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Abstract: In this work, we studied the role of zinc in the composition of supported iron-containing
catalysts for the hydrogenation of CO2. Various variants of incipient wetness impregnation of the
support were tested to obtain catalyst samples. The best results are shown for samples synthesized
by co-impregnation of the support with a common solution of iron and zinc precursors at the same
molar ratio of iron and zinc. Catalyst samples were analyzed by various methods: Raman, DRIFT-CO,
TPR-H2, XPS, and UV/Vis. The introduction of zinc leads to the formation of a mixed ZnFe2O4 phase.
In this case, the activation of the catalyst proceeds through the stage of formation of the metastable
wustite phase FeO. The formation of this wustite phase promotes the formation of metallic iron in the
composition of the catalyst under the reaction conditions. It is believed that the presence of metallic
iron is a necessary step in the formation of iron carbides—that is, active centers for the formation and
growth of chain in the hydrocarbons. This leads to an increase in the activity and selectivity of the
formation of hydrocarbons in the process of CO2 hydrogenation.

Keywords: CO2 hydrogenation; hydrocarbons; light hydrocarbons; heterogeneous catalyst; zinc
addition; Fe-containing catalysts

1. Introduction

Every year, the issue of reducing greenhouse gas emissions is becoming more acute.
One such gas is CO2. The concentration of carbon dioxide is constantly growing every
year and, in 2019, reached a record value for the last 20 million years [1,2]. In recent years,
an increasing number of researchers have turned their attention to developing ways to
reduce carbon dioxide emissions. Of great interest is the chemical conversion of CO2
into valuable products that could subsequently be reused in various areas of the chemical
industry [3–5]. The CO2 molecule is extremely stable; therefore, for carrying out chemical
reactions, it is necessary to use a heterogeneous catalyst and high-energy reagents, for
example, hydrogen [6]. From this point of view, hydrogenation of CO2 on heterogeneous
catalysts is a simple and convenient way to obtain synthesis gas, hydrocarbons of various
structures, methanol, other alcohols, and some oxygenates [7–12]. Usually, the conversion
of CO2 into value-added products involves two stages: the conversion of CO2 to CO by
a reverse water shift reaction and the further conversion of CO by the Fischer–Tropsch
process [13–15]. Iron-based catalysts for the Fischer–Tropsch process promote both the
reverse water shift reaction and the Fischer–Tropsch process [13,14,16]. Therefore, it seems
interesting to carry out this process in one stage on iron-containing catalysts. One of the
key factors affecting the properties of iron-containing catalysts in the hydrogenation of
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CO2 is the ratio of the oxide and carbide phases of iron. Iron oxides are responsible for the
reverse water shift reaction [17,18], and iron carbides are the centers of chain formation
and growth [19,20]. Various promoters are used to increase the activity and selectivity
of these catalysts; as a rule, these are alkali metals. They promote the formation of iron
carbides under the reaction conditions and an increase in the selectivity of the formation
of light hydrocarbons, but at the same time, they prevent the adsorption of hydrogen,
thereby slowing down the course of the reaction [21–23]. At the same time, the introduction
of zinc into iron-containing catalysts increases the selectivity of the formation of light
hydrocarbons. Zinc helps to increase the activity of these catalysts in the Fischer–Tropsch
process [24,25], increases the adsorption of carbon dioxide [24,26,27] and hydrogen [27,28],
and increases the activity in the reverse water shift reaction [29,30]. It has been shown
that zinc increases the dispersity of iron particles and acts as a structural promoter [31–36].
Recently, it has been suggested that the addition of zinc is not only a structural promoter, but
also increases the stability of the iron-containing catalyst owing to electron density transfer
from zinc to iron, promotes the formation of iron carbides, and suppresses the formation
of magnetite Fe3O4 during the operation of the iron–zinc coprecipitated catalyst [21]. It
should be noted that zinc is one of the main components of copper-containing catalysts for
the hydrogenation of CO2 to methanol, where zinc plays the role of both a structural and
electronic promoter, providing high dispersion of copper and increasing the adsorption
of CO2 [37–41]. Although the ability of zinc to improve the properties of Fischer–Tropsch
catalysts [24] and hydrogenation of CO2 to methanol has been studied in sufficient detail,
the effect of zinc on the hydrogenation of CO2 to hydrocarbons has not been sufficiently
studied. A deeper understanding of the effect of zinc on the properties of iron-containing
catalysts is needed in order to design effective catalysts for the hydrogenation of CO2
into hydrocarbons. Therefore, the aim of this work was to study the role of zinc in the
composition of iron-containing catalysts for CO2 hydrogenation. In this article, we report
the presence of an electronic effect due to the presence of zinc in the structure of an iron–zinc
catalyst deposited on a carrier ZrO2.

