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The objectives of this study were to explore the usefulness of blood-based traits as
indicators of health and performance in beef cattle at weaning and identify the genetic
basis underlying the different blood parameters obtained from complete blood counts
(CBCs). Disease costs represent one of the main factors determining profitability in
animal production. Previous research has observed associations between blood cell
counts and an animal’s health status in some species. CBC were recorded from
approximately 570 Angus based, crossbred beef calves at weaning born between
2015 and 2016 and raised on toxic or novel tall fescue. The calves (N = ∼600) were
genotyped at a density of 50k SNPs and the genotypes (N = 1160) were imputed
to a density of 270k SNPs. Genetic parameters were estimated for 15 blood and 4
production. Finally, with the objective of identifying the genetic basis underlying the
different blood-based traits, genome-wide association studies (GWAS) were performed
for all traits. Heritability estimates ranged from 0.11 to 0.60, and generally weak
phenotypic correlations and strong genetic correlations were observed among blood-
based traits only. Genome-wide association study identified ninety-one 1-Mb windows
that accounted for 0.5% or more of the estimated genetic variance for at least 1 trait
with 21 windows overlapping across two or more traits (explaining more than 0.5% of
estimated genetic variance for two or more traits). Five candidate genes have been
identified in the most interesting overlapping regions related to blood-based traits.
Overall, this study represents one of the first efforts represented in scientific literature
to identify the genetic basis of blood cell traits in beef cattle. The results presented
in this study allow us to conclude that: (1) blood-based traits have weak phenotypic
correlations but strong genetic correlations among themselves. (2) Blood-based traits
have moderate to high heritability. (3) There is evidence of an important overlap of genetic
control among similar blood-based traits which will allow for their use in improvement
programs in beef cattle.

Keywords: beef cattle, hemoglobin, weaning, heritability, GWAS - genome-wide association study, weaning
weight, white blood cell count, complete blood cell (CBC) count
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INTRODUCTION

Expenses associated with disease and feed are two of the main
drivers for cost of production in livestock operations and show
a direct relationship where disease impacts feed intake (Irsik
et al., 2006; Leach et al., 2013). There is limited information
in scientific literature regarding genetic parameters for blood-
based traits in livestock and the majority of scientific literature
regarding this topic in beef cattle dates back to the second half of
the 20th century.

With the greater use of molecular genetics by seedstock and
commercial beef producers, animal breeding has experienced a
paradigm shift (Meuwissen et al., 2016), with a larger number
of traits and information being used to increase the accuracy
to identify the best animals across a range of environments
and production settings. Therefore, blood-based traits and other
“forgotten” traits should be evaluated again using the methods
currently available to better understand their usefulness in
modern animal production.

In beef cattle, bovine respiratory disease (BRD) is among
the most economically important traits in production (Snowder
et al., 2007; Schneider et al., 2009). Infection can result in
morbidity, mortality, and reduced average daily gain, which
ultimately translates into reduced product quality and an overall
reduced system productivity (Griffin, 1997; Irsik et al., 2006;
Fulton, 2009; Leach et al., 2013). With blood samples being
relatively easy to obtain when handling animals for other
procedures and the intrinsic presence of white blood cells in
peripheral blood, blood counts are an objective representation
of innate and adaptive immunity of the animals (Leach et al.,
2013). In this regard, Leach et al. (2013) looked at the genetic
correlation between immune response to Bovine Respiratory
Disease (BRD) vaccine and the incidence of the disease and
average daily gain (ADG). They reported that blood-based traits
related to immunity such as neutrophils (NE), lymphocytes (LY),
eosinophils (EO) and basophils (BA) change significantly over
time depending on the vaccination status of the animal (before or
after a vaccination booster is applied). The research also showed
significant correlations between the blood-based traits and ADG.

Previous efforts to identify genetic parameters for blood-based
traits in beef cattle include those by Rowlands (Rowlands et al.,
1977, 1983) and Richardson (Richardson et al., 1996). Rowland
estimated a heritability of 0.55 ± 0.18 and a genetic correlation
of -0.46 with growth rate for hemoglobin concentration in
blood (Rowlands et al., 1983). While Richardson also calculated
a repeatability ranging from 0.43 to 0.95 for various blood-
based traits. More recently, Leach et al. (2013) found genetic
correlations ranging from -0.48 to 0.86 between blood-based
traits related to immunity.

Blood-based traits and their genetic basis have been given
more attention in swine, perhaps because of the translational
potential to humans that swine possess. Clapperton et al. (2008)
compared heritability and genetic and phenotypic correlations of
blood-based traits between herds with high and low health status
at 30 kg and 90 kg of live weight. They found that heritability
for white blood cell traits can vary greatly between herds exposed
to different environments with the heritability for number of

white blood cells changing from 0.06 ± 0.11 in high health herds
to 0.37 ± 0.16 in low health herds. Additionally, they found
mostly strong negative correlations between traits related to
white blood cells and ADG ranging from 0.03 to -0.62. Evidence
for heritability and moderate to strong genetic correlations of
Blood-based traits to growth traits could be helpful in identifying
and selecting animals with more robust growth under stressful
environments. Robust growth is defined as the ability, in the face
of environmental constraints, to carry on doing the various things
that the animal needs to do to express its full genetic potential
through rapid growth and weight gain (Friggens et al., 2017).

