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Data Processing of Product Ion Spectra: 
Methods to Control False Discovery Rate 

in Compound Search Results for 
Untargeted Metabolomics
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Several database search methods have been employed in untargeted metabolomics utilizing high-resolution mass 
spectrometry to comprehensively annotate acquired product ion spectra. Recent technical advancements in in 
silico analyses have facilitated the sorting of the degree of coincidence between a query product ion spectrum, and 
the molecular structures in the database. However, certain search results may be false positives, necessitating a 
method for controlling the false discovery rate (FDR). This study proposes 4 simple methods for controlling the 
FDR in compound search results. Instead of preparing a decoy compound database, a decoy spectral dataset was 
created from the measured product-ion spectral dataset (target). Target and decoy product ion spectra were 
searched against an identical compound database to obtain target and decoy hits. FDR was estimated based on the 
number of target and decoy hits. In this study, 3 decoy generation methods, polarity switching, mirroring, and 
spectral sampling, were compared. Additionally, the second-rank method was examined using second-ranked 
hits in the target search results as decoy hits. The performances of these 4 methods were evaluated by annotating 
product ion spectra from the MassBank database using the SIRIUS 5 CSI:FingerID scoring method. The results 
indicate that the FDRs estimated using the second-rank method were the closest to the true FDR of 0.05. Using 
this method, a compound search was performed on 4 human metabolomic data-dependent acquisition datasets 
with an FDR of 0.05. The FDR-controlled compound search successfully identified several compounds not pres-
ent in the Human Metabolome Database.
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1.  INTRODUCTION
In untargeted metabolomics utilizing high-resolution mass 

spectrometry, researchers employ several database search 
methods to comprehensively annotate acquired product ion 
spectra.1) Molecular formula searches are performed using 
accurate m/z values, isotopic abundance patterns of the 
precursor ions, and several empirical rules of molecular for-
mula.2,3) A spectral similarity search approach was employed 
to estimate the compound structure using spectral databases 
such as MassBank4) (Table 1). Recent technical advancements 
in in silico analyses have facilitated the sorting of the degree of 
coincidence between a query product ion spectrum, and the 
molecular structures in the database. Several software pack-
ages that implement these methods, including MS-FINDER,5) 
SIRIUS,6,7) MetFrag,8,9) and CFM-ID,10,11) have been developed 

in recent years (see Table 1). These software packages gener-
ated a ranked list of compound scores for each queried prod-
uct ion spectrum. In this study, the top-ranked compound 
in the list is referred to as a “hit.” A compound search was 
performed for each product ion spectrum in the metabolomic 
dataset. Consequently, because some hits may be false posi-
tives, a score threshold must be set to control the false discov-
ery rate (FDR) within an acceptable range.12)

In proteomics, the FDR of the peptide identification results 
is estimated using the target–decoy method (Fig. 1A).13,14) 
For peptide identification, crude protein extract was digested 
with trypsin. The sample was used for liquid chromatography- 
tandem mass spectrometry (LC-MS/MS) analysis in the 
data-dependent acquisition (DDA) mode to acquire prod-
uct ion spectra from trypsin-digested peptides comprehen-
sively. Peptide identification was accomplished by searching 
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each product ion spectrum against the target peptide data-
base15) (Fig. 1A). The target database comprised all possible 
trypsin-digested peptides derived from all genome-encoded 
protein sequences. The peptides were identified from the top-
ranked peptides in the search results. To control FDR, pep-
tide identification is also performed using the decoy peptide 
database (Fig. 1A). The decoy database included the reverse 
sequences of all peptides in the target database. Because all hits 
against the decoy database were false positives, the FDR at a 
particular score-threshold level was estimated as FDRs = D/T 
or FDRc = 2D/(D + T), where T and D represent the number 
of hits against the target and decoy databases, respectively.16) 
A suitable score threshold was employed to control the FDR 
levels, such as FDR = 0.05.

The target–decoy method is based on the availability of a 
complete list of possible trypsin-digested peptides and the 

generation of a decoy database with characteristics similar 
to those of the target database. However, no complete list 
of human metabolites is available. Moreover, no established 
method exists to create a decoy compound database for 
metabolomics. For molecular formula searches, methods 
employing theoretical models have been reported as alterna-
tives to the target–decoy method.17) Several methods for cre-
ating decoy spectral databases have been reported for spectral 
similarity searches, including fragmentation tree-based,18) ion 
entropy and accurate entropy-based,19) and violation of the 
octet rule of chemistry-based20) methods (Table 1). A Gauss-
ian mixture model-based framework for estimating FDR was 
also proposed for gas chromatography-electron impact-MS 
data.21) For compound searches, SIRIUS 5 recently imple-
mented a new scoring method called the confidence score, 
which proposes that hits with 0.64 or higher correspond to 

Table 1.  Database searching methods for structural annotation of product ion spectra.