2. Results
2.1. CO2 Hydrogenation

An important issue for determining the role of zinc in the composition of the iron-
containing catalyst for the hydrogenation of CO2 is the understanding of the method of
introducing zinc into the catalyst structure. Zinc was introduced together with iron at
the stage of co-impregnation of the support with metal precursors or successively. The
results of catalytic tests of these samples are presented in Table 1. For comparison, the data
on the catalytic properties of monometallic supported catalysts based on zinc and iron
synthesized in a similar way on the same ZrO2 support are presented. The 5%Zn/ZrO2
sample demonstrates extremely low activity in CO2 hydrogenation, which indicates the
inertness of zinc in this reaction. Most likely, this is caused by the filling of zinc d-orbitals
with electrons, which are necessary for the adsorption and activation of hydrogen. Sample
5%Fe/ZrO2, without zinc addition, exhibits satisfactory activity, comparable to similar
supported iron-containing catalysts for CO2 hydrogenation [42,43]. With the sequential
deposition of the catalyst components, the obtained samples show a lower activity than
the sample containing only iron. Probably, in the case of sequential deposition of iron
at the first stage and zinc at the second stage, the iron turns out to be isolated by zinc
from the reaction region in the surface layers of the catalyst and is inaccessible to gaseous
reagents. In the case of zinc deposition at the first stage and iron at the second, iron is
isolated from the ZrO2 carrier, which is not absolutely inert and takes part in the activation
of the CO2 molecule [10]. Higher activity can be achieved only in the case of obtaining a
catalyst by the method of co-impregnation of the support in terms of moisture capacity
with a common solution of iron and zinc precursors. In this case, iron and zinc are evenly
distributed over the surface of the carrier, which ensures the efficient operation of all
components of the catalyst. The main reaction products under these conditions of CO2
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hydrogenation were carbon monoxide and water. The formation of a small amount of light
hydrocarbons, mainly methane, was observed, and in the case of the sample obtained by
the co-impregnation method, the selectivity of the formation of C1–C10 hydrocarbons was
at a maximum compared with the rest of the samples and amounted to 9%.

Table 1. Hydrogenation of CO2 over Fe and/or Zn containing catalysts (H2/CO2 = 2:1, T = 280 ◦C,
P = 1 atm, 40,000 h−1).

Sample Selectivity, % Reaction Rate,
mol CO2·kgkat

−1·h−1CO HC

5%Fe/ZrO2 (La) 95 5 8.0
5%Zn/ZrO2 (La) 98 2 0.2
Co-impregnation 91 9 16.6

Imp. Fe→ 500 ◦C 4 h on air→ Imp. Zn 96 4 3.2
Imp. Zn→ 500 ◦C 4 h on air→ Imp. Fe 93 7 5.7

Table 2 shows the results of experiments to determine the effect of the zinc content
on the catalytic properties of the iron-containing catalyst for the hydrogenation of CO2.
The rate of CO2 hydrogenation is higher in all samples with zinc addition than without it.
However, the maximum activity is shown by samples with a ratio of iron to zinc of approx-
imately one to one. The dependence of the selectivity of the formation of hydrocarbons
on the zinc content also has an extreme character with a maximum in the region of the
iron to zinc ratio of about 1:1. Thus, even at this stage, it is clear that the addition of zinc
contributes to an increase in the activity of the iron-containing catalyst and the selectivity
for the formation of hydrocarbons in the hydrogenation of CO2.

Table 2. Influence of zinc content in 5%FeXZn%Zn/ZrO2 catalysts on their properties in CO2 hydro-
genation (H2/CO2 = 2:1, T = 280 ◦C, P = 1 atm, 40,000 h−1).

