G)
Kaplan-Meier curves for survival difference between TCGA patients with high and low-activation of immune-related pathways. (H) Heatmap and
table showing the distribution of immune subtypes (IC1, IC2, IC3, IC4, IC5, and IC6) between the NRGPI-High and NRGPI-Low subgroups. P
values are shown as: *P < 0.05; **P < 0.01; ***P < 0.001.
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200b-3p, hsa-miR-200c-3p, and hsa-miR-141-3p), which are

reported as tumor-suppressive group of miRNAs with essential role

in suppressing EMT, were downregulated miRNAs (among the

targeting miRNAs) in patients with higher expression of CNTN1,

GPX3, FCN1 and SERPINE1 (NRGPI-high) (66). Additionally,

CNTN1 was also regulated by hsa-miR-15b-5p and hsa-miR-503-
Frontiers in Immunology 13
5p (members of the microRNA-15/107 family) (67). APOD was

regulated by hsa-miR-107 (another member of microRNA-15/107

family) and hsa-let-7d-5p which belongs to the let-7 family (68).

PLCL1andCYTL1werenegatively regulatedbyhsa-miR-18a-5pand

hsa-miR-339-5p and positively regulated by lncRNA FENDRR and

MAGI2-AS3, respectively. FENDRR was the predominant lncRNA
B
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FIGURE 7

Immune landscape assessed by CIBERSORT algorithm. (A) Heatmap and (B) bar plot of abundance of 22 subtypes of immune cells in NRGPI-
High and NRGPI-Low subgroups (P values are shown as: *P < 0.05; **P < 0.01; ***P < 0.001). (C–H) Kaplan-Meier curves for survival difference
between TCGA patients with high and low- infiltration of immune cells.
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regulator significantly correlating with 5 microRNAs and 3 NRGPI

oncogenes. The tumor suppressive genes of the NRGPI (suppressed

inNRGPI-Highsubgroup), theE2F2andEFNA3,were regulatedbya

groupof4microRNAs (E2F2: hsa-miR-490-3pandhsa-miR-145-5p;
Frontiers in Immunology 14
EFNA3: hsa-let-7c-5p and hsa-miR-133a-3p) (Figures 8H–K). The

higher expression of these four microRNAs were predictive of worst

prognosis as opposed to the other microRNAs regulating the

oncogenes of NRGPI (Figures 8D–G and Supplementary Figure 4).
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FIGURE 8

Construction of competing endogenous RNA (ceRNA) network of NRGPI genes. (A) Scrutiny of miRNA by (I) obtaining miRNA targets from
miRWalk version 3.0 (n = 2158); (II) screening for miRNA expression in TCGA STAD cohort (n = 1798); (III) followed by gene-miRNA target
correlation analysis (n = 122); and (IV) survival significance (n = 72). (B) lncRNA targets (n = 16877) were obtained for the 72 miRNA targets (I),
which were then (II) screened for individual target-based correlation analysis (positive correlation with risk gene and negative correlation with
miRNA). (C) A mRNA-miRNA-lncRNA (ceRNA) network (9 risk genes-21 miRNAs-32 lncRNAs) was constructed. Kaplan-Meier curves of survival
analysis for miRNA targets of NRGPI oncogene (D-G) and NRGPI tumor suppressor genes (H–K). Correlation was tested with Spearman’s
correlation test with the following criteria: R=0.2 and p value <0.001.
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Individual NRGPI genes evaluation and
experimental validation

In order to experimentally validate the outcomes of our

study, we further dissect the association of NRGPI genes with the

characteristics of tumor microenvironment in gastric cancer

such as wnt and TGF-b signaling pathways, and the

infiltration of M2 macrophages. The individual NRGPI genes

were evaluated for association with M2 macrophage in TCGA

STAD cohort which revealed eight NRGPI oncogenes

(SERPINE1, APOD, CYTL1, CNTN1, FCN1, GRP, GPX3,

PLCL1) showed significant correlation with the infiltration of

M2 macrophage (Figure 9A). In accordance with outcomes of

GO enrichment analysis (Supplementary Figure 2C), NRGPI

association with the two pathways was also investigated which

showed strong correlation between the NRGPI and the two

pathways (Supplementary Figures 5A, B). Interestingly, the

aforementioned eight genes were among the most correlated

with these pathways, in particular the TGF-b signaling pathway

(Figures 9B, C). Hence, these eight NRGPI oncogenes were

selected for further experimental analysis.