Molecular formula search Similar spectra search Compound search

Query m/z value and isotope abundance 
of precursor ion

Product ion spectrum m/z value of precursor ion and 
product ion spectrum

Database or methodology Compound database or 7 golden 
rules2)

Measured mass spectra database Compound database

Output A list of molecular formula Ranking of compounds based on 
spectra similarity score

Ranking of compounds based on 
coincidence score

Webtool or Software ChemCalc3) MassBank4) MS-FINDER5), SIRIUS6,7), 
MetFrag8,9), CFM-ID10,11)

Method to estimate FDR Model-based17) Target–decoy approach18–20) This study

FDR, false discovery rate.

A  

D  

F  

E  

B  C  

Fig. 1. � Methods to estimate FDR in product ion spectra-based peptide and compound identification results. (A) Target–decoy 
method used for peptide identification. (B) Pseudo-target–decoy method for compound identification was developed in 
this study. (C) Second-rank method for compound identification was developed in this study. For generating decoy MS2 
spectra, 3 methods to generate decoy MS2 spectra were considered, including (D) polarity-switching, (E) mirroring 
method, and (F) spectral-sampling methods. FDR, false discovery rate. 
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an FDR of 0.1.22) Because the versatility of these methods 
remains unknown, various other methodologies must be 
investigated to estimate the FDR in compound search results.

In this study, 4 approximation methods were proposed 
to estimate the FDR in compound search results. Three of 
these methods are based on the generation of decoy query 
MS2 spectra (Fig. 1B). A method using second-rank scores 
was also investigated (Fig. 1C). First, the performances of the 
4 methods were validated using the measured product ion 
spectra from MassBank. These 4 methods were applied to 
human metabolome DDA datasets for metabolite annotation. 
Based on the FDR-controlled metabolite annotation results, 
metabolites not included in the human metabolome database 
(HMDB) were investigated.

2.  EXPERIMENTAL PROCEDURES
2.1.  Software for compound search and data 
processing

SIRIUS 5 (version 5.8.5)6,7) was downloaded from https://
bioinformatik.uni-jena.de/software/sirius/. MSFINDER (ver-
sion 3.61)5) was downloaded from https://github.com/system-
somicslab/MsdialWorkbench/releases. MetFrag CL (version 
2.4.5)8,9) was downloaded from https://ipb-halle.github.io/
MetFrag. Compound search tasks were performed using the 
settings shown in Data S1. Three compound databases, 
including the yeast metabolome database (YMDB, 16,042 
compounds, https://www.ymdb.ca/),23) HMDB 220,945 com-
pounds, https://www.hmdb.ca),24) and Biodatabase were used. 
The Biodatabase is an edited database of biological com-
pounds available at SIRIUS 5.6,7) Although the detailed num-
ber is unclear, the Biodatabase includes biological compounds 
derived from HMBD, PubChem, and other compound data-
bases. This study used the Biodatabase as a larger database 
because the number of compounds appears to be considerably 
larger than that in the HMDB. All data pre- and postprocess-
ing tasks were performed using an in-house Python script.

2.2.  Performance test using MassBank records
All MassBank records were downloaded from the Mass-

Bank Consortium GitHub page (https://github.com/Mass-
Bank/; downloaded on 15/4/2023). First, 10,711 spectra were 
selected by the following criteria: AC$MASS_SPECTROME-
TRY: MS_TYPE = MS2, AC$INSTRUMENT_TYPE includes 
TOF or FT, AC$MASS_SPECTROMETRY: IONIZATION 
= ESI, AC$MASS_SPECTROMETRY: FRAGMENTATION_
MODE = CID or no description, MS$FOCUSED_ION: 
PRECURSOR_TYPE = [M+H]+ or [M–H]–, CH$COM-
POUND_CLASS does not include “Environmental Stan-
dard,” “Surfactant,” “Non-natural,” and “Non-Natural,” and 
MS$FOCUSED_ION: PRECURSOR_M/Z <850, and the 
number of product ions ≥3. The criteria were employed to 
use the default settings for the software packages. Second, 
the selected records are divided into 4 datasets. From the 574 
compounds, several spectra were commonly acquired in both 
the positive and negative ion modes and designated as the 
CommonPos (3388 spectra) and CommonNeg (3100 spec-
tra) datasets, respectively. The OthersPos (2648 spectra) and 
OthersNeg (1575 spectra) datasets comprised the remaining 
positive and negative ion mode data, respectively.