More recently, Flori et al. (2011) calculated heritability for
total white blood cells (WBC) 0.73 ± 0.20 and 0.80 ± 0.21 for
EO in swine. Mpetile et al. (2015) compared peripheral blood
profiles from complete blood counts (CBCs) between lines of
pigs selected for high and low residual feed intake (RFI). They
found no significant correlations between RFI and the blood-
based traits studied. Heritability estimates ranged from 0.04 for
mean corpuscular hemoglobin concentration (MCHC) to 0.62
for red blood cells count (RBC).

In a very similar study to the one presented in our report,
although on swine, Bovo et al. (2019) performed a genome-
wide association analyses (GWAS) for 15 hematological traits
and 15 clinical-biochemical traits finding 52 quantitative trait loci
(QTL) associated with 29 of the 30 traits investigated. They also
estimated genomic variance parameters and (SE) for blood-based
traits and observed heritabilities ranging from 0.14 (0.06) for EO
to 0.40 (0.06) for mean corpuscular hemoglobin (MCH).

Overall, previous studies have indicated that blood-based
traits may be useful as indicators for performance and health in
intensive production settings. The objectives of this study were
to explore the usefulness of blood-based traits as performance
and health in beef cattle at weaning and identify the genetic
basis underlying the different blood parameters obtained from
complete blood counts (CBCs).

MATERIALS AND METHODS

Data Description
Complete blood count (CBC)s were recorded from 570 crossbred
cattle (Angus background crossed with Hereford, Charolais, Sim-
Angus, Brangus) using blood samples collected at weaning during
2015 and 2016 at three research farms with similar management
techniques at the University of Arkansas in Fayetteville and
Batesville, AR. Animals were handled in accordance with the
regulations of the University of Arkansas Institute for Animal
Care and Use Committee (IACUC), under protocol number
16037. Blood samples were collected at weaning via jugular
vein puncture into an EDTA blood tube and analyzed in a
Hemavet HV 950 multispecies hematology system (HEMAVET,
2011). In addition, birth weight, weaning weight and age at
weaning were collected for all animals. Additionally, average
daily gain and adjusted weaning weight at 205 days were
calculated. The number of records from each farm is shown in
Table 1, along with their respective year and calving season.
Table 2 shows the traits included in the analyses along with
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their respective abbreviations and units. Animals raised at
Savoy farm were raised on toxic fescue until weaning, while
the majority of animals raised at Batesville and North farms
were moved to novel fescue upon calving and were kept
there until weaning.

Blood samples were collected for DNA isolation following
previously described methods (Sambrook, 2001), and
subsequently for genotyping. Animals were genotyped using
the GeneSeek Bovine GGP50 SNP chip or the GGP F250 SNP
chip from GeneSeek (NEOGEN, 2016). Approximately 1100
animals related to the CBC-phenotyped individuals, including
their parents were genotyped with the GGP F250 chip and
their genotypes were used for imputation purposes. Genotype

TABLE 1 | Distribution of animals by farm, year and calving season.

Farm Year Calving Season Number of records

Savoy 2015 Spring -

Fall 205

2016 Spring 76

Fall -

Batesville 2015 Spring -

Fall 72

2016 Spring 38

Fall 157

North 2015 Spring -

Fall -

2016 Spring 22

Fall -

TABLE 2 | Description of traits analyzed.

Trait Abbreviation Unit

Hemoglobin content HB g/dL

Hematocrit percentage HCT %

Mean corpuscular hemoglobin MCH Pg

Mean corpuscular volume MCV fL

Mean corpuscular hemoglobin concentration MCHC g/dL

Red blood cells RBC M/uL

Red blood cell distribution width RDW %

Basophils BA K/uL

Basophils(logarithm) BAlog Log

Eosinophils EO K/uL

Lymphocytes LY K/uL

Monocytes MO K/uL

Neutrophils NE K/uL

White blood cells WBC K/uL

Mean platelet volume MPV fL

Platelets PLT K/uL

Birth weight BW lbs

Weaning weight WW lbs

Adjusted weaning weight1 adjWW lbs

Average daily gain ADG lbs

1 Calculated as: ((weaning weight− birth weight)/days at weaning) ∗ 205.

positions for all SNP were updated to coordinates of the ARS1.2
bovine reference genome1.

Imputation
A total of 501 animals with CBC records were genotyped at
a density of approximately 50 k markers while 1160 animals
from the same population, including the parental generations
were genotyped at a density of approximately 250k markers.
FImpute version 2.2 (Sargolzaei et al., 2014) was used to impute
all genotypes to an approximate density of 270k markers. The
resulting genotypes where used for further analyses. Imputation
accuracy was not measured for the present project but previous
experiences with similar projects have shown accuracies ranging
between 90% and 95%.

Population Structure
The population analyzed was divided in six contemporary
groups defined by the combination of farm of origin, year of
calving and calving season as shown in Table 1. To visualize
population structure, a principal component analysis (PCA) was
performed (results not shown). For this purpose, genotypes
of registered purebred Hereford, Black Angus, Red Angus,
Gelbvieh, Limousine, Simmental and Shorthorn animals were
used as references to quantify the genomic similarity between the
individuals used in this study.