Zn Content (XZn), Mass. %
Selectivity, % Reaction Rate,

mol CO2·kgkat
−1·h−1CO HC

0 95 5 8.0
1 99 1 9.2
3 97 3 12.6
5 91 9 16.6
7 91 9 16.0
9 92 8 12.0

For a more detailed understanding of the effect of zinc on the properties of iron-
containing catalysts in the hydrogenation of CO2, a sample of the composition 5%Fe
6%Zn/ZrO2 was chosen, obtained by impregnating the support in terms of moisture
capacity with a combined aqueous solution of iron and zinc precursors. The sample
5%Fe/ZrO2 obtained by a similar method was used as a reference sample. The results
of catalytic studies are shown in Figures 1 and 2. In both samples, the hydrogenation
rate increases with temperature. Among the products, the formation of carbon monoxide,
water, and light hydrocarbons C1–C10 of various structures was observed. The formation
of aromatic hydrocarbons, alcohols, and other oxygenates during the reaction was not
observed even on an iron–zinc catalyst. Selectivity of formation of hydrocarbons C1–C10
increases with the increasing temperature. The distribution of hydrocarbons along the
length of the carbon chain in all cases obeys the Schultz–Flory equation. The sample with
the addition of zinc exhibits high activity in the hydrogenation of CO2 and selectivity
for the formation of light hydrocarbons C1–C10. In this case, the probability of chain
growth on an iron–zinc sample turns out to be 15–25% higher than on a catalyst sample
that does not contain zinc. The data obtained unambiguously indicate the possibility of a
significant improvement in the properties of iron-containing catalysts by introducing zinc
into their structure.
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The Raman spectra of 5%Fe/ZrO2 and 5%Fe6%Zn/ZrO2 catalyst samples are shown 

in Figure 3. Lines 260 cm−1, 400 cm−1, 1030 cm−1, 1280 cm−1, and 1528 cm−1 belong to the 
carrier components, zirconium and lanthanum oxides [44]. The spectrum of the 
5%Fe/ZrO2 catalyst sample contains a line at 235 cm−1 and a wide shoulder after 510–780 
cm−1, which corresponds to a superposition of one of the main lines of zirconium and sev-
eral low-intensity lines characteristic of hematite [45]. The sample 5%Fe6%Zn/ZrO2 con-
tains an intense line at about 560 cm-1, which clearly indicates the formation of ZnFe2O4 in 
the structure of this sample [44]. Raman spectra of spent catalysts after CO2 hydrogenation 
are presented in Supplementary Materials, Figure S3. Magnetite Fe3O4 lines are present in 
the spectrum of spent 5%Fe/ZrO2. It is not possible to draw conclusions from the spectrum 
of 5%Fe6%Zn/ZrO2 owing to the low intensity of the lines. 

Figure 1. CO2 conversion and CO2 hydrogenation on iron-containing catalysts with and without
zinc addition (H2/CO2 = 2:1, P = 50 atm, 600 h−1).
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Figure 2. Selectivity to hydrocarbons, share of C2+ hydrocarbons and chain growth probability in
CO2 hydrogenation on iron-containing catalysts with and without a zinc additive (H2/CO2 = 2:1,
P = 50 atm, 600 h−1).

2.2. Raman Spectroscopy

The Raman spectra of 5%Fe/ZrO2 and 5%Fe6%Zn/ZrO2 catalyst samples are shown
in Figure 3. Lines 260 cm−1, 400 cm−1, 1030 cm−1, 1280 cm−1, and 1528 cm−1 belong to the
carrier components, zirconium and lanthanum oxides [44]. The spectrum of the 5%Fe/ZrO2
catalyst sample contains a line at 235 cm−1 and a wide shoulder after 510–780 cm−1, which
corresponds to a superposition of one of the main lines of zirconium and several low-
intensity lines characteristic of hematite [45]. The sample 5%Fe6%Zn/ZrO2 contains an
intense line at about 560 cm−1, which clearly indicates the formation of ZnFe2O4 in the
structure of this sample [44]. Raman spectra of spent catalysts after CO2 hydrogenation are
presented in Supplementary Materials, Figure S2. Magnetite Fe3O4 lines are present in the
spectrum of spent 5%Fe/ZrO2. It is not possible to draw conclusions from the spectrum of
5%Fe6%Zn/ZrO2 owing to the low intensity of the lines.