The 3 software packages used in this study output a 
ranked list of compound scores for each query product 

ion spectrum. In this study, the top-ranked compound on 
the list was referred to as a hit. Even in the case of multi-
ple top-ranked compounds with the same score, they were 
considered hits. When one of the top-ranked compounds 
was correct, the hit was considered a true-positive hit. To 
calculate the FDR for the pseudo-target–decoy approach, the 
number of hits above a given threshold level was determined 
for the search results from the target (T) and decoy (D) data-
sets. Two methods were used to calculate FDRs: FDRs = D/T 
and FDRc = 2D/(D + T).16) In the second-rank method, the 
second-highest score in the ranked list of compound scores 
was used as the second-ranked score. The FDR was esti-
mated using FDR2nd = D/T, where T and D represent the 
number of hits above a given threshold level for the first and  
second-ranked scores.

2.3.  Generation of decoy spectra
A decoy spectrum was generated from each measured 

(target) spectrum in the DDA dataset to ensure that the total 
number of decoy spectra matched the number of target spec-
tra. The product ion spectrum, S, was defined as a set of m/z 
and intensity values of the product ions.

S = {(m1, int1), (m2, int2),…, (mn, intn)},

Here, mi, inti, and n represent the m/z and intensity values 
of i-th product ion and the total number of product ions, 
respectively. In this study, all the product ions were consid-
ered singly charged ions.

For the polarity-switching method (Fig. 1D), a decoy prod-
uct ion spectrum, S′, was generated from S by the following 
method:

S′ = {(m1 + d, int1), (m2+ d, int2), …, (mn+ d, intn)},

Here, values of d are 0.001097 and −0.001097 for the 
positive and negative ion modes, respectively. The value of d 
corresponds to the mass of 2 electrons (2e−). The polarity of 
S′ was opposite from that of S.

For the mirroring method (Fig. 1E), a decoy product ion 
spectrum, S′ was generated as follows:

S′ = {(mprec−m1 + p, int1), (mprec−m2+ p, int2), …,  
(mprec−mn + p, intn)}

Here, mprec represents the m/z value of the precursor ion. 
The values of p (mass of proton) are 1.007276 and −1.007276 
for the positive and negative ion modes, respectively. If mi ≥ 
mprec, the value mi was used instead of mprec−mi + p.

The spectral sampling was based on a previously reported 
method18) (Fig. 1F). A blank decoy product ion spectrum,  
S′ = {}, was generated. First, the m/z value of the product ion 
(m′1) was randomly sampled from a subset of product ion 
spectra with an identical precursor m/z value in the DDA 
dataset and added to S′ to generate

S′ = {(m′1, int1)}

Next, an m/z value of product ion (m′2) was randomly 
sampled from a subset of product ion spectra sharing an 
m′1 in the DDA dataset. The 2 m/z values, mj and mk, were 
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considered identical when the rounded integer values of  
mj * 200 were the same as those of mk × 200. This procedure 
is repeated until the total number of product ions reaches n.

S′ = {(m′1, int1), (m′2, int2), …, (m′n, intn)}

All decoy spectra data were produced using in-house 
Python scripts.

2.4.  Compound search and determination of 
FDR

The target and decoy queries of the CommonPos data-
sets, a sample Python script for compound searching using 
SIRIUS 5, and an Excel worksheet for FDR calculation are 
available from GitHub (https://github.com/fumiomatsuda/
FDR-estimation-in-compound-search-results). Four human 
metabolome DDA datasets were downloaded from the 
Metabolomics Workbench25) and MetaboLights reposito-
ries.26,27) Averaged spectra were generated from the product 
ion spectra of each dataset using the spectral averaging 
method described in our previous study.28) For each averaged 
product ion spectrum, averaged spectra of the corresponding 
MS1 spectra were generated using the same method. In addi-
tion to protonated or deprotonated molecules, additional ion 
forms were considered in the compound search if the corre-
sponding ions were observed in the averaged MS1 spectra. 
The datasets of the averaged spectra will be made available 
to the public in the near future from https://github.com/
Shin-MassBank/MassBank-Human.

3.  RESULTS
3.1.  Pseudo target–decoy approach using 
polarity-switching method

To facilitate the application of the target–decoy approach 
without creating a decoy compound database, an approach 
for generating decoy product ion spectra was investigated 
(Fig. 1B). In the proposed approach, a set of decoy product 
ion spectra is generated from the original product ion spectra 
in a DDA dataset (targets). The number of decoy spectra was 
identical to that of target spectra. Target and decoy product 
ion spectra were searched against an identical compound 
database to obtain target and decoy hits. FDRs were calcu-
lated from the number of target (T) and decoy (D) hits at a 
score threshold. However, the proposed approach is not ideal 
because the decoy product ion spectra do not exhibit prop-
erties identical to the target spectra. Hence, we term this the 
pseudo-target–decoy approach (Fig. 1B).

