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Stomach adenocarcinoma (STAD) is one of the most common malignant digestive tumors. Metabolic reprogramming is an
essential feature of tumorigenesis.%e roles of metabolic reprogramming in STAD patients were investigated to explore the tumor
immune microenvironment (TME) and potential therapeutic strategies. STAD samples’ transcriptomic and clinical data were
collected from%e CancerGenome Atlas (TCGA) set and the GSE84437 set.%e signature based on the metabolism-related genes
(MRGs) was built using the Cox regression model to predict prognosis in STAD. Notably, this MRG-based signature (MRGS)
accurately predicted STAD patients’ clinical survival in multiple datasets and could serve as an indicator independently. STAD
patients with high scores on the MRGS were eligible for generating a type I/II interferon (IFN) response, according to a complete
examination of the link between the MRGS and TME. Tumor Immune Dysfunction and Exclusion (TIDE) and immuno-
phenoscore (IPS) analyses revealed that STAD patients with different MRGS scores had different reactions to immunotherapy.
Consequently, assessing the pattern of these MRGs increases the understanding of TME features in STAD, hence directing the
development of successful immunotherapy regimens.

1. Introduction

Stomach adenocarcinoma (STAD) is among the most
common digestive malignant tumors. In 2018, approxi-
mately one million new cases were reported worldwide, the
bulk of which was identified at an advanced stage locally
[1, 2].%e prevalence and development of STAD continue to
be poorly understood. Existing treatments for STAD mainly
include surgery and chemotherapy. After surgery, the rate of
local recurrence or distant metastasis varies from 40 to 70
percent, and the adverse effects of radiation and chemo-
therapy are quickly visible [3]. Consequently, the prevention
of STAD has become a pressing public health concern. It is
vital to explore the underlying mechanism of STAD to
discover novel therapeutic and diagnostic targets that might
help to raise the patient survival rate.

Cancers are characterized by metabolic reprogram-
ming, which may contribute to carcinogenesis [4–6]. A
large number of studies have pointed out that metabolic
phenotypes can be used to image tumors and offer prog-
nostic information, as well as treat malignancies [7].
Targeting certain metabolic pathways as a therapy tech-
nique may be beneficial in cancers. For instance, 5-fluo-
rouracil (5-FU) possesses anticancer properties [8].
Previous studies have revealed that the progression of
STAD is strongly associated with many different metabolic
pathways [9, 10]. In addition, energy metabolism could be a
therapeutic focus for STAD patients in the clinic. None-
theless, the expression patterns of metabolism-related
genes (MRGs) involved in metabolic reprogramming re-
main unclear, as well as their clinical values in STAD.
Consequently, systematically evaluating the expression
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features and clinical importance of those MRGs may be
essential for the treatment of patients with STAD.

In this investigation, an MRG-based signature (MRGS)
was generated and adequately confirmed by evaluating the
transcriptome and clinical data of STAD samples in depth.
%is research next investigated the connection between the
MRGS and other clinicopathologic variables and developed
a predictive nomogram. Intriguingly, subsequent investi-
gation revealed that MRGS was strongly linked to immune-
related pathways. Consequently, we investigated the asso-
ciations between the MRGS and tumor immune microen-
vironment (TME), checkpoint genes, as well as response to
immunotherapy and sensitivity to chemotherapeutic
treatment.

2. Methods

2.1. Data Collection. %e STAD cohort from %e Cancer
Genome Atlas (TCGA) data portal containing 350 samples
and the GSE84437 cohort containing 433 samples were se-
lected for collecting information on STAD samples. %ere-
after, the whole TCGA-STAD set was subdivided into a
training set and an internal testing set in random order.
Besides, we used the whole TCGA-STAD set as another
internal validation set, and the GSE84437 set as an external
validation set. A total of 1916 specific MRGs that are involved
in all the metabolism-associated pathways were downloaded
from the c2.cp.kegg.v7.2.symbols.gmt at the GSEA website
[11], as shown in Table S1. Besides, data from immuno-
therapeutic cohorts were obtained from the IMvigor210
(http://research-pub.Gene.com/IMvigor210CoreBiologies)
[12].