To confirm the association of necroptosis and NRGPI

oncogenes, necroptosis was induced in gastric cancer cells

(AGS and MNK45) using a combination of human

recombinant TNF-a, SMAC mimetic, and zVAD-FMK (TSZ)

as previously suggested (69, 70). After induction of necroptosis,

the mRNA expression level of core mediators (RIPK1, RIPK3,

and MLKL) were increased and suppressed when necroptosis

inhibitor (necrostatin-1) was added (Figure 9D). There was

statistical difference between the mRNA expression levels of

these core mediators in both cell lines (AGS and MNK45).

Moreover, a similar pattern of expression was evident for

selected NRGPI oncogenes. The relationship between NRGPI

and cancer progression pathways, such as WNT and TGF-b
signaling pathways, was also confirmed as the mRNA expression

level of WNT and TGF-b markers (wnt markers: WNT2B,

WNT9A; TGF-b markers: TGFB1 and TGFB3), which were

selected based on correlation analysis (Supplementary

Figures 5C, D), were also significantly elevated with induction

of necroptosis.

The relationship of necroptosis, NRGPI oncogenes and tumor

microenvironment characteristics was further established in clinical

samples via conducting immunohistochemistry analysis in stomach

adenocarcinoma patients. As shown in Figures 10, 11A, B, the core

mediators of necroptosis (mainly RIPK3 and. MLKL) were highly

expressed in these patients which correlated with several of NRGPI

oncogenes such as APOD, CYTL1, CNTN1, and PLCL1. TGF-b
pathway was evidently activated as the both of the receptors

(TGFB1 and TGFB3) showed considerable expression in these

patients (Figure 11A). Moreover, macrophage infiltration was

intensely evident and showed a predominant positive correlation

with the NRGPI oncogenes and pathway markers (Figures 11A, B).
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M2 phenotype expression (CD206 and CD163) was also