Statistical Analyses
Frequentist Approach to Estimate Phenotypic,
Genetic and Genomic Parameters
Phenotypic correlations between traits were estimated using the
method of moments after adjusting the data for fixed effects that
included contemporary group and sex. Genotypic correlations
between traits and narrow sense heritability (h2) for each trait
were calculated in ASReml 3.0 (Mary et al., 2009) using an animal
model with a genomic relationship matrix and fixed effects for
contemporary group (Ci), sex of the animal (Sj), the genetic
random effect of the animal (Dk) and a covariate for weaning
weight (W):

P1ijkP2ijk = µ + Ci + Sj + Dk + W + εijk (1)

For genetic correlations, a bivariate model was used while
for heritability a univariate model with the same effects was
implemented (P1 = phenotype 1, P2 = phenotype 2).

Bayesian Approach to Estimate Genomic Parameters
and Identify Genome-Wide Marker Associations
Narrow sense heritability (h2) for each trait was estimated
through a Bayesian analysis in GenSel4.0 (Fernando and Garrick,
2008) utilizing Bayes C (Habier et al., 2011). For these analyses,
only markers with a minor allele frequency (MAF) larger or
equal to 0.02 were used. With this filter, it was guaranteed
that at least 10 animals with the minor allele were included in

1https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_
002263795.1
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the analyses. A large proportion of markers had MAF lower
than 0.02. After filtering, approximately 100,000 markers were
retained. Additionally, the Pi value was set to 0.9877 in order
to fit the random effect of approximately 250 markers to the
model per iteration. Each chain consisted of 75000 iterations
with a burn of the first 5000 (i.e., the first 5000 samples
were discarded). The same parameters were used to perform a
genome-wide association study (GWAS) with the objective of
exploring the genetic basis of blood-based traits. For this purpose
Bayes B (Stephens and Balding, 2009) was used as it shrinks the
genetic effects, with a larger shrinking factor on windows that
show smaller genetic effects (Fernando and Garrick, 2013). For
GWAS purposes, variance was examined for fixed windows of 1
Megabase (Mb) genomic segments. When estimating heritability
for each trait and performing a GWAS, the model used was the
same one used to estimate genomic heritability, composed of
fixed effects contemporary group (CGi), sex of the animal (Sj),
a covariate for weaning weight (WW) and the random effects of
the markers (Ml) fitted during each iteration:

Pijkl = µ + CGi + Sj + Ml + WW + ε (2)

Gene Ontology and Identification of Candidate Genes
To be considered significant, windows had to explain at least 0.5%
of the estimated genetic variance. This threshold was assigned
with the rationale that there is little literature referring to blood-
based traits and it is not known if these traits are affected by a few
genes with large effects or multiple genes with small effects. Genes
located in each significant genomic window were identified with
Ensembl Biomart2 by choosing the “cow genome” option with
the ARS1.2 bovine genome version. Given the small number of
annotated genes in most of the windows found significant, traits
were grouped in four broad categories to increase the probability
of detecting enrichment for specific categories: red blood cell
traits, white blood cell traits, platelet traits and growth traits
(i.e., MCHC and RBC were grouped under red blood cell traits).
This, under the rationale that traits related to the same type of
cells should share molecular basis (Iwasaki and Akashi, 2007).
Once the list of genes located in all significant windows for a
category of traits was obtained, an ontology enrichment test was
performed through Princeton University’s Lewis-Sigler Institute
for Integrative Genomics GO:TermFinder (Boyle et al., 2004). For
a term enrichment to be considered significant false discovery
rate (FDR) had to be less than 5%. Given that the annotation
of the human genome is far more complete when compared to
the annotation on the cow’s genome, all gene ontology terms
were performed using the human genome as a reference. This
approach, as discussed by Band et al. (2000) is a very useful tool
to discover genes of agricultural importance.

Finally, the genes located in windows that explained ≥ 0.5%
of the estimated genetic variance in two or more traits were
investigated with the objective of identifying possible candidate
genes to be associated to the estimated genetic variance explained
by each window. Genes were considered candidates when

2http://useast.ensembl.org/biomart/martview/

scientific literature linking the genes to physiological processes
related to blood-based traits.

RESULTS

Population Structure
There was a wide range of crossbred animals genotyped for this
study. However, it should be noted that there is a small set of
animals with a heavy Black Angus background. Given the high
level of heterogeneity shown by PCA (Proportion of variance
explained: PC1 = 0.047, PC2 = 0.025, PC3 = 0.014), it was decided
to ignore the animals’ breed for the purpose of statistical analyses.

Phenotypic Correlations
Phenotypic correlations are presented below the diagonal in
Figure 1. Stronger phenotypic correlations were observed
between similar traits, such as WW and average daily gain (ADG)
that had a phenotypic correlation of 0.86. In a similar manner,
strong correlations were found between similar blood-based
traits. Within red blood cell traits, strong correlations of 0.81 and
0.77 were found between hematocrit percentage (HCT), RBC and
hemoglobin content (HB), respectively. Likewise, white blood cell
traits tended to show stronger correlations within themselves as
in the case of WBC with LY and NE having correlations of 0.80
and 0.78, respectively.