2.2. Identification of CandidateMRGs andConstruction of the
MRGS. Differentially expressed MRGs were identified
between STAD and noncarcinoma samples from the
entire TCGA set by using the “limma” package [13]. %en,
the candidate MRGs were subsequently extracted from all
the differentially expressed ones. %e associations of
candidate MRGs with the overall survival (OS) of STAD
patients from the training set were analyzed using uni-
variate Cox regression. %e most optimal genes were
selected via using the LASSO regression through a package
named “glmnet” [14]. %ereafter, the multivariate Cox
regression based on the optimal genes was used for
confirming hub genes to construct the MRGS. Based on
the median one of all MRGS scores in the training set,
STAD patients in all sets were separately subdivided into
the low- or high-risk group.

2.3. Evaluation of the Constructed Model’s and Nomogram’s
Prognostic Value. %e “survival” R package plotted the
Kaplan–Meier analysis of all STAD groups [15]. In addi-
tion, the plotted ROC curves were to determine the sig-
nature’s specificity, as well as its sensitivity [16]. %e entire
TCGA cohort was utilized for analyzing the independence
of the MRGS along with several common clinical variables.
Combining these clinical variables with the constructed

MRGS, we built a prognostic nomogram to help to assess
the survival probability of STAD patients quantitatively
[17].

2.4. Analysis of Immune Cell Infiltration Level and Enriched
Pathways. To analyze the correlation between the built
MRGS and immune cell infiltration, we estimated the 22
immune cell subtype infiltration levels by CIBERSORT [18].
GSVA analysis was carried out on the gene expression
through the package named “GSVA” to explore the bio-
logical process distinction.

2.5. Immunotherapy Efficacy Based on theMRGS. %e tumor
mutation burden (TMB) was calculated for each sample
from the entire TCGA set. %e checkpoint gene level was
analyzed for confirming their relationship with the clinical
OS of patients with STAD. Tumor Immune Dysfunction and
Exclusion (TIDE, http://tide.dfci.harvard.edu/) [19] is
designed to examine immune evasion mechanisms. It serves
as an additional reliable biomarker that is usually used to
predict immunotherapy efficacy. Greater TIDE scores sug-
gest that tumor cells are more likely to elude immuno-
surveillance, hence implying a lower rate of immunotherapy
response. %e immunophenogram (IPS) of %e Cancer
Immunome Atlas (TCIA, https://home.at/) database was
also used to assess the response of STAD patients to immune
checkpoint inhibitors (ICIs) [20]. A higher IPS score fre-
quently implies a more favorable immunotherapy response.

2.6. Chemotherapy Sensitivity Analysis. CellMiner [21]
(https://discover.nci.nih.gov/cellminer) was used to access
the NCI-60 database, which comprises a total of 60 cancer
cell lines derived from various kinds of malignancies. We
carried out Pearson correlation analyses to determine the
relationship between the MRGS values and sensitivity to
chemotherapeutic drugs.

2.7. Statistical Analysis. In this study, statistical analysis was
carried out using the SPSS and R software (version 3.5.1).
%e “survival” package was used for the Kaplan–Meier
analyses, as well as the univariate and multivariate Cox
regression analyses. And, the risk ratios and accompanying
confidence intervals of 95 percent were gathered. For the in
vitro experiments, independent sample t-tests were per-
formed for the comparisons between groups. P values less
than 0.05 were considered statistically significant.