2.3. DRIFT-CO

Figure 4 shows the diffuse reflectance IR spectra of samples of iron-containing catalysts
with and without zinc addition before activation and after catalytic studies. The band with
a maximum at 2192 cm−1 belongs to the linear zirconium carbonyl Zr4+-CO. On the side
of shorter wavelengths, under this band, there may be a band belonging to the carbonyl
La3+-CO (about 2170 cm−1). In the spectrum of the sample containing zinc, a broad band
with a maximum at 2192 cm−1 can be attributed to the super-position of two bands from
the linear carbonyls Zr4+-CO and Zn2+-CO. The band at 2140 cm−1 in the spectra of the
5%Fe/ZrO2 sample belongs to the linear carbonyl on ferrous cations Fe2+-CO. The band at
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2104–2111 cm−1 belongs to linear carbonyl on monovalent iron cations Fe+-CO. Bands at
2066–2053 cm−1 can characterize linear iron carbonyls Feδ+-CO. Based on the fact that iron
in the Fe3+ state does not form carbonyls, the presence of lines observed in the spectrum can
be explained by the presence in the samples of a small amount of iron in lower oxidation
states, which is formed during evacuation or is initially present in the catalyst structure
in the form of coordination unsaturated atoms on the faces and tops of crystallites of iron
compounds [45]. The band at 2346 cm−1 in the spectrum of 5%Fe6%Zn/ZrO2 refers to
the carbonate Fe2+-CO2, which is formed upon the reduction of Fe3+ with a CO molecule.
Their presence indicates a high oxygen mobility on the surface of iron crystallites and
the possibility of fairly easy reduction of Fe3+ to a state with lower oxidation states. The
5%Fe6%Zn/ZrO2 sample, after reduction and catalysis, completely loses its ability to
adsorb CO, while on the 5%Fe/ZrO2 sample, it significantly decreases. After catalysis,
in the spectrum of the 5%Fe/ZrO2 sample, one band remains, which characterizes the
Fe+-CO carbonyl. This can be due to the blocking of the catalyst surface by carbon reaction
products. These results show that the introduction of zinc provides mobile oxygen in the
structure of iron crystallites, which can lead to a deeper reduction of iron and contribute to
an increase in the amount of adsorbed CO2 molecules under the reaction conditions.
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2.4. TPR-H2

Figure 5 shows the TPR-H2 curves of the ZrO2 support and samples of iron-based
catalysts with and without zinc addition. The TPR-H2 curve of the catalyst support shows
two peaks with maxima at temperatures of 428 ◦C and 745 ◦C. The first peak with a low
intensity can be attributed to the partial reduction of lanthanum oxide La3+→La2+, and the
second peak with a high intensity can be attributed to the partial reduction of zirconium
oxide Zr4+→Zr2+ [46]. On the TPR-H2 curve of the 5%Fe/ZrO2 catalyst, four peaks of
different intensities are observed. Two peaks with maxima at 448 ◦C and 767 ◦C refer to
the reduction of the support components. The maxima of these peaks are shifted to a
higher temperature region by about 20 ◦C compared with the position of these peaks on
a pure support without iron. Two other intense peaks with maxima at 367 ◦C and 647 ◦C
refer to the reduction of iron oxide to metallic iron according to the following scheme
Fe2O3→Fe3O4→Fe0 [47–49]. On the TPR-H2 curve of the 5%Fe6%Zn/ZrO2 catalyst sample,
the peaks of the support reduction are shifted to an even higher temperature region, 468 ◦C
for La3+→La2+, and for the Zr4+→Zr2+ process, the peak maximum is at temperatures
above 850 ◦C. The peak with a maximum at a temperature of 417 ◦C corresponds to the
reduction of Fe2O3 to magnetite Fe3O4, while on the TPR-H2 curve of an unprocessed
catalyst, the maximum of this peak is at about 367 ◦C. A broad peak with a maximum at
695 ◦C refers to the reduction of iron oxides to metallic iron, and the shoulder at 610 ◦C
indicates that this process partially passes through the formation of a metastable wustite
phase [50]. This can facilitate the easier reduction of iron to the metallic state Fe0 [51], and
the formation of this iron is a prerequisite for the formation of Hegg carbides—that is,
active centers for the formation and growth of a chain of hydrocarbons [19]. The peak with
a maximum at about 515 ◦C can be attributed to the reduction of zinc oxide to the metallic
state ZnO→Zn0. Zinc directs the process of iron reduction to the stage of FeO formation.
Possibly, the stabilization of the FeO phase is achieved by the migration of Zn2+ ions to
the structure of iron [51]. Table 3 shows the specific absorption of hydrogen by the carrier
and catalyst samples in the course of TPR-H2 studies. In none of the cases is it possible to
achieve the reduction of the entire amount of iron in the composition of the sample to the
state Fe0, and the introduction of zinc does not lead to a noticeable change in the amount
of absorbed hydrogen. Using such a sample, the introduction of zinc into the structure of
these catalysts does not lead to a deeper reduction of iron, but changes the path of the iron
activation process. It is also worth noting that, in the case of a catalyst with the addition of
zinc, hydrogen is used not only for the reduction of iron, but also for the reduction of zinc.
Taking into account the approximately equal amounts of absorbed hydrogen in the TPR-H2
process, it can be assumed that, in the case of a catalyst with the addition of zinc, although
it is possible to achieve a deeper reduction of iron, the overall degree of iron reduction
turns out to be lower.
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Table 3. The amount of hydrogen absorbed by the samples of iron-containing catalysts with and
without zinc addition in the TPR-H2 process.