demonstrated which, in general, showed a negative correlation

but certain significant positive correlation was also apparent. For

example, RIPK3 expression was significantly positively correlated

with CNTN1 (p<0.001), TGFB1 (p<0.001), and CD206 (not

significant). Overall, these results indicate the presence of a strong

relationship as suggested by bioinformatics outcomes between the

necroptosis, NRGPI oncogenes, and the tumor immune

microenvironment which should further be elaborated on

individual level.
Therapeutic response

The drug sensitivity profile highlighted two main aspects of

the NRGPI subgroups (Supplementary Figure 6). Of the 13

chemotherapy agents, 4 agents showed sensitivity to NRGPI-

Low subgroup and none to NRGPI-High subgroup. Major

tyrosine kinase inhibitors, that mainly target epidermal growth

factor receptor (EGFR), phosphoinositide 3-kinases (PI3K),

mammalian target of rapamycin (mTOR), SRC kinases, BCR-

Abl, vascular endothelial growth factor receptor (VEGFR), and

platelet-derived growth factor receptor (PDGFR), showed

sensitivity to NRGPI-High subgroup. Moreover, two poly

(ADP-ribose) polymerase (PARP) agents also showed lower

IC50 values for the NRGPI-High subgroup. Interestingly, the

NRGPI-High subgroup showed resistant to polo-like kinase 1

(PLK1) inhibitors. Detailed profile of the drug sensitivity is listed

in Supplementary Table 13 (Supplementary Data-Sheet#13).
Discussion

Necroptosis pathway was greatly deregulated in gastric cancer

samples as compared to adjacent normal tissues, wherein the

majority of the necroptosis-related genes (NRGs) demonstrated a

uniform downregulation. Differential expression of NRGs also

identified two molecular subtypes that showed significant

difference in prognosis. A 13-gene risk signature was

constructed based on the differential expression of genes

between the molecular subtypes, that comprehensively

differentiated the gastric cancer patients into high and low-risk

subgroups. Dissection of these two risk groups by differential gene

expression analysis indicated involvement of several biological

processes related to cell motility, extracellular organization, and

signaling pathways associated with cancer cell progression and

immune suppression such as WNT signaling pathway and TGF-b
signaling pathway. Para-inflammation and type-II interferon

response pathways were evident with an increased infiltration of

regulatory T cells (Tregs) and M2 macrophages. Overall, an

exhausted immune phenotype was apparent in the NRGPI-High

subgroup (Figure 12).
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In general, current evidence is insufficient to conclude the

role of necroptosis as pro-tumorigenic or anti-cancer process.

Down-regulation of core mediators such as RIPK3 and MLKL

indicates an attempt to escape from necroptosis. On the other
Frontiers in Immunology 16
hand, its role in promotion of metastasis and T cell death

underlines its role in carcinogenesis. While its inflammatory

nature and promotion of cross-priming holds potential for

targeted therapy. The clustering based on NRGs indicated two
B
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D

A

FIGURE 9

Individual assessment of NRGPI genes and association with necroptosis. (A) Spearman’s correlation between NRGPI genes and infiltration of
macrophages in the TCGA STAD dataset assessed with TIMER database. (B) Spearman’s correlation between NRGPI genes and KEGG TGF-b
signaling pathway signature genes and (C) WNT signaling pathway signature genes. (D) mRNA expression level of RIPK1, RIPK3, MLKL
(necroptosis core mediators), NRGPI oncogenes (SERPINE1, GPX3, GRP, FCN1, CYTL1, CNTN1, PLCL1, and APOD), and markers of WNT signaling
pathway (WNT2B, WNT9A) and TGF- signaling pathway (TGFB1, TGFB3) in gastric cancer cells (AGS and MNK45) after being treated with a
combination of human recombinant TNF-a, SMAC mimetic, and zVAD-FMK (TSZ) to induce necroptosis or added necroptosis inhibitor
(necrostatin-1) to inhibit necroptosis. Graph shows mean ± SD. *P<0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not signficant.
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patterns of expression for necroptosis that was also evident in

the NRGPI subgroups. Cluster with the worst prognosis (C2 &

NRGPI-High subgroup) was identified by the upregulation of

necroptosis-associated receptor activity and TAM kinases, AXL

and MERTK. TAM kinases promote necroptosis via regulating

MLKL oligomerization (23). Although MLKL showed no

differential expression between the NRGPI subgroups, it was

the only differentially expressed core necroptotic mediator in
Frontiers in Immunology 17
cancer samples as compared to normal tissues. Both of these

indicators plus the lower expression of negative regulators

indicate this cohort may have undergone significant

necroptosis. While the cluster with a better prognosis (C1 &

NRGPI-Low subgroup) was enriched in the expression of

negative regulators, RIPK3 upregulation and inositol

phosphates, which may indicate higher suppression or

resistance to necroptosis in this cohort. Like TAM kinases,
FIGURE 10

Representative images of expression (brown, cell cytoplasmic/nucleus stain) of RIPK1, RIPK3, MLKL (necroptosis core mediators), NRGPI
oncogenes (SERPINE1, GPX3, GRP, FCN1, CYTL1, CNTN1, PLCL1, and APOD), markers of WNT signaling pathway (WNT2B, WNT9A), TGF-b
signaling pathway (TGFB1, TGFB3), and macrophage (CD63, CD206, CD163) in the clinical samples of stomach adenocarcinoma.
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inositol phosphates, IPMK, ITPK1, and IPPK, have also been

reported for their role in execution of necroptosis via activation

of MLKL (27, 28). This could also explain the lack of significant

differential expression of MLKL between the cohorts. Hence,

under different circumstances, the necroptosis process may or

may not be suppressed or resisted which holds prognostic
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significance. Further investigations would be required to

investigate the mechanistic details of this phenomenon.

