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The goal of this mini-review is to summarize the collective experience of the authors for how
modeling and simulation approaches have been used to inform various decision points
from discovery to First-In-Human clinical trials. The article is divided into a high-level
overview of the types of problems that are being aided by modeling and simulation
approaches, followed by detailed case studies around drug design (Nektar Therapeutics,
Genentech), feasibility analysis (Novartis Pharmaceuticals), improvement of preclinical drug
design (Pfizer), and preclinical to clinical extrapolation (Merck, Takeda, and Amgen).
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1 INTRODUCTION

The goal of this article is to provide a targeted perspective on how modeling and simulation
approaches have been used to inform various decision points during the ‘R’ phase of Research and
Development, namely from discovery to First-In-Human clinical trials. It is worth mentioning that
the full adoption of modeling and simulation approaches in pharma has historically lagged compared
to other industries, where products are routinely simulated even before being built. The reasons for
that could largely be grouped in two main categories: technical and institutional. The first group is
much easier to explain: lack of appropriate quantitative measurements and computational power to
inform the development of adequate models was, in fact, true 20 years ago. However, this is much less
of an issue today. The second category relates to biological complexity. Mathematical modeling and
computer simulations have been an essential part of product development in just about every branch
of science, engineering, and technology. The application of such approaches to reverse-engineer
biology and to “design” novel therapies has been hindered by the lack of a pre-existing mathematical
description of the broad range of biology involved and the common belief that the complexities of
human health are too intractable to be addressed by computer models. The gradual change from
resistance to acceptance by pharma and biotech companies has been aided by three factors: 1) success
stories, such as the use of population pharmacokinetic/pharmacodynamic (PK/PD) models for dose
selection or the widespread the use of physiologically-based PD (PBPK) models to assess drug-drug
interactions in silico, 2) the wider availability of diverse data that are challenging to fully understand
in the absence of integration into mathematical models, and 3) external pressure on the industry to
accelerate development timelines and reduce potential late stage failures. All three factors have been
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recognized and supported by changes in regulatory policy. The
FDAMIDD (Model-Informed-Drug-Development) program is a
prime example of how regulators value the power of
mathematical models and what they can bring to drug
development. The creation of dedicated modeling functions
within pharmaceutical and biotech companies has led to an
increased investment and adoption of modeling approaches to
inform decisions within R&D. While most of the investment has
traditionally occurred in modeling of the clinical development
stages, the insight that mathematical models can impact the
design of novel therapeutics and allow us to anticipate the
clinical experiences through early simulation of potential
human scenarios have led to an increased investment in
preclinical modeling and simulation activities.

To illustrate the value of such approaches in pre-clinical stages of
R&D, our cross-institutional team of authors has aimed to provide
here concrete examples where we have used quantitative approaches
to impact decisions in these early stages. We decided that this
approach, while more colloquial in nature, would be a nice
complement to existing papers in the literature providing details
around specificmodelingmethodology.We hope that the reader will
find this collection of examples informative and thought-provoking.
We have been privileged to be part of institutions and teams that
worked on interesting and challenging problems. We have also been
lucky to live in times of increased biological understanding and
technology developments. But, most importantly, we live in times
when society demands that our industry lives up to the promise of
personalized medicine—understanding the etiology of disease for
any given patient and finding solutions that will work for that
patient. Albert Einstein once said: “Learn from yesterday, live for
today, hope for tomorrow. The important thing is not to stop
questioning”. He also famously said: “Everything should be made
simple, but not simpler”. We hope that by cataloging our
experiences, we provide simple examples that helps streamline
future uses of models in preclinical drug development.

The organization of this paper is as follows. We begin by
providing a high-level summary or enumeration for the types of
problems in the preclinical stage of drug development that might
benefit from quantitative approaches. Then we proceed to
provide a more detailed description of a case study that
illustrates an approach to such a problem from our experience
in our various organizations. Finally, we finish with a few words
of reflections and hopes for the future.