Sample Specific Absorption of Hydrogen, mol H2/g

Carrier ZrO2 2.12 × 10−4

5%Fe/ZrO2 1.28 × 10−3

5%Fe6%Zn/ZrO2 1.31 × 10−3

2.5. XPS

XPS spectra and spectra in the range of binding energies of iron Fe2p of samples
of iron-containing catalysts with and without zinc after the reaction of hydrogenation of
carbon dioxide are presented in Supplementary Materials Figure S1. The survey spectra
show the presence of photoelectron lines of oxygen O1s and Auger oxygen lines O (KLL);
photoelectron lines of carbon C1s, photoelectron lines of iron Fe2p, and Auger lines of iron
Fe (LMM); photoelectron lines of lanthanum La3d, La4p3, and La4d; and photoelectron
lines of zirconium Zr3s, Zr3p, Zr3d, Zr4s, and Zr4p. In the case of the zinc-promoted
sample, the presence of photoelectron lines of zinc Zn2P1, Zn2p3, Zn3s, and Zn3p and
Auger lines of Zn (LMM1), Zn (LMM2), and Zn (LMM3) is observed. The chemical
composition of the surface of the catalyst samples is presented in Table 4. It can be seen
that the iron content is significantly less than that calculated during the synthesis. This
is because of the incorporation of iron into the surface layers of the support, which are
inaccessible for observation by the XPS method. The zinc content in the sample, promoted
with zinc, is lower than that calculated during the synthesis; however, in this case, the
decrease in concentration can be explained by the loss of zinc as a result of the entrainment
of metallic zinc during the activation of the sample and the hydrogenation of O2. The
presence of carbon on the surface of all samples after catalysis is due to the deposition of
reaction products on the catalyst surface during CO2 hydrogenation. The results of the
approximation of the spectra of high-spin electrons of Fe2p3/2 catalysts after activation
and hydrogenation of CO2 are shown in Figure 6 [52]. In the approximation process, the
best results for all samples are achieved when using Gupta–Sena multiplets corresponding
to the magnetite structure. The calculated fractions of Fe3+ and Fe2+ ions, as well as iron in
the zero oxidation state Fe0, are presented in Table 5. It can be seen that the introduction of
zinc promotes the formation of metallic iron on the catalyst surface, which is consistent
with the data obtained on TPR. In the catalyst without the addition of zinc, the formation
of iron in the zero oxidation state is generally not observed.
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Table 4. Results of XPS study of element content on the surface of 5%Fe/ZrO2 (La) and
5%Fe6%Zn/ZrO2 (La) catalysts.

Sample Element Content on the Sample Surface,% wt.
C O Zr Fe La Zn

5%Fe/ZrO2 (La) 12.3 60.8 22.3 2.1 2.6 -
5%Fe6%Zn/ZrO2 (La) 13.3 60.8 18.3 1.8 2.4 3.4

Table 5. Iron content in different oxidation states on 5%Fe/ZrO2 (La) and 5%Fe6%Zn/ZrO2 (La)
catalysts after catalytic studies.