In our study, we identified a 13-gene risk signature (NRGPI)

which characterized the gastric cancer patients into a NRGPI-

High- and NRGPI-Low patients based on the differential gene

expression between the two clusters. The study of these genes
B

A

FIGURE 11

(A) Expression level (IHC quantification) of RIPK1, RIPK3, MLKL (necroptosis core mediators), NRGPI oncogenes (SERPINE1, GPX3, GRP, FCN1,
CYTL1, CNTN1, PLCL1, and APOD), and markers of WNT signaling pathway (WNT2B, WNT9A), TGF-b signaling pathway (TGFB1, TGFB3), and
macrophage (CD63, CD206, CD163) in the clinical samples (n = 4) of stomach adenocarcinoma. The scattered dots represent the IHC score of
each individual sample. The thick middle lines represent the median value and error bars indicate the standard deviation. The bottom and top of
the boxes are the 25th and 75th percentiles (interquartile range), respectively. (B) A correlation matrix illustrating Pearson’s correlation
coefficients indicating the relationship among expression levels of RIPK1, RIPK3, MLKL (necroptosis core mediators), NRGPI oncogenes
(SERPINE1, GPX3, GRP, FCN1, CYTL1, CNTN1, PLCL1, and APOD), and markers of WNT signaling pathway (WNT2B, WNT9A), TGF-b signaling
pathway (TGFB1, TGFB3), and macrophage (CD63, CD206, CD163) in the clinical samples (n = 4) of stomach adenocarcinoma. P values are
shown as: *P < 0.05; **P < 0.01; ***P < 0.001.
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may help to comprehend the mechanism of differential

necroptotic status and outcome between the aforementioned

clusters. The 13-gene risk signature included several genes that

have previously been implicated in cancer development and

progression. Cytokine-like 1 (CYTL1, also known as C17 or

C4ORF4) is a secreted protein that has shown a deregulated

expression profile across cancers and has also been implicated in

carcinogenesis (71). A previous study has reported its role in

chemoattraction of monocytes via the CCR2/ERK pathway,

which were more abundant in the NRGPI-High subgroup

compared to the NRGPI-Low subgroup (72). Moreover,
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CYTL1 expression was positively correlated with macrophage

marker CD68 indicating an interplay between necroptosis

(CYTL1 positively correlated with MLKL), CYTL1 and

macrophage infiltration which needs further exploration. It

was identified as a tumor suppressor in lung cancer via

inhibiting the tumor invasion and metastasis rather

proliferation (72). While a similar effect on tumor growth and

metastasis was achieved via inhibition of metabolic

reprogramming in breast cancer cells expressing an

intracellular form of CYTL1 that lacked a 1-22 aa signal

peptide, DCYTL1 (73). In contrast, CYTL1 was involved in the
FIGURE 12

Graphical abstract of construction and characterization of NRGPI subgroups.
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growth and metastasis of neuroblastoma cells (74). Although its

expression is downregulated in gastric cancer, a higher

expression suggested a poor prognosis as shown in our study.