2 HIGH-LEVEL SUMMARY OF DECISIONS
BENEFITING FROM QUANTITATIVE
APPROACHES
We work in a highly regulated industry in which development of
new investigational medicines must comply with high standards
to ensure that we understand the anticipated safety of the
proposed interventions prior to bringing them into the clinic.
Furthermore, the high cost of R&D necessitates continuous
consideration of the probability of clinical success with respect
to risk-benefit tradeoffs. Per FDA guidance (https://www.fda.gov/
patients/drug-development-process/step-2-preclinical-research),

the first two steps of the drug development process are 1)
discovery and development, and 2) preclinical research. A key
objective that arises in these stages is to identify a promising
therapeutic target that can help alter the course of human disease
or treat symptoms. We then screen among the different possible
drug candidates to select the most promising candidate based on
the interplay between several factors including: pharmacological
activity for potential efficacy; Absorption, Distribution,
Metabolism, and Excretion (ADME), and pharmacokinetic
(PK) properties; side effects (toxicity); and how a particular
modality compares with existing treatments. It is necessary to
address these objectives while balancing resource constraints with
the goal to progress further potentially promising programs while
ending those that are less promising ones as early as possible.
There are ample opportunities for quantitative approaches to be
used to aid the decision making at this stage.

Our list of decisions supported by modeling in the discovery
space is presented below:

1) Target or modality assessment:
a) Feasibility assessment
b) Competitive evaluation
c) Repurposing of existing targets and molecules

2) Rational Drug Design and Compound Selection
a) Desired drug property optimization
b) Molecule generation and selection

3) Preclinical study design
4) Toxicology assessment (organ-specific)
5) Interspecies translation and clinical regimen design

a) Clinical Study Design: PKPD, safety, efficacy
b) Animal rule for translation-based approval

Before going to the specifics of the case studies, we wanted to
acknowledge that they do not cover all aspects in the list above. For
example, multiple publications cover topic (Brown et al., 2003) with
examples of renal (Thomas, 2019), hepatic (Watkins, 2020), and
cardiac toxicities (Amuzescu et al., 2021). In addition, while modeling
can be a useful tool for the repurposing of existing molecules in new
diseases, this topic is not covered in this paper [for published
considerations on the topic the reader should consider
(Pushpakomet al., 2019; Gozzo et al., 2020; Verbaanderd et al., 2020)].

3 DETAILED CASE STUDIES

3.1 Novartis: Novel Modality and Feasibility
Analysis
Novartis regularly applies modeling and simulation to assess the
potential of new therapeutic concepts at early stages of drug
discovery to inform Go/No-Go decisions and therapeutic design.
Here, we describe a model-informed molecular design exploration
and feasibility assessment of a theoretical antibody intended to treat
obesity-related disorders. Obesity is becoming increasingly common,
and the available treatment options do not fully address this problem
(Mullican and Rangwala, 2018; Tsai et al., 2018). The therapeutic
potential of GFRAL agonism with GDF15 has been demonstrated
preclinically with multiple approaches. Mice and monkeys on a
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high-fat diet treated with either AAVhu-GDF15, recombinant
GDF15, or a scFc-GDF15 fusion lost about 10–24% of their body
weight over 5–6 weeks and showed reductions in key metabolic
parameters (Xiong et al., 2018). However, the use of recombinant
GDF15 as a therapeutic is limited by its short serum half-life of less
than 3 h in human (Zorzi et al., 2019).

In this example, the therapeutic antibody was proposed to bind to
endogenous GDF15 to extend its half-life (Figure 1A) as an
alternative to exogenous GDF15 approaches. The mechanistic
hypothesis is that pharmacological stabilization of GDF15 with a
non-antagonist antibody should increase circulating levels and
thereby drive sustained GFRAL signaling, reduction in food intake,
andweight loss. TheNovartis team employed a smallmechanistic PK/
PD model for subcutaneous administration (Figure 1B) with a
structure similar to published models of antibody-ligand traps
(Davda and Hansen, 2010). Standard monoclonal antibody (mAb)
PK parameters for cynomolgus monkeys and human were assumed.
The drug PK, dosing regimen, affinity of the antibody:GDF15
complex, and patient-to-patient variability of baseline GDF15
levels (Brown et al., 2003) were explored to maximize the amount
of circulating GDF15:mAb and to assess whether sufficiently high
total GDF15 concentrations can be achieved.