3. Results

3.1. Identification of Hub MRGs and Construction of the
MRGS. By comparing the genes’ expression levels in the
STAD and normal samples, we obtained 676 differentially
expressed MRGs (Figure 1(a)). Meanwhile, we acquired 140
MRGs associated with the OS of STAD samples via the uni-
variate analysis. %en, a total of 47 MRGs were extracted
(Figure 1(b)). To explore the MRGs that were closely related to
the STAD prognosis in the clinic, we carried out a univariate
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analysis based on the 47 chosen genes and found 18 related
genes. %e most appropriate tuning parameter from the
LASSO Cox analysis was chosen later for preventing the
overfitting based on the 18 ones (Figures 2(c) and 2(d)). Finally,
a total of 9MRGs were selected as hub ones, including ABCA1,
CD36, FAAH, NR1D1, KYNU, CACNB3, AKAP5, UCK2, and
UPP1. Afterward, the MRGS was established according to the
expression of these 9 hub MRGs along with their multivariate
Cox regression coefficients. %e formula is as followed:
score� (0.2684×ABCA1 level) + (0.2350×CD36 level) +
(−0.3043× FAAH level) + (0.3981×NR1D1 level)
+ (0.1651×KYNU level) + (0.2927×CACNB3 level)
+ (−1.2282×AKAP5 level) + (-0.5845×UCK2 level) + (0.2684
×UPP1 level). Moreover, the 9 prognostic MRGs were cor-
related with each other (Figure 1(e)).

3.2. Valuation of the Predicting Ability of MRGS. Based on
the MRGS, we calculated each STAD sample’s score and
divided all STAD samples into the low-risk group or the high-
risk group (Figure 2). Figures 2(a)–2(d) show that STAD
samples in the low-risk group owned favorable survival when
they were compared with those in the high-risk group in
multiple sets. %e risk scores and survival status of STAD
samples from the multiple sets are shown in Figures 2(e)–
2(h). %e expression of hub MRGs in the proposed signature
was similar in multiple sets (Figures 2(i)–2(l)). Furthermore,
ROC analyses were carried out to evaluate the risk model’s
prediction (Figures 2(m)–2(p)). %e values of the area under
the ROC curves performed in the TCGA training set were

0.659, 0.758, and 0.783, separately for 1-, 3-, and 5- year
survival, suggesting that MRGS had a good performance in
monitoring survival. Meanwhile, MRGS had highly accurate
predictions for the survival of STAD samples in the TCGA
testing set, the whole TCGA set, and the GSE84437 set.

3.3. Association of theMRGS and Clinical Variables in STAD.
We carried out the univariate and multivariate Cox re-
gression analyses on the MRGS and common clinical fea-
tures in the entire TCGA-STAD cohort. Figures 3(a) and
3(b) demonstrate that the MRGS was significantly associated
with the OS of STAD patients, suggesting that the generated
MRGS may serve as a factor independently predicting the
clinical prognosis. Noteworthily, age and tumor stage were
also significantly correlated with the OS (Figures 3(a) and
3(b)). In addition, we developed a clinical nomogram based
on the MRGS and multiple chosen clinical factors to ob-
jectively estimate the survival likelihood of individuals
(Figure 3(c)). In general, the calibration curves of our
generated prognostic nomogram were very congruent with
the anticipated and observed survival rate in the whole
TCGA cohort (Figure 3(d)). In addition, the AUC of the
nomogramwas greater than that of other clinical variables in
the ROC curve (Figure 3(e)), demonstrating the nomo-
gram’s superior performance.

Subgroup analysis was carried out to see whether the built
signature still had independent predictive value for the most
important clinical characteristics. Figure 4 demonstrate that
the MRGS retained its predictive power in subgroups defined
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Figure 1: Establishment of MRGS. (a) Volcano plot regarding MRGS that differentially expressed between STAD samples and normal
samples. (b) %e intersections of the differentially expressed MRGS and the MRGS with prognostic value for STAD. (c) LASSO Cox
regression analysis for STAD samples based on the MRGS in the intersections. (d) Coefficient profiles from the LASSO Cox analysis.
(e) Correlation network of the nine candidates MRGS.
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by age (age > 65 or ≤ 65, Figures 4(a) and 4(b)), gender
(female or male, Figures 4(c) and 4(d)), tumor grade (G1-
2 +G3, Figures 4(e) and 4(f)), tumor stage (SI-II + SIII-IV,
Figures 4(g) and 4(h)), T stage (T1-2 +T3-4, Figures 4(i) and
4(j)), M stage (M0+M1, Figures 4(k) and 4(l)), and N stage
(N0-1+N2-3, Figures 4(m) and 4(n)). In subgroups with
distinct clinical features, the OS duration of low-risk samples
was manifestly longer than that of high-risk samples.