Furthermore, our study identified the hsa-miR-339-5p as

miRNA target of CYTL1 which has previously been

recognized as a suppressor of malignant development in

gastric cancer thereby further cementing CYTL1 role as an

oncogenic molecule in gastric cancer (75). Phospholipase C

like 1 (PLCL1) is required for insulin induced gamma-

aminobutyric acid type A (GABA(A)) receptor expression and

in the gonadotropin secretion (76, 77). PLCL1 was demonstrated

to induce abnormal lipid metabolism in tumor cells by

interacting with metabolism-related gene uncoupling protein 1

(UCP1), thereby repressing progression of clear cell renal cell

carcinoma (ccRCC) (78). In a breast cancer study, its expression

was associated with PIK3CA mutation and PFS; nonetheless, its

role in cancer has largely been unknown (79). Our study

indicated PLCL1 to play a role in macrophage infiltration as

shown in bioinformatic analysis and validated in the

immunohistochemistry analysis of the clinical samples. In

coherence with our study, chorionic gonadotropin subunit

beta 5 (CGB5) – a protein-encoding gene primarily associated

with invasive mole and ectopic pregnancy – has previously been

identified as a biomarker in gastric cancer (80). It exhibits

structural similarities with other growth factors and has been

shown to act as proangiogenic factor in some tumors (81, 82).

Other properties include suppression of apoptosis and induction

of epithelial‐to‐mesenchymal transition (EMT) via TGF-b
signaling pathway (83–85). These functional properties of

CGB5 could also be reflected in our study.

Contactin 1 (CNTN1), a neuronal membrane glycoprotein,

has long been implicated in cancer cell invasion, migration,

metastasis via the epithelial-mesenchymal transition (EMT) in

several cancers such as the lung cancer, gastric cancer, esophageal

cancer, thyroid cancer, liver cancer, prostate cancer, and breast

cancer (86–93). In fact, CNTN1 was identified as a critical NRGPI

oncogene in our study which showed strong association with

necroptosis (RIPK3), TGF-b signaling pathway (TGFB1), and

infiltration of the M2 macrophages (CD206). Moreover, ceRNA

network identified hsa-miR-200c-3p as regulator of CNTN1

which further assert CNTN1 role in gastric cancer development

via EMT (66). Hence, CNTN1 may induce TGF-b1 which can

promote differentiation of macrophages into M2 phenotype

thereby further inducing the secretion of TGF-b1 and

consequently prompting the EMT (94, 95). In has also been

involved in the development of chemoresistance in lung cancer

(96). Several studies have clearly indicated CNTN1 as an

independent prognostic factor in gastric cancer 87, 88). Gastrin

releasing peptide (GRP) is a neuropeptide that causes the secretion

of gastrin in the stomach (97). GRP is over-expressed in a number

of cancers including lung, breast, stomach, pancreas, renal,

prostate, and colon (98, 99). GRP actions relevant to

carcinogenesis include its role as a potent mitogen and its effects
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on angiogenesis, cell adhesion, and cell migration – pathways that

were also revealed in our study (100, 101). Apolipoprotein D

(ApoD), a protein regulated by androgen and estrogen, is

implicated in breast cancer as a poor prognostic factor (102). In

gastric cancer, several bioinformatic analysis have revealed APOD

as a component of gene-risk model and associated with tumor

mutational burden and immune cell infiltration (103–105). Our

study further validated these characteristics of APOD

demonstrating a positive correlation with infiltration of

macrophages (CD68) and WNT signaling pathway (WNT2B).

Cystatin E/M (CST6), a representative cysteine protease inhibitor,

has been well appreciated as a tumor-promoting and tumor-

suppressing agent and is pursued as an epigenetically therapeutic

target in special cancer types (106). Loss of expression in 70% of

gastric cancer was reported due to promoter hypermethylation

which was associated with shorter survival (107). Moreover, CST6

was also part of a CpG island methylator phenotype-related

prognostic gene signature which differentiated gastric cancer

into high-and low-risk groups with a significant OS difference

(108). Although the DNA methylation status of CST6 was not

determined in our study, low expression of CST6 was associated

with better prognosis. Likewise, extracellular glutathione

peroxidase (GPX3) also plays a dichotomous role in different

types of cancer (109). Bioinformatic analysis of TCGA data have

revealed poor prognosis for gastric patients with higher GPX3

expression, which is in coherence with the outcome of our study.