Sample Element Content on the Sample Surface,% wt.
Fe0 Fe2+ Fe3+

5%Fe/ZrO2 (La) - 48 52
5%Fe6%Zn/ZrO2 (La) 3 47 50

2.6. UV/VIS

UV/VIS spectra of samples of iron-containing catalysts with and without zinc addi-
tives are shown in Figure 7. The spectra show the presence of several absorption bands with
maxima at 256 nm, corresponding to charge transfer from the nonbonding valence orbital
O(2p) to the crystal field orbital Fe(3d) iron atoms in octahedral coordination; at 310 nm,
related to the 6A1→4T1 dd transition; at 380 nm, corresponding to the 6A1→4E transition;
at 410–420 nm, corresponding to the 6A1→4T2 transition; and at 520 nm, corresponding to
the double transition 2(6A1)→2(4T1) [44]. The position of the observed lines in the spectra
corresponds to the structure of iron oxide—hematite. The presence of absorption bands
in the spectrum at wavelengths less than 350 nm refers to the presence of iron ions Fe3+,
stabilized in octahedral coordination, and structural iron ions Fe3+. The presence of bands
at wavelengths above 350 nm can be associated with the presence of rather large massive
nanoparticles of iron oxides. In the spectra of the 5%Fe/ZrO2 sample, a high intensity of
absorption lines above 350 nm is observed, which indicates the presence of rather large
particles on the surface of this sample [44]. A decrease in the intensity of these lines in
the spectrum of the 5%Fe6%Zn/ZrO2 sample may indicate a decrease in the size of iron
crystallites due to the stabilizing effect of zinc additives by preventing sintering of small
iron particles.
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3. Discussion

The promotion of the iron-based catalyst with zinc leads to an increase in the activity of
the catalyst and the formation of more light C1–C10 hydrocarbons in the products of the CO2
hydrogenation process. At the same time, no significant changes in the CO2 conversion was
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observed. As a rule, the formation of hydrocarbons on iron-containing catalysts proceeds
through the stage of CO formation. However, zinc is one of the main components of Cu-
containing catalysts for the hydrogenation of CO2 into methanol. It can be assumed that,
when zinc is introduced into the composition of iron-containing catalysts, it can change
the mechanism of CO2 hydrogenation towards the formation of hydrocarbons through the
formation of methanol. However, the absence of even trace amounts of methanol in the
composition of the reaction products contradicts this assumption. The data obtained on
DRIFT-CO indicate the appearance of mobile oxygen on the surface of the 5%Fe6%Zn/ZrO2
catalyst, which can be attributed to either zinc oxide or ZnFe2O4. According to the TPR-H2
results, it was shown that the introduction of zinc into the composition of the catalyst
changes the mechanism of iron reduction, presumably directing it through the stage of FeO
formation, which promotes the formation of metallic iron. Taking into account the method
of catalyst synthesis and the presence of ZnFe2O4 lines in the Raman spectrum of the
5%Fe6%Zn/ZrO2 sample, it can be assumed that, during the catalyst synthesis, mixed zinc
and iron oxide ZnFe2O4 is formed, the reduction of which leads to the formation of metallic
iron through the formation of wustite phase FeO. This leads to the formation of metallic
iron Fe0, detected by XPS results, found in the sample after activation and hydrogenation
of CO2. The presence of named metallic iron is an obligatory intermediate stage in the
formation of Hegg carbides, which are the centers of growth and formation of a carbon
chain in the processes of hydrogenation of carbon oxides [19]. This explains the increase in
the selectivity of the formation of hydrocarbons in the process of hydrogenation of CO2
on a catalyst with the addition of zinc. Thus, this indicates that zinc in the iron-containing
catalyst is not only a structural, but also an electronic promoter.

The results of UV/Vis spectroscopy suggest the formation of smaller iron particles in
the 5%Fe6%Zn/ZrO2 catalyst structure, which can be more active in CO2 hydrogenation
and should be reduced at a lower temperature. However, according to the results of
studying the catalyst samples by the TPR-H2 method, it can be seen that the reduction
of iron is significantly shifted to the high-temperature region. During the synthesis of
catalysts, iron and zinc were deposited simultaneously; it can be assumed that, in the case
of an unpromoted 5%Fe/ZrO2 catalyst, the particles of the supported iron-containing phase
can be significantly smaller than the particles of the joint supported phase of iron and zinc
in the case of the catalyst 5%Fe6%Zn/ZrO2, which makes it difficult for hydrogen to access
deep layers of Fe-Zn particles and explains the higher temperature of iron reduction.