Phenotypic correlations between blood-based and production
traits tended to be weak with some exceptions. The strongest
negative phenotypic correlation was found between MCHC and
WW that showed a correlation of −0.09. ADG and adjusted
weaning weight to 205 days (adjWW) showed the strongest
positive phenotypic correlation between production traits and
blood-based traits, where the correlations with red blood cell
distribution width (RDW) were 0.29 for both productivity traits.
It should be highlighted that the correlation between ADG and
adjWW was 1. Further, WW, ADG and adjWW had highly
positive correlations. Both of these findings were expected given
that these three traits are directly related as functions using the
same weights for their calculations.

Genetic Correlations
Genetic correlations between traits above the diagonal are shown
in Figure 1. Genetic correlations were found to be markedly
stronger than phenotypic correlations but followed the same
trend of being stronger within trait groups. Birth weight (BW)
was the production trait that showed the strongest genetic
correlations with blood-based traits, having correlations of -0.68
and 0.70 with mean platelet volume (MPV) and EO, respectively.
It should be noted that RDW and EO showed moderate to strong
genetic correlations with all four production traits included in the
present analyses as shown above the diagonal in Figure 1. Genetic
correlations between production traits were strong, where the
weakest correlation was 0.80 between BW and ADG.

When evaluating the genetic correlations between blood-
based traits, interestingly mean platelet MPV showed moderate
to strong correlations with all white blood cell traits included
in the analyses (BAlog = −0.43, EO = −0.68, LY = −0.31,
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FIGURE 1 | Genetic (above diagonal) and phenotypic (below diagonal) correlations between traits. Traits included are: mean platelet volume (MPV), Platelets (PLT),
red blood cell distribution width (RDW), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH), mean corpuscular volume
(MCV), hematocrits (HCT), hemoglobin content(HB), red blood cells (RBC), basophils(log) (Balog), eosinophils (EO), lymphocytes (LY), neutrophils (NE), white blood
cells (WBC), average daily gain (ADG), adjusted weaning weight (adjWW), weaning weight (WW) and birth weight (BW). Average daily gain and adjusted weaning
weight show a phenotypic correlation of 1 because these traits are a function of each other. Gradient of color from blue to red represents negative to positive
correlations and their strength, respectively.

NE = −0.77, WBC = −0.65). Mean platelet volume also showed
moderate to strong correlations, but predominantly positive ones
with red blood cell traits. Platelets (PLT) showed strong genetic
correlations with RBC, HB and HCT while intriguingly, showing
a weak genetic correlation of−0.1 with MPV.

As noted before with phenotypic correlations, red blood cell
traits tended to show strong genetic correlations among
themselves. Several red blood cell traits had relatively
strong correlations with white blood cell traits. It is worth
highlighting the strong positive correlations between HCT
and EO with basophils (Balog) and RBC, which were 0.98
and 0.99 respectively. Strong negative correlations were also
observed between MCHC and HB with LY of −0.69 and
−0.66, respectively.

Strong genetic correlations were found among all white
blood cell traits and no negative genetic correlations were
found amongst them. WBC had genetic correlations of 0.86
with LY and 0.93 with NE, while BAlog had correlations of

0.72 and 0.79 with NE and EO. Finally, genetic correlations
between production traits and blood-based traits ranged
from weak to strong with the weakest correlation being
between MCV and BW (0.01) and the strongest one (0.70)
between BW and EO.

Estimation of Narrow Sense Heritability
(h2)
Estimates produced by both Bayesian and frequentist analyses
are shown in Table 3. Narrow sense heritability estimates
were similar between estimation techniques but estimates from
Bayesian approach tended to be lower. The greatest difference
between methods was for monocytes (MO). Estimates from
the frequentist approach ranged from 0.01 ± 0.05 for MO to
0.60 ± 0.10 for WW, while estimates from Bayesian analyses
ranged from 0.11 ± 0.04 to 0.55 ± 0.07 for MO and weaning
weight, respectively.
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TABLE 3 | Narrow sense heritability (h2) estimates for blood and growth traits.

Trait Approach

Bayesian Frequentist

Average daily gain. (ADG) 0.48 (0.07) 1 0.54 (0.11) 2

Adjusted weaning weight (adjWW) 0.48 (0.07) 0.54 (0.11)

Birth weight (BW) 0.38 (0.08) 0.41 (0.10)

Weaning weight (WW) 0.55 (0.07) 0.60 (0.10)

Basophils (Balog) 0.15 (0.06) 0.23 (0.10)

Eosinophils (EO) 0.15 (0.05) 0.11 (0.08)

Hemoglobin (HB) 0.25 (0.08) 0.27 (0.10)

Hematocrits (HCT) 0.17 (0.06) 0.11 (0.08)

Lymphocytes (LY) 0.22 (0.07) 0.26 (0.10)

Mean corpuscular hemoglobin (MCH) 0.48 (0.09) 0.52 (0.11)

Mean corpuscular hemoglobin concentration (MCHC) 0.42 (0.09) 0.46 (0.11)

Mean corpuscular volume (MCV) 0.40 (0.09) 0.44 (0.11)

Monocytes (MO) 0.11 (0.04) 0.01 (0.05)

Mean platelet volume (MPV) 0.23 (0.07) 0.24 (0.10

Neutrophils (NE) 0.28 (0.07) 0.30 (0.10)