Representative simulation results in Figure 1C show the
impact of binding affinity on total GDF15 (by decreasing the
antibody dissociation constant koff at a constant dose). The
simulations show that increasing the binding affinity does not

meaningfully increase GDF15 Cmax but instead extends the time
above threshold. This system behavior can be explained by the
pool of total GDF15 quickly saturating despite free antibody
being in excess. The GDF15 synthesis rate is the most sensitive
parameter and predicted to increase GDF15 Cmax and time over
threshold (Figure 1D). Subsequent consideration of synthesis
rates derived from baseline GDF15 levels in patients revealed an
increase of up to ~100-fold (data not shown), suggesting that this
concept may not be viable for most patients to achieve the 100-to-
1000-fold increase identified as an efficacious threshold for the
scFv-GDF15 fusion (Xiong et al., 2018).

The modeling analysis was extended to consider an alternative
therapeutic approach that is less dependent on patient GDF15
levels: a mixture of free antibody and antibody pre-complexed
with recombinant GDF15 (Figure 1E). This mixture allows the
administration of recombinant GDF15 in excess over endogenous
GDF15 levels and thus decouples the therapeutic from patient-
specific levels of baseline GDF15. The same PK/PD model with
different initial conditions was used to explore different ratios
(Figure 1F). Since the antibody dose and amount of recombinant
GDF15 can be modulated, it is theoretically possible to achieve
much higher Cmax with no time delay and to “control” the time
over threshold. In Figure 1G the impact of a low dose of GDF15 is
shown. Looking at the total GDF15 concentration time course, a
1:1 ratio of mAb and GDF15 results in a sharp peak and behaves
over time similarly to the mAb control that binds endogenous

FIGURE 1 | Schematic of the model for the Novartis case study and resulting simulations. Stabilization of endogenous GDF15 ligand via binding to therapeutic
antibody (A) can be described with a one-compartment model (B). Results of local parameter scans for increasing the stability of the GDF15:antibody complex (C) and
increasing the pool of endogenous GDF15 (D). The arrows represent rate constant modifiers from 1ȕ to 1/25ȕ (decreasing koff) or 1ȕ to 25ȕ (increasing ksyn),
respectively. Administration of a mixture of stabilizing therapeutic antibody and recombinant GDF15 (E) can be described by the same one-compartment model
(F). Simulations of different mixture compositions with a low (G) or high (H) dose of exogenous GDF15. Shown in the solid lines are four ratios of antibody to GDF15 (30:1,
10:1, 3:1, 1:1 or equimolar). The stippled lines represent an antibody-only control for each of the four compositions.
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GDF15. As the ratio of mAb to GDF15 increases, the
concentration time course of total GDF15 can be modulated
to achieve sustained GDF15 levels. Figure 1H demonstrates that
at a high dose of GDF15 precomplexed with antibody the time
over threshold can now be extended from hours to weeks. To
summarize, the amount of GDF15 and the mAb to GDF15 ratio
allows for a lot of flexibility to modulate the shape of the total
GDF15 concentration-time course. As a research tool, it allows to
gain a deep understanding of what pharmacokinetic features like
Cmax or time over threshold drive weight loss which ultimately
informs the design of an optimized therapeutic.

3.2 Nektar Therapeutics: Rational Drug
Design
To systematically address questions in its portfolio of PEGylated
cytokines (PEG = polyethylene glycol), Nektar created a
predictive modeling platform in Simcyp™ PBPK Simulator
(Certara, Inc., Princeton, New Jersey, USA) based on first
principles. The PBPK modeling module for protein- based
therapeutics in Simcyp™ is well established and continues to
evolve by integrating new information. Its goal is to predict
disposition and clearance for protein-based therapeutics.
Figure 2 provides a brief overview of the processes impacting
the disposition and clearance of large molecules and can be
adapted for individual programs and molecules. This is
important, because the framework is no longer just a system
of equations but contains parameter values that have been derived
based on experimental data. As such, the model has become an
integrated database that can b used to guide experiments and aid
dose, dosing regimen, and candidate selection.