4. Materials and Methods
4.1. Catalyst Preparation

Catalyst samples were prepared by wet-capacity impregnation of the support. Iron
(III) nitrate nonahydrate (Fe(NO3)3·9H2O, 99+%, ACROS) was used as a precursor of iron
and zinc nitrate monohydrate (Zn(NO3)2·H2O, 99+%, ACROS) was used as a precursor of
zinc (ACROS ORGANICS, Geel, Belgium). Distilled water was used as a solvent for the
impregnating solution. Zirconium oxide ZrO2 promoted with lanthanum oxide was used
as a support (Supplementary Materials, Table S1) (Saint-Gobain, Courbevoie, France). The
study of the effect of the method of introducing zinc into the structure of an iron-containing
catalyst on the catalytic activity in the reaction of CO2 hydrogenation was carried out
on catalysts of the composition 5%Fe5%Zn/ZrO2. These samples were synthesized by
the method of co-impregnation of the carrier by incipient wetness and by the method
of successive impregnation of the carrier by incipient wetness with aqueous solutions
of iron and zinc. The synthesis method by successive impregnation of the carrier with
individual solutions of iron and zinc included an intermediate stage of calcination in
air at a temperature of 500 ◦C for 4 h. Monometallic catalysts with compositions of
5%Zn/ZrO2 and 5%Fe/ZrO2 were also obtained by impregnating the support with an
aqueous solution of metal precursors and used as reference samples. To study the effect of
the zinc content in the iron-containing catalyst on its properties in CO2 hydrogenation by
the method of joint incipient wetness impregnation, a series of catalysts with a composition
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of 5%FeXZn%Zn/ZrO2, with a zinc content of 0 to 9%, was synthesized. All catalyst samples
were calcined in air at a temperature of 500 ◦C for 4 h.

4.2. CO2 Hydrogenation

CO2 hydrogenation was carried out in a flow-through catalytic unit equipped with a
straight stainless steel reactor with a fixed catalyst bed. During loading, the catalyst sample
was mixed with quartz. The samples were activated in a hydrogen flow of 30 mL/min
at 500 ◦C and atmospheric pressure, heating rate 10 ◦C/min, for 8 h and cooled to room
temperature. Then, the flows of hydrogen and carbon dioxide were established, the
pressure was raised to the required value, and then the heating was switched on. The
ratio of hydrogen and carbon dioxide in the mixture was H2/CO2 = 2:1. The products
were analyzed on a KRISTALL 5000 gas chromatograph (CHROMATEK, Yoshkar-Ola,
Russia) equipped with three heat capacity detectors, one flame ionization detector, three M
NaX 80/100 packed columns, 2 m × 2 mm, HayeSep R 80/100, 1 m × 2 mm, HayeSep Q
80/100 mesh 1 m × 2 m, and MXT®-Alumina BOND/MAPD 30 m × 0.53 mm capillary
column (CHROMATEK, Yoshkar-Ola, Russia).

4.3. Raman Spectroscopy

To record the Raman spectra of catalyst samples before and after the hydrogenation of
CO2, a multifunctional automated NT-MDT INTEGRA Spectra system was used (NT-MDT
SPECTRUM INSTRUMENTS, Moscow, Russia), equipped with a Cobolt Blues 50 W laser
as a radiation source and a 100 × 0.9FN22 objective. A sample weighing about 100 mg was
pressed into a tablet without the use of a binder and placed on the instrument stage under
a microscope, and the laser was switched on and focused on the sample. The spectra were
recorded in the range 200–3000 cm−1. The spectra were decoded using the RRUFF database.

4.4. Diffuse Reflectance IR Spectroscopy

Diffuse reflectance IR spectra (DRIFT) were recorded at room temperature using
a NICOLET protégé 460 spectrometer (Thermo Scientific, Waltham, MA, USA) with a
diffuse-reflectance attachment in the range of 6000–400 cm–1 with a step of 4 cm–1. For a
satisfactory signal-to-noise ratio, 500 spectra were accumulated. CaF2 powder was used as
a standard. Before measuring the spectra, samples in granular form (fraction 50–200 mesh)
were subjected to thermal vacuum treatment at a temperature of 450 ◦C for 2 h (heating
rate 5 ◦C/min) to remove physically adsorbed gases and water. Carbon monoxide was
used as a test molecule for the electronic state of metals. Adsorption was carried out at
room temperature and equilibrium CO pressure of 15 Torr. The intensity of the bands
in the spectra was expressed in Kubelka–Munk units. Data collection and processing
were carried out using the OMNIC program (Thermo Scientific, Waltham, MA, USA). The
spectra of adsorbed CO were presented as the difference between those recorded after and
before adsorption.