Platelets (PLT) 0.18 (0.06) 0.16 (0.09)

Red blood cells number (RBC) 0.32 (0.08) 0.35 (0.10)

Red blood cell distribution width(RDW) 0.24 (0.08) 0.18 (0.10)

White blood cells (WBC) 0.31 (0.08) 0.32 (0.10)

1 Sampling error shown in parenthesis. 2 Standard error shown in parenthesis.

It is important to note that while heritability estimates from
the Bayesian analyses tended to be lower than those from
frequentist analyses, there were cases where Bayesian estimates
were larger than frequentist estimates as is the cases of EO,
HCT, MO, PLT and RDW. However, only MO shows heritability
estimates that are different when standard errors and sampling
errors are taken in consideration.

Genome-Wide Association Study (GWAS)
A genome-wide association study was performed for each of the
nineteen traits included in this study. Overall, 91 one-megabase
windows explained more than 0.5% of the estimated genetic
variance for at least one trait. All the windows identified are
presented in Figure 2. Of these windows, only 15 showed a
posterior probability of inclusion (PPI) of at least 60%.

Figure 3 shows the GWAS results for MCH. For this trait,
seven 1-Mb windows were found to be responsible for at least
0.5% of the estimated genetic variance. Windows starting at
megabase 119 and 128 on chromosomes 3 and 30 respectively
had posterior probabilities larger than 60%, with window 119 on
chromosome 3 explaining 4.5% of estimated genetic variance and
window 128 on chromosome 30 explaining approximately 4.75%.
Several QTL related to average daily gain, meat quality and body
conformation were found in these windows along with multiple
QTL (Orrù et al., 2012) associated to the trait in close proximity
to the window on chromosome 4 identified in this GWAS.

Genome-wide association study results for MO are presented
in Figure 4 which show five windows explaining greater than
0.5% of the estimated genetic variance located on chromosomes
3, 8, 14, 19 and 22. The window starting at megabase 54 on

chromosome 22 had a PPI larger than 60%. There are no
previously reported QTL for this trait. Several QTL related to
average daily gain, average daily feed intake, body conformation
and meat quality were found in the windows described by the
GWAS or in close proximity.

Two windows explaining more than 0.5 of the estimated
genetic variance on chromosomes 2 and 27 were found for MPV
as shown in Figure 5. The window on chromosome 2 showed
a PPI > 60%. There are no QTL related to blood-based traits
or growth traits reported in the windows found to be important
for this trait, and in a similar fashion to other blood-based traits,
there were no QTL previously described to have an effect on MPV
values. Given the large number of traits examined in this study,
results for all other individual GWAS for all other traits are shown
in Supplementary Figures.

Several genomic windows accounted for more than 0.5%
of estimated genetic variance for multiple traits. As shown in
Table 4, three windows explained greater than 0.5% of the
estimated genetic variance for more than two traits. The window
that was identified as important for the most traits was at
megabase 70 on chromosome 11, which explained approximately
1.25%, 0.6%, 0.7%, 0.7% and 0.5% of HB, HCT, MCH, mean
corpuscular volume (MCV) and red blood cell distribution width,
respectively. There are no previous reports of QTL associated to
HB. All reported QTL for mean corpuscular hemoglobin (MCV),
MCH and RDW are found on chromosomes 4, 5, 15 and 25.

Gene Ontology Enrichment Analysis
Once the significant windows were identified for each trait,
gene ontology term enrichment was performed. Overall, the
term “unannotated” was significantly enriched for function in
6 traits each for function and process. It is worth highlighting
that in the individual trait ontology term enrichment analyses,
RDW and BW were both significantly enriched for folic acid
receptor activity and binding due to genes FOLR1, FOLR2 and
FOLR3, spanning over the 51 and 52 Mb on chromosome
15. Additionally, BW was significantly enriched for biological
process for terms such as response to oxygen-containing
compound and response to endogenous stimulus.

Given the very limited literature and research found in the
scientific literature for the specific blood-based traits in cattle
examined in this project, the main focus was directed to the
broad categories of the traits to increase the chance of finding
significant enrichment. Therefore, all the genes identified for
traits that fell in the same category (i.e., MCHC and RBC
were grouped under red blood cell traits) were grouped into
one of four categories before analysis. The categories included
red blood cell traits, white blood cell traits, platelet traits
and growth traits. In total, 615, 365, 324 and 91 genes were
found in windows significant for red blood cell traits, white
blood cell traits, growth traits and platelet traits respectively.
The 10 most-significantly enriched for each trait category are
shown in Table 5. Interestingly, red and white blood cell traits
shared significant enrichment for six traits including nitrogen
compound metabolic process (FDR ≤ 5%). On the other hand,
growth traits shared only one significantly enriched category
with platelet traits and two with white blood cell traits while
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FIGURE 2 | Manhattan plot displaying one-megabase windows and the percentage of estimated genetic variance they account for along the genome. Labeled
windows explain ≥ 0.5% of estimated genetic variance. Labels represent the abbreviation of the trait for which the variance is explain at each window. Traits included
are: mean platelet volume (MPV), Platelets (PLT), red blood cell distribution width (RDW), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular
hemoglobin (MCH), mean corpuscular volume (MCV), hematocrits (HCT), hemoglobin content (HB), red blood cells (RBC), basophils(log) (Balog), eosinophils (EO),
lymphocytes (LY), neutrophils (NE), white blood cells (WBC), average daily gain (ADG), adjusted weaning weight (adjWW), weaning weight (WW) and birth weight
(BW). Chromosome X is identified as chromosome 30.