Distribution to tissues is governed by permeability, partition, and
binding to cell surface receptors. Key pathways contributing to
clearance include glomerular filtration, pinocytosis, degradation,
and internalization of receptor-bound molecules, (depending on
the conjugation chemistry) release of PEGmolecules. Understanding
the physical-chemical characteristics, receptor binding kinetics
(association and disassociation constants kon and koff) and fate of
receptor complex are important for development of a
predictive model.

A PEGylated cytokine has larger hydrodynamic radius than its
parent molecule. Experimental measurement of hydrodynamic
radius during the drug design stage is not always practical.
Therefore, we developed an artificial neuronal network model to
estimate the hydrodynamic radius of a PEGylated cytokine based on
the PEG molecular weight, the protein molecular weight, the
PEGylated cytokine molecular weight, and the percent of PEG in
the PEGylated cytokine. During the drug development stage,
techniques such as Dynamic Light Scattering can be used to
experimentally determine the hydrodynamic radius. Knowing the
hydrodynamic radius of a PEGylated cytokine conjugate allowed us
to simulate the amount of PEGylated conjugate eliminated by
glomerular filtration. The biologics module in Simcyp™ is based
on the two-pore theory; a cut off for glomerular filtration to
molecules with a hydrodynamic radius larger than 6 nm. With
this restriction, molecules with higher hydrodynamic radius, such
as cytokines with molecular weight in a range of 10–30 kDa
PEGylated with 60 kDa PEG or 50 kDa cytokine dimers, trimers,
and tetramers PEGylated with 40 kDa PEG are not expected to be
eliminated by glomerular filtration.

In addition to glomerular filtration, target-mediated drug
disposition (TMDD) contributes to elimination of all cytokines.

FIGURE 2 | A schematic representation of a general modeling framework incorporating key processed involved in the disposition and clearance of PEGylated
cytokines.
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Standard receptor binding parameters such as kon and koff can be
experimentally determined in vitro. The maximum achievable
binding can be assumed to be the same for a given cytokine,
whether PEGylated or not; it can be estimated using published
PK profiles and the binding properties for the cytokine of interest.
After a PEGylated cytokine binds to its receptor, the drug-target
complex has two pathways: somemolecules will dissociate, and some
will undergo subsequent internalization and endocytosis. The
receptors for some cytokines, such as IL-1, IL-2, and TNF-alpha,
are shed, and interactions with the soluble receptors need to be
considered. The Simcyp™ biologics module can be used to
implement the interaction of cytokines with soluble receptors,
which can result in dissociation or degradation.

In instances when the PEG-conjugates exceed the glomerular
filtration cutoff value, the relative contribution of non-receptor-
mediated endocytosis or pinocytosis in their elimination increases.
The reference CL through pinocytosis is ~0.01 L/h, which is the
reportedCL value for Cimzia® (Cimzia Full prescribing information,
2017). Cimzia® is a humanized antigen-binding 50 kDa fragment
(Fab’) of a monoclonal antibody that has been conjugated to a
40 kDa PEG. The hydrodynamic radius of this 90 kDa PEG-
conjugate prevents glomerular filtration and TMDD was reported
not to contribute to its clearance. Hence, the observed clearance
values for Cimzia® provide a good estimate for the magnitude of
clearance by pinocytosis, a constant, non-saturable process.
Alterative methodologies for estimating rate of pinocytosis (e.g.,
expanding the in vitro pinocytosis rate in endothelial cells to the
whole body), generate values within 3 times the Cimzia® reference
value. For PEGylated molecules with conjugation chemistries that
release PEG molecules in vivo, PK profile predictions require
estimation of the PEG release rate, which can be directly
measured or obtained by fitting a parameter to experimental data.

In summary, themodeling platform used byNektar Therapeutics
considers key molecular attributes such as hydrodynamic volume
and receptor binding kinetics. This platform can be used to evaluate
the impact of different PEGylation strategies on PK, thus
contributing to rational drug design and informing decisions in
the preclinical stages of R8D.