3.4. Interrelation of the MRGS, Immune Cell Infiltration,
TME, and TMB. To completely characterize the immuno-
logical aspects of STAD, CIBERSORT was carried out to
examine the infiltration of immune cell subtypes in the
whole TCGA-STAD set. %e relative abundance of activated

memory CD4 T cells was significantly negatively related to
the score, and so did that of the follicular helper T cells
(Figure 5(a)), whereas the relative abundance of M2 mac-
rophages and resting mast cells were significantly positively
correlated with the score (Figure 5(a)). In addition, type I
and type II interferon (IFN) responses were both activated in
the group with high risks, suggesting that immunosup-
pressed STAD patients might react to immunotherapy
(Figure 5(b)). To further investigate the biological behaviors,
a GSVA enrichment analysis was undertaken. Interestingly,
many metabolism pathways, including selenoamino acid
metabolism, glyoxylate and dicarboxylate metabolism, and
cysteine and methionine metabolism, were significantly
enriched in the low score group (Figure S1).
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Figure 2: Evaluation of MRGS in predicting the survival of STAD samples from different cohorts. Distribution of KM survival (a-d), risk
scores and survival status (e-h), hubMRGs’ expression levels in different STAD groups (i-l), and time-dependent ROC analyses (m-p) on the
TCGA training set (a, e, I, and m), TCGA testing set (b, f, j, and n), entire TCGA cohort (c, g, k, and o), and GSE84437 cohort (d, h, l, and p).
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Figure 3: Continued.
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On the basis of MRGS scores and the hierarchical
clustering algorithm, all STAD samples from the entire
TCGA set were neatly divided into two groups (Figure 5(c)).
%e features of the TME between the two STAD groups were
discovered based on the findings of ESTIMATE. We dis-
covered that the groups with the higher MRGS scores had
higher estimate score and stromal score levels than the other
group, which had lower values (Figure 5(d)). %e mutation
data were examined using the maftool package, and the
mutations were stratified according to the variant effect
predictor. Figures 6(a) and 6(b) depict the top 20 driver
genes with the greatest frequency of modification between
the high- and low-risk STAD groups. %e difference in TMB
between groups was also shown to be statistically significant
(Figure 6(c)). Clearly, a high TMB was connected with a
healthy clinical OS (Figure 6(d)). We investigated if the
combination of theMRGS and TMBmay be a more accurate
prognostic biomarker. %erefore, we used MRGS and TMB
to stratify all STAD samples from the entire TCGA set into
four distinct groups. As seen in Figure 6(e), there were

substantial disparities between all four groups. Moreover,
the individuals with the highest TMB and lowest MRGS
scores had the greatest OS. %ese findings indicated con-
clusively that MRGS was positively associated with tumor
malignancy.

3.5. Correlation of Checkpoint Genes and theMRGS and9eir
Impact on Clinical Outcome in the Entire TCGA-STAD
Cohort. Previous research has shown the significance of
immune checkpoint genes in regulating immune infil-
tration [22–24]. To further study the complicated interplay
between immune checkpoints and the established MRGS,
we evaluated their expression patterns across MRGS-based
groups. As shown in Figures 7(a)–7(c), STAD patients with
higher MRGS scores expressed lower levels of three chosen
immune checkpoint genes (PD-1, CTLA4, and LAG3) in
the entire TCGA set. Meanwhile, the expression levels of
three chosen checkpoint genes all showed negative cor-
relations to the MRGS scores (Figures 7(d)–7(f )). %en, we
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Figure 3: %e dependence of the MRGS for prognostic prediction in STAD. (a) Results of the univariate Cox analyses of the MRGS and
multiple clinical features in patients from the entire TCGA-STAD set. (b) Results of the further multivariate Cox analyses. (c) Nomogram
predicting the OS in the entire TCGA cohort. (d) Calibration curves of nomogram on the consistency. (e) ROC analysis of the constructed
clinical nomogram by comparing it with other chosen clinical variables.
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Figure 4: Stratified analysis based on the built model and clinical stratifications. (a-m) Longer survival time was obviously observed in
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Journal of Oncology 7