FIGURE 3 | Manhattan plot showing percentage of estimated genetic variance explained by each 1megabase (MB) window for mean corpuscular hemoglobin
(MCH). Labeled points explain ≥ 0.5% of the estimated genetic variance. Points highlighted in green have posterior probability of inclusion (PPI) > 60%. The first
number of the label of each window represents the chromosome where the window is located, numbers after the underscore. i.e., “6_25” represents a QTL on
chromosome 6 encompassing the window from 25–26 Mbs. Chromosome X is identified as chromosome 30.

not sharing any with red blood cell traits. Finally, the ten most
significant terms that were enriched for biological function for
each of the trait categories along with the respective FDR are
presented in Table 6. Overall, there was notably less enrichment
for biological function, to the point where “unannotated”
(FDR < 0.01%) was the only term significantly enriched for
traits related to platelets while protein binding (FDR < 0.001%
for all categories) was shared by all other categories. As seen
with BW, folic acid receptor activity was significantly enriched
for growth traits. White blood cell traits showed enrichment

for transcription regulatory region DNA binding and regulatory
region nucleic acid binding.

DISCUSSION

Most Blood-Based Traits and Growth
Traits Are Weakly Correlated
In the present study, genetic correlations among growth and
blood-based traits followed the same pattern than phenotypic
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FIGURE 4 | Manhattan plot showing percentage of estimated genetic variance explained by each 1 MB window for monocytes (MO). Labeled points explain ≥ 0.5%
of the estimated genetic variance. Points highlighted in green have posterior probability of inclusion (PPI) > 60%. The first number of the label of each window
represents the chromosome where the window is located, numbers after the underscore. i.e., “3_15” represents a QTL on chromosome 3 encompassing the
window from 15–16 Mbs. Chromosome X is identified as chromosome 30.

FIGURE 5 | Manhattan plot showing percentage of estimated genetic variance explained by each 1 MB window for mean platelet volume (MPV). Labeled points
explain ≥ 0.5% of the estimated genetic variance. Points highlighted in green have posterior probability of inclusion (PPI) > 60%. The first number of the label of
each window represents the chromosome where the window is located, numbers after the underscore. i.e., “27_16” represents a QTL on chromosome 27
encompassing the window from 16–17 Mbs. Chromosome X is identified as chromosome 30.

correlations with the exceptions of the correlations between MPV
and BW, and RDW and EO with all growth traits. Clapperton
et al. (2008) reported similar results in swine, describing weak
and mostly negative phenotypic correlation between several
subsets of white blood cells and ADG ranging from −011 to

0.16. The same study found strong genetic correlations between
white blood cell related traits and average daily gain that ranged
from −0.58 to 0.23. Those results differ from the results in
the present study, perhaps because of differences in species.
Leach et al. (2013), found weak and mostly negative genetic
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TABLE 4 | Significant windows overlapping over different traits.

Chr BA(log) EO HB HCT MCH MCHC MCV MPV NE RBC RDW WBC ADG WW BW

3 1011 ∀ 119 2 119 101 101

4 116 116

7 1 3 0 0

9 10 10

11 88 70 70 70 70 88 70

12 71 71

14 1 62 1 62

15 51 78 51 77 78 52

22 55

24 59 59

27 5 6 16 6 16 6

29 5 5 5

X 55 27 55 27

1 Windows highlighted in blue explained more than 0.5% of estimated genetic variance for three or more traits. ∀ Numbers in the cell represents the megabase at which
the 1-megabase window starts. 2 Orange highlighted windows explained more than 0.5% of estimated genetic variance for two traits. 3 Green highlighted windows
explained more than 0.5% of estimated genetic variance for one trait and are immediately next to a significant window for a different trait.

correlations between white blood cell traits and ADG, supporting
the present findings.

Overall, the findings of this study indicate that phenotypic
and genetic correlations with a few exceptions tended to be
weak between blood cell traits and growth traits. The weak
correlations between blood-based traits and growth traits limit
the potential for blood-based traits to be used as indicators
of performance under varying environments. Strong genetic
correlations between blood-based traits indicate the existence of
an important overlap in genetic control and can be considered
as evidence of pleiotropic effects playing a role in regulating
multiple blood- based traits as found previously by Lukowski
et al. (2017).

Blood-Based Traits Tend to Have
Moderate to High Heritability
Heritability (h2) estimates in the present study are in line with
what is generally reported in the literature (Kitchenham and
Rowlands, 1976; Bourdon and Brinks, 1982; Rowlands et al.,
1983; Arnold et al., 1991; Bullock et al., 1993; Bennett and
Gregory, 1996; Phocas and Laloë, 2004; Wright et al., 2014;
Mpetile et al., 2015; Snelling et al., 2019). Heritability estimates
(h2) for white blood cell traits by Leach et al. (2013) ranged
from 0.28 to 0.50, confirming the findings of the present study,
with the only exception of MO which had a heritability estimate
(h2) of 0.11 and 0.01 for Bayesian and frequentist approaches
respectively, which in both cases are lower than the estimates
previously reported by Leach et al. (2013) that ranged from
0.21 to 0.39. After an extensive literature review, we believe
the present findings provide one of the few, if not the genetic
parameter estimates for several blood-based traits in beef cattle at
weaning age.