3.3 Genentech: Molecule Design and
Compound Selection
Modeling can have meaningful impact early in the R&D process when
used to compare alternate mechanisms for antagonizing a target to
inform molecule generation and selection. In one such example,
Genentech was exploring an antibody-based approach to targeting
the protease tryptase in the lung for treatment of asthma and allergic
airwaydisease. Tryptase is assembled into an active tetramericmolecule
within acidic granules ofmast cells and released in this active tetrameric
form during degranulation. At extracellular pH, the tetramer
dissociates relatively quickly into four inactive but longer-lived
monomers; the combined effects of 4:1 stoichiometry and increased
stability render the inactive monomer more abundant physiologically
than the active tetramer. The molecule team had developed a
destabilizing antibody that bound and rapidly disassembled the
tetramer, but also bound the monomer with similar binding
kinetics. Due to concerns that unproductive binding to the more

abundant monomeric form would reduce drug availability, the team
was also generating tetramer-selective antibodies, although these
formed stabilizing complexes with the tetramer, inhibiting their
physiological dissociation. Thus, a mechanistic PKPD model was
developed and applied to quantitatively compare the ability
molecules with these different Mode of Action (MoA) to neutralize
tryptase activity in the lung (Figure 3).

The modeling results indicated a clear advantage of the
destabilizing antibody under various scenarios for systemic and
lung tryptase concentrations, despite the molecule’s
nonproductive binding to inactive monomer (Chen et al., 2020).
The quantitative simulations highlighted that tetramer
destabilization leads to efficient reduction in the active species
across the dose-regimens and concentration scenarios evaluated,
superior to that achieved by the stabilizing antibody. Further,
because binding-induced destabilization occurs even faster than
antibody dissociation, a relatively fast dissociation rate (i.e., a
higher koff and KD) can reduce unproductive engagement of drug
with monomer without compromising tetramer inhibition. For the
stabilizing antibody however, the model suggested >10x lower KD

molecules would be needed for near-comparable inhibition due to
the need to continuously engage target. These simulations drove the
decision to focus on development of the destabilizing antibody
without further affinity improvements, saving significant time
and money on antibody campaigns and optimization. The
molecule was advanced and is now under clinical evaluation.
Notably, the initial model structure also was expanded in
subsequent PKPD efforts to capture nonhuman primate data and

FIGURE 3 | Schematic of anti-tryptase PKPD model with lung
compartment shown. Mechanisms represented include: tryptase tetramer
secretion in the lung, physiological dissociation of tetramer to four monomers,
antibody binding to/dissociation from the monomeric, and tetrameric
forms, as appropriate, and binding induced disruption vs. stabilization of the
tetramer. Black arrows represent physiological mechanisms; red antibody/
arrows pertain to tetramer-selective stabilizing molecule; blue antibody/
arrows pertain to destabilizing molecule; purple arrows pertain to both.
Standard two-compartment systemic/peripheral nonspecific PK augmented
by binding to monomer in the serum, and drug partitioning to lung were also
included in the model but are not shown.
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to then project and interpret clinical PKPD, thus enabling
integration of knowledge and data alongside development, and
providing value beyond its initial application to molecule design/
selection.

3.4 Pfizer: Improvement of Preclinical Study
Design for Obesity Target Using Model
Informed Drug Development
Preclinical program decisions in drug discovery often rely on
results from a set of key studies. In the following example, Pfizer
illustrated how modeling and simulation can help increase
confidence in conclusions that are based on results coming
from such studies by informing their design.

The discovery and development of novel therapies for the
treatment of obesity is challenging, often due to lack of clinical
efficacy. A key to bringing the best possible anti-obesity therapies
to the clinic is based on effective preclinical efficacy evaluation of
anti-obesity targets. This evaluation is dependent on the
understanding of the inter- and intra-animal variability of key
endpoints, such as food intake and body composition, to aid in
study design, and the proper interpretation of results. To address
this, the team leveraged a model-based power analysis to propose
guidelines for endpoint selection and study size to inform in vivo
preclinical study design for anti-obesity programs.