However, a tumor suppressive role also been reported for GPX3 in

gastric cancer wherein its knockdown resulted in tumor cell

invasion and migration by targeting NFкB/Wnt5a/JNK

signaling (110). Ficolin-1 (FCN1) is a member of the ficolins

family proteins that are considered as multifunctional innate

immune defense factors mainly associated with complement

pathway. Their role in cancer is not exclusively elaborated (111).

Our study indicates association of higher expression of FCN1 with

poor prognosis. Further exploration of these factors is warranted

as a therapeutic target in gastric cancer. Serpin family E member 1

(SERPINE1) encodes plasminogen activator inhibitor 1 (PAI-1),

which is a primary inhibitor of tissue plasminogen activator (tPA)

(112). It has been detected in various cancer and involved in

cancer invasion, migration, and angiogenesis (112–116).

Activation of PAI-1 transcription is mediated by the

cooperation of tumor suppressor p53 with TGF-b signal

transducers, Smad proteins, to selectively enhance TGF-b-
induced cytostatic effects (117). In gastric cancer, it was highly

expressed and associated with regulation of EMT (114). Our study

indicated PAI-1 as one of the NRGPI oncogenes associated with

the TGF-b and infiltration of M2 macrophages.

Ephrin A3 (EFNA3), like most genes in the ephrin family, plays

a central role in embryonic development and can be dysregulated in

a variety of tumors (118). In gastric cancer, it has been identified as

part of the prognostic gene signature during investigation of

hypoxia and glycolysis (119, 120). Interestingly, the expression of

Ephrin A3 was down-regulated in the high-risk group. Indicating it
frontiersin.org

https://doi.org/10.3389/fimmu.2022.968165
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Khan et al. 10.3389/fimmu.2022.968165
as tumor suppressive factor as reported before (121). E2Fs,

transcription factor protein family, are implicated in

carcinogenesis for their role in cell cycle control (122, 123).

Previously, E2F2 has been reported for its role in development of

gastric cancer growth (124). However, it was downregulated in the

high-risk cohort indicating it as a tumor suppressive target. SOX14,

a transcription factor, has largely been unexplored in cancer.

Investigations of immune-related pathways revealed activation

of para-inflammation, a low-grade form of inflammation, in the

high-risk group. Para-inflammation is implicated in the cancer

development (125). Viral infection such as Epstein-Barr virus

(EBV) and chronic infections such as H. Pylori might contribute

to the para-inflammatory status (126). This status could certainly

activate the innate immune pathways as observed in our study

including APC co-stimulation, and type-II interferon secretions.

Enrichment of TP53 mutation has also been linked to

parainflammation-positive tumors, which was the highly mutated

gene in the high-risk group (125). TP53 role in cancer cell cycle is

mediated via p53-TGF-b signaling pathway which showed

comparative enrichment in the high-risk group. Moreover, the

immune landscape indicated a predominantly innate immune

phenotype for the high-risk group, which was characterized by

high infiltration of monocytes, M2 macrophages, activated mast

cells, resting dendritic cells and regulatory T cells (Tregs). The

survival analysis indicated significant impact on prognosis for the

infiltration of these cells. Infiltration of Tregs as well as M2

macrophage phenotype have previously been associated with poor

prognosis in cancers including gastric cancer (127–129). Overall, an

exhaustive immune subtype is apparent for the high-risk patients

characterized by the activation of Wnt and TGF-b pathways and

the abundance of M2 macrophage and Tregs (130). As such, the

high-risk patients may not respond well to the immune checkpoint

inhibition therapy. Our investigations of the immune subtype

identified the major difference between the cohorts which was the

enrichment of inflammatory immune subtype in the high-risk

group. Inflammatory subtype is characterized by the highest

infiltration of Th17 cells among the immune subtypes, which is

also implicated in cancer (61). TGF-b in the gastric tumor

microenvironment is reported to promote the differentiation and

expansion of both Th17 cells, Tregs and M2 macrophage (94, 95,

131, 132). Th17 contribute to gastric cancer growth through

promotion of inflammation and secretion of IL-17 as opposed to

Tregs which is involved in immune surveillance (132). Overall, the

exhausted immune microenvironment may not be a suitable

candidate for immunotherapy. Interestingly, resistance to certain

chemotherapy agents was also apparent in our study. However,

selective molecular targeted therapy, as demonstrated in the drug

sensitivity analysis, might be a better option for the NRGPI-High

gastric patients.
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Conclusions