Bayesian analyses tended to produce lower estimates of
heritability than frequentist analyses, indicating the possibility
of missing heritability. Missing rare variants is possible in this
case given that the population used to produce the estimates
is relatively small (∼570 animals) and thus, a larger study

population might be needed to capture rare variants. However,
the GGP F250 SNPchip is the chip with the highest number
of rare variants included and therefore should capture all the
rare variants present in our population. To differentiate between
missing heritability and the possibility of missing genetic variance
because the pi value used in the Bayesian analyses was too
large and therefore not taking in consideration all markers
that explained genetic variance, heritability estimates (data not
shown) were produced using Bayes C priors with a pi value of
zero. The difference in estimates of heritability when using the
different pi values was minimal. Possible reasons for missing
heritability may be the small sample size, epistatic interactions
between markers, other structural variations in the genome like
copy number variants (CNV), linkage disequilibrium (LD) or
rare alleles not present in the studied population (Clarke and
Cooper, 2010; Vineis and Pearce, 2010; Makowsky et al., 2011;
Zuk et al., 2012). Other possible explanations for the missing
genetic variance could be that the SNP chips used to genotype
the animals did not include markers that explain variance for
the trait, or perhaps some of the rare variants that explained
genetic variance for the traits were lost through filtering SNPs
that had MAF lower than 0.02. Another possible cause could
be the different marker information content given the different
allele frequencies in the breeds that are admixed in the population
used for this research. However, the Bovine GGP F250 SNPchip
contains a very large number of rare variants and includes data
from most of the breeds that compose the population used for
this study (NEOGEN, 2016).

Maternal Genetic Effects Do Not Impact
Genetic and Genomic Correlations or
Heritability
Another concern was that heritability estimates could be inflated
due to maternal genetic effects. Given that blood-based and
productivity traits were measured at weaning and that the
original analyses did not take in consideration maternal effects
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TABLE 5 | The ten most significantly enriched terms for biological process for
each trait category.

Red Blood Cell Traits FDR 1 Platelet Traits FDR

cellular process 2 0.00% response to stimulus 4.00%

organic substance metabolic
process

0.00% detection of chemical stimulus
involved in sensory perception
of smell

3.00%

metabolic process 0.00% detection of chemical stimulus
involved in sensory perception

2.00%

cellular metabolic process 0.00% sensory perception of smell 2.50%

primary metabolic process 0.00% detection of chemical stimulus 2.00%

macromolecule metabolic
process

0.00% detection of stimulus involved in
sensory perception

2.00%

nitrogen compound metabolic
process

0.00% smooth muscle cell migration 2.00%

cellular component organization
or biogenesis

0.00% sensory perception of chemical
stimulus

1.75%

cellular component organization 0.00% response to chemical 1.56%

macromolecule modification 0.00% detection of stimulus 1.80%

White Blood Cell Traits Growth traits

organic substance metabolic
process

0.00% cellular process 0.00%

primary metabolic process 0.00% regulation of biological process 0.00%

nitrogen compound metabolic
process

0.00% cell communication 0.00%

metabolic process 0.00% biological regulation 0.00%

macromolecule metabolic
process

0.00% regulation of cellular process 0.00%

cellular process 0.00% signaling 0.00%

cellular metabolic process 0.00% response to stimulus 0.00%

Localization 0.00% regulation of cell
communication

0.00%

biological regulation 0.00% regulation of signaling 0.00%

organic substance biosynthetic
process

0.00% positive regulation of biological
process

0.00%

1 False discovery rate.

that might be significant, a model accounting for maternal effects
was implemented using ASReml (Mary et al., 2009) (data not
shown). The difference in estimates from a model with and
without genetic maternal effects was very small, indicating that
maternal effects have limited influence on blood-based traits and
productivity at weaning. However, estimation of maternal effects
is complex and given the amount of data available these results
should be taken as preliminary.

Genome Wide Association Study Results
Identify Few Genomic Regions With
Large Effects
Although the GWAS performed for each trait revealed 91
windows of 1-megabase in length that explained at least 0.5%
of the estimated genetic variance, the most interesting results
were the numerous overlaps of windows that were important
for different traits. Windows of importance were identified on
chromosome 23 only for three traits, ADG, adjWW and MCHC.
No GWAS windows for any blood-based trait associated to

TABLE 6 | Ten most significantly enriched terms for function for
each trait category.