analyzed MRGS in conjunction with immune checkpoint
expression to determine if MRGS affects the OS of STAD
patients with comparable checkpoint genes’ expression.
Survival analysis was carried out on four groups that were
stratified by MRGS and immune checkpoint gene ex-
pression. Figure 7(g) illustrate that those individuals with
higher PD-1 expression levels and lower MRGS scores had
a longer OS than those with higher PD-1 expression levels
and higher MRGS scores. In individuals with low PD-1
expression levels, a lower risk score indicated a survival
rate that was significantly improved. In the entire TCGA-
STAD cohort, similar survival trends were identified
across the four STAD patient groups stratified by the
MRGS scores and CTLA4 (Figure 7(h)) or LAG3
(Figure 7(i)) expression.

3.6. Predictive Potential of the MRGS in Immunotherapy
Response and Drug Sensitivity. %ere is mounting evidence
that ICIs increase STAD survival, although responses vary.

%erefore, precise prognostic biomarkers are urgently re-
quired. In light of the link between the MRGS and immune
infiltration, as well as the checkpoint gene levels, we in-
vestigated the predictive ability of MRGS by analyzing its
correlation with known immunotherapy predictors, such
as TIDE [25, 26] and IPS [27]. High-risk STAD patients
tended to attain greater TIDE scores in the TCGA cohort,
suggesting that those in the group with low scores may
benefit from ICIs in the clinic (Figure 8(a)). IPS serves as a
superior predictor for the response to anti-CTLA-4 anti-
bodies and anti-PD-1 antibodies. Although our results
showed that there was no difference in IPS between the two
groups shown in Figures 8(b) and 8(d), the IPS scores in the
low-risk STAD group in Figures 8(c) and 8(e) were sig-
nificantly elevated, suggesting that these patients may have
better responses to ICIs. In addition, given the immuno-
therapy response prediction capacity of the MRGS, we ran
Kaplan–Meier analyses on the immunotherapy cohort
(IMvigor210) to evaluate the predictive significance of the
immunotherapeutic OS. %e anti-PD-L1 clinical response
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in the IMvigor210 cohort was classified as partial response
(PR), complete response (CR), progressing disease (PD),
and stable disease (SD). As anticipated, low scores were
found to have a favorable trend in the immunotherapeutic
OS (Figure 8(f )). %e MRGS also had meaningful differ-
ences between the CR/PR and SD/PD groups from the
IMvigor210 cohort (Figure 8(g)). All the results above
showed that the constructed MRGS performs well in
predicting the response to immunotherapy for STAD
patients.

Moreover, we investigated the expression of prognostic
MRGs in the proposed signature in cancer cells from the
NCI-60 database. %e results in Figure 9 showed that the
majority of these prognostic MRGs were closely associated
with sensitivity to some chemotherapy drugs. For example,
increased expression of AKAP5, ABCA1, UCK2, and
CACNB3 was obviously related to the increased drug re-
sistance to lapatinib, afatinib, osimertinib, dacomitinib,
neratinib, ibrutinib, etc. On the contrary, elevated ex-
pression levels of UPP1, CACNB3, and AKAP5 were
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significantly related to the increased drug sensitivity to
fulvestrant, dexrazoxane, actinomycin D, selumetinib,
pipamperone, etc.

4. Discussion

Extensive research shows that cells in cancers usually exhibit
abnormal metabolic characteristics [28]. Metabolic
reprogramming is a crucial characteristic of cancer genesis.
Changes in cellular metabolic activity are a characteristic of
cancer [29]. One of the physiological hallmarks of a human
malignant tumor is an elevated glycolytic metabolism, for

instance [30]. Several studies have shown that metabolic
markers like cysteine metabolism, nucleotide metabolism,
and 2-hydroxyglutarate may be used to categorize and treat
gliomas [31, 32]. Given the above, metabolic therapy is a
viable therapeutic option for STAD.