Necroptosis appears to play a critical role in the

development and progression of gastric cancer. Molecular

subtypes could further dissect the differential role necroptosis

might play during the gastric cancer progression with

implications for tumor immune microenvironment, prognosis,

and therapy. Results of our study could provide a basis for

further work on elaborating the mechanistic details of

necroptosis in gastric cancer.
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SUPPLEMENTARY FIGURE 1

Assessment of the risk model. (A) Distribution of TCGA and (B) GEO

patients based on the risk score. (C) Risk scores and survival correlation for
the high- (on the right side of the dotted line) and low-risk (on the left side

of the dotted line) TCGA and (D) GEO patients. (E) Linear regression
between risk score and survival time in years for TCGA and (F) GEO

cohorts. (G) Principal component analysis (PCA) plots of risk scores for

TCGA and H) GEO cohorts. (I) t-distributed stochastic neighbor
embedding (t-SNE) plots of risk scores for TCGA and (J) GEO cohorts.

SUPPLEMENTARY FIGURE 2

Correlation and functional analysis of the risk groups. (A) Pearson’s
correlation between individual NRGs (n = 55) and NRGPI (n = 13). P

values are shown as: *P < 0.05; **P < 0.01; ***P < 0.001. (B) Circos plot

depicting the enrichment of gene ontology (GO) terms (only biological
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process: BP) and (C) Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (increasing depth of the red indicate the more obvious

differences; q-value: the adjusted p-value).

SUPPLEMENTARY FIGURE 3

Immune landscape of NRGPI subgroups based on the single sample gene
set enrichment analysis (ssGSEA) scores. (A) Comparison of enrichment

scores of 16 types of immune cells and 13 immune-related pathways in

the GEO cohort between NRGPI-High and NRGPI-Low subgroups. (B–F)
Kaplan-Meier curves for survival difference between TCGA patients with

high and low-activation of immune-related pathways. (G) Kaplan-Meier
curves for survival difference between TCGA patients with high and low-

infiltration of Th2 cells. P values are shown as: *P < 0.05; **P < 0.01;
***P < 0.001.

SUPPLEMENTARY FIGURE 4

Kaplan-Meier curves of survival analysis for miRNA targets of
NRGPI oncogenes.

SUPPLEMENTARY FIGURE 5

Association of NRGPI and cancer-associated pathways (B) Spearman’s

correlation between NRGPI (13 risk genes) signature and KEGG TGF-b
signaling pathway (86-gene signature) in TCGA STAD cohort. (B)
Spearman’s correlation between NRGPI (13 risk genes) signature and
KEGG WNT signaling pathway (151-gene signature) in TCGA STAD

cohort. (C) Pearson’s correlation between individual NRGPI (n=13) and

markers of TGF-b signaling pathway in TCGA STAD cohort. P values are
shown as: *P < 0.05; **P < 0.01; ***P < 0.001. (B) Pearson’s correlation
between individual NRGPI (n=13) and markers of WNT signaling
pathway in TCGA STAD cohort. P values are shown as: *P < 0.05;

**P < 0.01; ***P < 0.001.

SUPPLEMENTARY FIGURE 6

Prediction of drug sensitivities of NRGPI-High and NRGPI-Low subgroups
in TCGA cohort.
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Ciarpaglini C, Cabeza-Segura M, et al. The role of tumor-associated macrophages
in gastric cancer development and their potential as a therapeutic target. Cancer
Treat Rev (2020) 86:102015. doi: 10.1016/j.ctrv.2020.102015