4.5. Thermoprogrammed Reduction with Hydrogen

TPR-H2 measurements were carried out on a semi-automatic setup using a thermal
conductivity detector. Here, 100–150 mg of the sample was placed in a quartz U-shaped
reactor, in the center of which, in the sample zone, there was a chromel-alumel thermo-
couple (N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia ). The sample
was preliminarily blown off with Ar (30 mL/min), heating from room temperature to
300 ◦C at a rate of 10 ◦C/min and holding at this temperature for 30 min, and cooled in
an argon flow to room temperature. Then, a 5% H2/Ar mixture (30 mL/min) was fed to
the sample and a stable baseline was maintained. After that, the sample was heated using
a programmer at a rate of 10 ◦C/min to 850 ◦C. To remove the water formed as a result
of reduction from the gas phase, a trap was placed between the reactor and the detector,
and cooled to –100 ◦C with a mixture of liquid nitrogen and ethanol. The katharometer
signal and temperature were recorded on a computer using an analog-to-digital converter
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and the Ekochrome software package. The detector was calibrated using CuO reduction
(Aldrich-Chemie GmbH, 99%, St. Louis, MO, USA ). All results are normalized to 1 g of
sample.

4.6. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectra were recorded on a PHI5000VersaProbeII spectrometer
(ULVAC-PHI Inc., Kanagawa, Japan). The Eb bond energy scale was calibrated using
Au4f (83.96 eV) and Cu2p3 (932.62 eV). The Eb scale was corrected according to the Eb
of the Zr3d5 peak (182.2 eV). We used monochromatic Al-Kα radiation (hν = 1486.6 eV)
with a power of 50 W. Powder samples of catalysts were fixed on a holder using a special
double-sided adhesive tape and placed in a pretreatment chamber. Then, the chamber
was evacuated and the rod with the holder was moved into the working chamber of the
spectrometer. The residual gas pressure in the working chamber of the spectrometer during
the measurement of the spectra was about 10−9 Torr. To prevent charging of the sample
surface, neutralization was performed with heavy ions of an inert gas. The diameter
of the analysis area was 200 µm. Atomic concentrations were determined from survey
spectra by the method of relative elemental sensitivity factors. The integral intensities of
the following lines were used: C1s, O1s, Zr3d, La3d, and Fe2p3. High-resolution Zr3d
spectra were recorded at an analyzer transmission energy of 23.5 eV with a 0.2 eV step, and
high-resolution Fe2p spectra were recorded at an analyzer transmission energy of 46.95 eV
with a 0.2 eV step. Data collection was carried out using the SpecsLab2 program, and
the experimental data were processed using the CasaXPS program (Casa Software Ltd.,
Teignmouth, UK). Multiplet structures were used to analyze the Fe2p spectrum. In this
case, the distance between the peaks, the ratio of intensities, and the difference in FWHM
were recorded. Background subtraction was performed using the Shirley method.

4.7. Diffuse Reflectance UV/VIS Spectroscopy

Diffuse reflectance UV/VIS spectra were recorded on a Shimadzu UV-3600 Plus
spectrophotometer equipped with an ISR-603 integrating sphere (Shimadzu, Kyoto, Japan).
The spectra were recorded in the wavelength range of 200–800 nm at room temperature,
using BaSO4 as a standard and a diluent. The obtained spectra were processed using the
UVProbe software (Shimadzu, Kyoto, Japan).

5. Conclusions

The effect of zinc addition on the properties of an iron-containing catalyst for the
hydrogenation of CO2 into hydrocarbons was studied. It was shown that an increase in
catalytic activity can only be achieved by supporting iron and zinc from the same solution
at the same time. The dependence of the catalyst activity on the Fe/Zn ratio has an
extreme character. Samples with an approximately equal ratio of iron and zinc show the
highest activity. The presence of zinc in the composition of the catalyst changes the iron
reduction scheme and facilitates the easier formation of metallic iron, which is necessary
for the formation of active centers responsible for the growth of the hydrocarbon chain. In
addition, the presence of zinc in the composition of the catalyst leads to a change in the
electronic properties of iron. This indicates that zinc is not only a structural, but also an
electronic promoter.

Supplementary Materials: The following are available online, Figure S1: XPS spectra of catalyst
samples 5%Fe/ZrO2 (A) and 5%Fe6%Zn/ZrO2 (B); Figure S2. Raman spectra for the spent catalysts
after the CO2 hydrogenation; Table S1: Characteristics of the used catalyst carrier ZrO2.
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