Here, we analyzed the MRGs’ levels, together with their
prognostic value based on the transcriptomic data of patients
with STAD. As a result, 9 identified MRGs were adopted for
building the MRGS. %e mRNA level of NR1D1 was upre-
gulated in STAD tissues when compared with normal tissues
[33]. %e prognosis of STAD patients likely benefited from
lower expression levels of KYNU [34]. Low expression of
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AKAP5 may be a potential molecular marker for predicting
poor prognosis of non-mucin-producing stomach adeno-
carcinoma (NMSA) via regulating cholesterol homeostasis,
estrogen response, glycolysis, notch signaling, and adipo-
genesis pathways [35]. %e malignant cell marker, UPP1, was
selected to generate a signature for STAD patients [36]. Al-
though other MRGs in the proposed signature have not been

investigated in STAD previously, they have been confirmed to
influence the progression of cancers [37–41]. According to the
median MRGS value of all scores, we grouped the STAD
samples from different sets into low-risk or high-risk groups.
%e findings demonstrated that STAD patients with lower
model scores had superior survival to those with higher
MRGS scores. %e ROC curve analysis confirmed that the
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Figure 9: %e relationship between MRGs’ expression and drug sensitivity.
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MRGS had a high potential for predicting survival. Moreover,
the univariate or multivariate analysis based on MRGS and
other clinical variables confirmed the independence of the
MRGS’s prognostic value, while the OS time of STAD samples
varied significantly in different clinical feature subgroups.%e
nomogramwe built based on theMRGS and common clinical
variables could better predict the survival of STAD patients
since its AUC value was a little higher.

Numerous landmark studies have pointed out that
metabolic changes exert vital roles in immune regulation
[42, 43]. %e aberrant metabolism in cancers may have a
substantial effect on TME, which is often acidic, hypoxic,
and lacks nutrients necessary by immunological cells [44]. In
addition, aerobic glycolysis inside cancer cells shapes the
immune system by upregulating cytokine production and
inhibiting the development of monocytes into dendritic cells
[45]. Meanwhile, immune cells’ metabolism is a significant
factor in determining their survivability and roles [46].
Consequently, metabolism is strongly tied to immunity. %e
creation of a prognostic signature related to metabolismmay
aid a lot in forecasting the status of immune responses. To
better understand the relationship between the built MRGS
and immunity, we compared TME between groups and
found several immune cell infiltration levels were obviously
elevated in the STAD group with low risk. %ese findings
indicate that metabolically active tumor cells in STAD
formed a microenvironment that was harmful to immune
cells, consistent with previous reports [47]. %e immune
response against cancer is an important component of the
complicated tumor immunophenotype that underlies the
TME [48]. By modifying the immune cell state inside TME,
the aberrant metabolism may contribute to a different
outcome. %is is consistent with the finding that tailored
metabolism may facilitate the regulation of antitumor im-
mune response.

Interestingly, our data showed that the main indicators
of exhausted T cells were abnormally elevated in STAD
samples with higher MRGS scores, suggesting T cells may
have become more hypofunctional and hyporesponsive as
metabolism activates in cancer cells. %is result may explain
why elderly persons have a lower immunotherapy response
rate. In order to confirm our findings, we also collected
immunotherapy data from TICA. STAD patients with lower
MRGS scores may have a stronger immunotherapy re-
sponse, as evidenced by the findings. Moreover, we collected
immunotherapy information from the IMvigor210 set and
further confirmed the ability of the MRGS in predicting the
STAD patients’ immunotherapy responses.

%e current work has a number of strengths. %is is the
first signature that is created on the basis of metabolic
reprogramming that may represent the prognosis and TME,
immunotherapy of STAD patients. Second, different data
sets were used in order to validate and assess the predictive
efficacy of our created signature. %irdly, we determined the
possible molecule that matched our signature. However,
more prospective cohort studies are required to evaluate the
therapeutic utility of this predictive signature. In the
meanwhile, the possible chemical requires additional
investigation.

5. Conclusion

In conclusion, we performed a complete examination of the
expression of MRGs in STAD patients and then developed
an MRGS with the ability to predict clinical outcomes and
immunological microenvironment. As a useful tool, this
built signature may aid in searching for possible combi-
nation immunotherapy drugs and offer a therapeutic ap-
proach for the treatment of STAD patients.
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