129. Davidsson S, Fiorentino M, Giunchi F, Eriksson M, Erlandsson A,
Sundqvist P, et al. Infiltration of M2 macrophages and regulatory T cells plays a
role in recurrence of renal cell carcinoma. Eur Urol Open Sci (2020) 20:62–71. doi:
10.1016/j.euros.2020.06.003

130. Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT, et al. Identification
and validation of novel microenvironment-based immune molecular subgroups of
head and neck squamous cell carcinoma: Implications for immunotherapy. Ann
Oncol (2019) 30(1):68–75. doi: 10.1093/annonc/mdy470

131. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-
McCrann JM, et al. When worlds collide: Th17 and treg cells in cancer and
autoimmunity. Cell Mol Immunol (2018) 15(5):458–69. doi: 10.1038/s41423-018-
0004-4

132. Li Q, Li Q, Chen J, Liu Y, Zhao X, Tan B, et al. Prevalence of Th17 and treg
cells in gastric cancer patients and its correlation with clinical parameters. Oncol
Rep (2013) 30(3):1215–22. doi: 10.3892/or.2013.2570
frontiersin.org

https://doi.org/10.1016/j.bbrc.2009.12.022
https://doi.org/10.7717/peerj.9624
https://doi.org/10.3390/cancers12082197
https://doi.org/10.3389/fimmu.2019.03097
https://doi.org/10.1016/j.biopha.2018.05.119
https://doi.org/10.1016/j.biopha.2018.05.119
https://doi.org/10.3390/cancers11111651
https://doi.org/10.3390/cancers11111651
https://doi.org/10.1080/1120009X.2019.1687996
https://doi.org/10.1080/1120009X.2019.1687996
https://doi.org/10.3389/fonc.2021.646060
https://doi.org/10.1038/s41374-020-00512-2
https://doi.org/10.1038/srep35483
https://doi.org/10.3389/fgene.2021.796592
https://doi.org/10.3389/fonc.2020.01778
https://doi.org/10.3389/fimmu.2021.705511
https://doi.org/10.3892/or.2015.3966
https://doi.org/10.1038/nrc2696
https://doi.org/10.1002/(SICI)1521-1878(199903)21:3%3C221::AID-BIES6%3E3.0.CO;2-J
https://doi.org/10.1002/(SICI)1521-1878(199903)21:3%3C221::AID-BIES6%3E3.0.CO;2-J
https://doi.org/10.18632/oncotarget.9288
https://doi.org/10.1186/s13059-016-0995-z
https://doi.org/10.1038/nature07201
https://doi.org/10.1038/srep15179
https://doi.org/10.1016/j.ctrv.2020.102015
https://doi.org/10.1016/j.euros.2020.06.003
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1038/s41423-018-0004-4
https://doi.org/10.1038/s41423-018-0004-4
https://doi.org/10.3892/or.2013.2570
https://doi.org/10.3389/fimmu.2022.968165
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma
	Introduction
	Materials and methods
	Datasets
	Identification of necroptosis-related genes
	Consensus clustering
	Development and validation of necroptosis-related prognostic model
	Independent prognostic analysis
	Functional enrichment analysis
	Construction of competing endogenous RNA network
	Immunohistochemistry
	Cell lines and cell culture
	Necroptosis induction
	Quantitative real-time PCR
	Drug sensitivity
	Statistical analysis

	Results
	Differential expression of necroptosis-related genes between normal and tumor tissues
	Identification of molecular subtypes
	Development and validation of prognostic gene model
	Independent prognostic assessment of the risk model
	Risk model clinical and mutational evaluation
	Risk model functional implications
	Immunological significance
	Construction of a ceRNA network
	Individual NRGPI genes evaluation and experimental validation
	Therapeutic response

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