Specifically, Selimkhanov et al. (2017) fit a published
physiologically based (PB) model of energy balance (Guo and
Hall, 2009; Guo and Hall, 2011) that describes the feedbacks and
interrelationships between efficacy endpoints typically measured
in weight loss studies to individual C57BL/6 mouse’s longitudinal
data (Guo and Hall, 2009; Guo and Hall, 2011). The resulting
statistical model described intra and inter subject variability that
could be observed in a typical mouse study as well as the response
of key endpoints to changes in metabolic energy balance. The
statistical model was then used to simulate a typical study design
with a hypothetical anorectic agent in order to estimate various
endpoint effect sizes and variances. Using model-predicted effect
sizes and variances, the team was then able to calculate the
number of animals necessary to achieve sufficient statistical
power for different endpoints.

The results of the analysis indicated that food intake variability is
driven primarily by day-to-day intra-animal variability, whereas
body weight and fat mass variability were driven primarily by
differences between animals, important factors to consider in
endpoint selection. Moreover, the analysis highlighted the need
for caution when interpreting results from small preclinical
studies that are not statistically powered for a given endpoint. As
an example, in a simulated food intake reduction study powered to
detect a change in body weight, the team found that the study also
was sufficiently powered to detect a change in cumulative food
intake; however, the study was underpowered to detect changes in
other common endpoints, such as fat mass, fat- free mass, and single
day food intake. In summary, model-based approaches such as this
may be utilized to inform preclinical study design parameters, such
as sample size and endpoint selection, as well as to aid in the proper
interpretation of results for improved preclinical efficacy evaluations.

3.5 Translational Modeling in Oncology
The goal in this class of problems is to inform a possible dosing
regimen in the clinic using data that typically comes from tumor-
bearing or syngeneic mice. One of the goals is to build these
models in such a way that they can continue incorporating new
data, decreasing the uncertainty of the model predictions.

3.5.1 Merck
In the case of dinacyclib, a selective CDK1,4 small molecule inhibitor,
different doses were studied in a Phase 1 setting yielding information
on the pharmacokinetics, pharmacodynamics and safety of the drug,
as well as the tolerability of the drug. there was a clear picture for dose
limiting toxicity, based on the phase 1 clinical data (Nemunaitis et al.,
2013; Mita et al., 2017). Information on the shape of dose response
curves in tumor-bearing mice for different tumor types was also
available (Mehrara et al., 2007). The task was to use this information
and combine it with the data being generated from a satellite PK study
(Booher et al., 2014) to determine the width the therapeutic window
would be for this molecule.

1) The translation on the PK side was done by using a hybrid
PBPKmodel with a tumor compartment using data from both
preclinical and clinical studies, while accounting for any
differences in plasma protein binding.

2) On the PD side, the dataset consisted of 1) tumor growth
curves for the different tumor types and corresponding dose
levels for tumor bearing mice and 2) an epidemiological
dataset that described the observed tumor doubling times
for different tumor types in patients, reporting on the
variability. Starting from the doses inducing dose limiting
toxicities (DLT-s), the translational model was then used to
simulate dose-exposure-response scenarios providing a
simple guide for further clinical investigations.

3.5.2 Takeda
A similar approach was taken by Takeda (Bottino et al., 2019)
where a methodology was developed to determine the most
appropriate dose and dosing regimen for novel oncology
combination, consisting of two small molecules, inhibiting the
PI3Kα, and mTOR pathways. As above, this modeling framework
utilizes preclinical anti-tumor activity data and phase 1 clinical
toxicity data, but for two, rather than a single molecule. The
principal methodology, set up as a two-dimensional constrained
optimization problem can be described in the following steps:

• Modeled observed antitumor activity as a function of drug
concentration. All doses were converted to human-
equivalent free fraction-corrected exposures (as in the
Merck example).

• This methodology depends on clinical toxicity data, using
bivariate logistic regression. One can make a point that
quantitative systems toxicology models can be used to
extrapolate preclinical data should this information be
not available. Maximum tolerated exposure (MTE) curve
in this case was defined as the set of exposures predicted to
result in 25% probability of DLT.
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• The MTE curve was then overlaid on the preclinically
determined efficacy surface to see which tolerable
concentration pair maximized the anti-tumor activity and
doses that led to the optimal concentrations were back
calculated.