Red Blood Cell Traits FDR∀ Platelet Traits FDR

binding 0.00% unannotated 0.00%

protein binding 0.00%

ion binding 0.00%

catalytic activity 0.00%

hydrolase activity 0.00%

heterocyclic compound binding 0.00%

organic cyclic compound
binding

0.00%

modified amino acid binding 0.00%

anion binding 0.00%

- -

White Blood Cell Traits Growth traits

serine-type endopeptidase
activity

0.00% binding 0.00%

serine-type peptidase activity 0.00% folic acid binding 0.00%

serine hydrolase activity 0.00% protein binding 0.00%

binding 0.00% insulin receptor binding 0.50%

protein binding 0.00% amide binding 2.00%

catalytic activity 0.00% modified amino acid binding 1.67%

hydrolase activity 0.00% folic acid receptor activity 2.00%

endopeptidase activity 0.00% voltage-gated sodium channel
activity

1.75%

regulatory region nucleic acid
binding

0.22% protein-containing complex
binding

1.56%

transcription regulatory region
DNA binding

0.20%

∀ False discovery rate.

white blood cells on chromosome 23 were identified, where the
MHC complex is found in bovines (Steiner et al., 2014). These
results provide evidence of possible pleiotropic genes influencing
multiple traits related to blood-based traits as well as influencing
blood-based traits and productivity traits.

Several Candidate Genes Were Identified
for Windows Associated With
Blood-Based Traits and Overlapping
With Growth Traits
The only overlap found in white blood cell traits is found
on chromosome 9, megabase 10. This window contains genes
like SMAP1, a protein-coding gene that has been linked to
erythropoietic and overall hematopoietic activity in mice (Behl
et al., 2012) and receptor endocytosis in mammals (Sato et al.,
1998), which makes it a good candidate gene for further studies.

In the case of red blood cell traits, the most important
window was found on chromosome 11, starting at position 70
megabases. This window was significant for five traits. A total
of 20 annotated genes were identified in this window. Promising
candidate genes included CAPN13, a gene previously associated
to hypertension in humans (Kobayashi et al., 2014) and LCLAT1,
previously identified to control development of hematopoietic

Frontiers in Genetics | www.frontiersin.org 10 July 2020 | Volume 11 | Article 717

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00717 July 3, 2020 Time: 16:44 # 11

Chinchilla-Vargas et al. Blood-Based Traits on Beef Cattle

and endothelial lineages in mice embryos (Taylor et al., 2010).
Other interesting candidate genes for further research were
YPEL5 and SPDYA, that have been linked to cellular cycle
progression (Wang et al., 2007) and regulation of CD133 + cell
population in humans (Hosono et al., 2010).

Another genomic region with overlapping associations
across multiple traits was found at 5-6Mb on chromosome
29. This window overlapped over traits associated to blood
cells (MCV and RDW) and performance (BW). A total
of ten annotated genes and 18 unannotated genes were
found in this region, with no good candidates identified.
A set of windows located at 51-53 Mb on chromosome
15 overlapped over these same traits. As shown in the
results section, genes associated to folic acid binding (FOLR1,
FOLR2 and FOLR3). In cattle, it has been shown that folate
supplementation can reduce the occurrence of dystocia by up to
50% (Duplessis et al., 2014).

It has also been shown that folate can increase milk
production and can modify concentration of amin acids
in blood plasma (Graulet et al., 2007). In humans, it has
been shown that folate plays a crucial role in nucleic acid
synthesis, cell division, regulation of gene expression, amino
acid metabolism and neurotransmitter synthesis during
fetal development (Djukic, 2007). More importantly, during
pregnancy folate intake is crucial for rapid cell proliferation
and tissue growth in the uterus and placenta, growth of
the fetus and expansion of maternal blood flow (Rondo
and Tomkins, 2000) to the point that in humans, folate
requirements are 5 to 10 fold greater during pregnancy
(Antony, 2007). Although in humans, significantly increased
birth weight has been observed when women take folic
acid supplementation during gestation (Fekete et al., 2012),
no effect has been found in cattle (Girard et al., 1995).
In cattle, there is evidence of folic acid supplementation
leading to increased milk production over a complete
lactation from cows on their second lactation or greater
(Girard et al., 1995) which could be translated into greater
weaning weights in calves from cows with optimum folate
intake. There is a link between folate and blood-based
traits. Previous research has shown that folate is required
for proliferation of erythroblasts during differentiation (Koury
and Ponka, 2004). Moreover, folate and iron deficiency
cause erythroblast apoptosis through the impairment of
protein and DNA (Blount and Ames, 1995). Although the
candidate genes identified in the different windows have
been liked to biological processes related to blood-based
traits it is important to keep in mind that these genes
have not yet been studied in cattle, and therefore further
research in beef cattle is needed to elucidate their roles
and their potential use as a tool for breeders to accelerate
genetic improvement.

CONCLUSION

The present study represents one of the first efforts to identify
the genetic basis of blood-based traits in beef cattle. The results

presented in this study allow us to conclude that: (1) blood-
based traits have weak phenotypic correlations, but strong genetic
correlations among themselves compared to growth traits. (2)
Blood-based traits have moderate to high heritability. (3) There is
evidence of an important overlap between genetic control among
similar blood-based traits and between some blood-based traits
and growth traits. Additionally, multiple windows overlapping
over blood-based traits and growth traits and candidate genes
that show a biological function that ties these traits together
were identified.

The present study also provides evidence that most blood-
based traits are heritable, with some exhibiting correlations
with growth traits.

Further studies are warranted to determine if CBCs may act as
indicators of growth performance under different environments
as a means of capturing relationships with immune status,
nutrition and environment under different production settings.
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