3.6 Amgen: Translational Modeling -
Application of Animal Rule
For some indications it is not feasible or ethical to conduct clinical
trials to evaluate the efficacy of therapeutics. Development of
therapeutic interventions for these indications can utilize the
Animal Rule where efficacy is established in a well-controlled
animal study using an animal model that best represents the
indication of interest (US Food and Drug Administration, 2019).
These pivotal studies will establish the efficacy of the therapeutic as
well as the exposures and other metrics associated with that level of
efficacy. Because it is not possible to verify the efficacy of the therapy
in human subjects, it is important to establish that the human dosing
is likely to achieve or exceed efficacymetrics in the preclinical species.

The approval of granulocyte colony stimulating factor treatments
(G-CSF), filgrastim and pegfilgrastim, for the treatment of acute
radiation syndrome (ARS) provides an example of the challenges
associated with combining preclinical and clinical data together to
identify the proper dosing under the Animal Rule. ARS results from
acuate exposure to high doses of radiation leading to
myelosuppression. As a result, individuals develop neutropenia
and are exposed to opportunistic infections that can lead to
increased mortality. Treatment with G-CSF can stimulate the
production of granulocytes and reduce the duration of
neutropenia after a hematopoietic injury. Two pivotal studies
were sponsored by the National Institute of Allergy and
Infectious Disease and conducted by the University of Maryland
(Farese et al., 2013; Hankey et al., 2015). These establish the reduced
duration of neutropenia and survival benefit of G-CSF treatment in
non-human primates (NHP) exposed to lethal amounts of radiation.
Because of their historic use in the treatment of chemotherapy
induced neutropenia (CIN) there is substantial clinical data relating
G-CSF treatment to exposures and neutrophil response in humans.

A series of models were developed to predict the effects of
radiation and potential benefits G-CSF treatment on survival in
humans. PK and ANC response data from healthy volunteers and
patients (adults and pediatrics) with CIN were used to develop a
mechanistic model. This accurately characterized the interplay of
target-mediated disposition of both filgrastim and pegfilgrastim and
the stimulation of ANC production in response to treatment
(Melhem et al., 2018). This model allowed for the characterization
of the underlying dynamics of granulocyte homeostasis as well as the
impact of neutrophils on G-CSF PK. Two separate models were
developed in parallel from the pivotal ARS NHP studies (Harrold
et al., 2020a). The first model characterized granulopoiesis and
radiation injury in NHPs. This effort utilized the same structural
model of granulopoiesis from the humanmodel. Next a time to event
model was used to predict overall survival (OS) using the observed
ANCprofiles. Next thesemodels were combined: Granulopoiesis and
the disposition of filgrastim and pegfilgrastim from the humanmodel
was merged with the models of radiation injury and survival benefit

in NHPs (Harrold et al., 2020b). The resulting model was calibrated
using historical survival data in humans exposed to radiation to
characterize the untreated response. Simulations were then used to
evaluate the potential survival benefits of different G-CSF treatment
regimens and the impact of delaying treatment.

4 CONCLUDING REMARKS

In this manuscript, we have detailed illustrative case studies from
our experience that highlight how modeling and simulation is
used to inform decision making in discovery and preclinical
development. These examples only scratch the surface of this
evolving modeling landscape which includes additional
categories beyond the case studies here, for example,
computational chemistry and structural biology, systems
toxicology, and more. Nevertheless, there are some important
high-level learnings that apply across various model applications:

1) Collaborative efforts betweenmodelers and experimental scientists
are key to creation of pragmatic models to influence decisions.

2) Models should come with clearly stated assumptions and
relevant context of use.

3) Inaccurate model prediction from a well-designed and
developed model should not be interpreted as an error, but
rather an indication of a key knowledge gap.

4) Building models as integrated knowledge frameworks usually
pays dividends to answer more than one question and inform
development of multiple therapies in the portfolio.

In a field with continuously evolving technologies, data, and
knowledge, we hope that the future will bring many more
examples of impactful decision making from industry and
academia, consortia efforts and government research.
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