This study investigated 3 methods for generat-
ing decoy spectra from measured product ion spectra: 
polarity-switching, mirroring, and spectral sampling. First, 
the polarity-switching method was investigated (Fig. 1D). 
This method is based on that metabolomics employs both 
positive and negative ion modes for data acquisition. This 
indicated that a single-compound database can be used to 
search for both polarities. For instance, the original product 
ion spectra acquired in the positive ion mode (targets) can 
be searched against a compound database to produce target 
hits. The original product ion spectra were then regarded as 
decoy product ion spectra acquired in the negative ion mode 
by adding the mass of 2 electrons (2e−) to all m/z values. 
Decoy hits were obtained by searching the decoy product ion 

spectra against an identical compound database in negative 
ion mode (Fig. 1B).

To verify the performance of this method, this study uti-
lized a dataset of measured product ion spectra stored in the 
MassBank database. From MassBank records, this study used 
product ion spectra (MS2) obtained from the [M+H]+ and 
[M−H]− of natural products by collision-induced dissocia-
tion (CID) and high-resolution mass analyzers (the detailed 
procedure is presented in Experimental Procedures). Selected 
MassBank records were further divided into 4 datasets. The 
CommonPos (3388 spectra) and CommonNeg (3100 spectra) 
datasets include spectra commonly acquired from identical 
574 compounds in both positive and negative ion modes. 
The remaining positive and negative ion mode data were 
designated as OthersPos (2648 spectra) and OthersNeg (1575 
spectra) datasets, respectively.

First, the properties of the CommonPos and CommonNeg 
datasets were compared because these spectra were obtained 
from the same compounds. Comparison of the frequency dis-
tributions of m/z values, intensities, and numbers of product 
ions revealed that the CommonPos and CommonNeg datasets 
had similar properties, except for a slightly smaller number 
of product ions in the negative ion mode (data not shown). 
Next, compound search tasks were performed for the 3388 
spectra in the CommonPos dataset (Data S2). The compound 
search using SIRIUS 5 with the CSI:FingerID scoring method 
successfully provided a hit for 2439 query spectra (the com-
pound database was HMDB, and other search conditions 
used default values; Data S1). Each hit was checked against 
the correct answer and classified as a true- or false-positive 
hit. The true- and false-positive hits exhibited distinct score 
distributions (Fig. 2A), indicating that the score threshold for 
control FDR of 0.05 was −10.27, with 907 hits falling within 
this range. In this study, FDRmes represents the true FDR 
measured by true- and false-positive hits. Similar distributions 
were observed for the CommonNeg dataset (Fig. S1). More-
over, similar distributions were observed even when using 
a smaller compound database (YMDB) or a larger database 
(Biodatabase) (Fig. S1). These results indicated that there 
was a positive–negative symmetry in the compound search 
results using SIRIUS 5 with the CSI:FingerID scoring method. 
However, other software packages could not confirm positive–
negative symmetry and distinct distributions between true 
and false hits (Fig. S2). This is probably because of the distinct 
scoring methods employed in these software packages. There-
fore, subsequent analyses were performed using SIRIUS 5 
with the CSI:FingerID scoring method.

To test the pseudo-target–decoy approach using the 
polarity-switching method, the mass of the 2 electrons was 
added to all m/z values of the 3388 spectra in the Common-
Pos dataset to produce a decoy spectral dataset (Fig. 1D). The 
compound search in the negative ion mode using SIRIUS 5 
with the CSI:FingerID scoring method produced 2105 hits 
(Data S2), with the frequency distribution shown in Fig. 2B. 
Using the score distributions, 2 FDR indices, FDRs = D/T and 
FDRc 2D/(T + D), were calculated and compared with the 
FDRmes (Fig. 2C and 2D), where T and D indicate the number 
of hits for the target and decoy datasets, respectively. Figure 2C 
shows the relationship between the threshold levels of CSI:Fin-
gerID scores and the FDRmes, FDRs, and FDRc levels. The 
comparison showed that the estimations by FDRc were closer 
to the true FDR (FDRmes) than those by FDRs (Fig. 2C).  
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Figure 2D also shows the relationship between the FDRs and 
the score ranking of the top hits. For example, the true number 
of hit compounds for FDRmes = 0.05 was 907. By contrast, the 
numbers estimated by FDRs and FDRc were 1408 and 860, 
respectively, indicating that the estimation by FDRc was bet-
ter than that of FDRs (Fig. 2D). A similar trend was observed 
in the CommonNeg dataset (Fig. S3). Using the 4 datasets 
(CommonPos, CommonNeg, OhtersPos, and OthersNeg) and 
3 compound databases of different sizes (YMDB, HMDB, and 
BioDB), the numbers of hit compounds at FDR = 0.05 were 
estimated for all 12 combinations (Fig. 2E, Table S1). The num-
bers of hit compounds for all 12 combinations were compared 
to that of the true FDR (FDRmes) by calculating the residual 
sum of squares (RSS). The RSS levels of FDRs and FDRc were 
5.73 × 106 and 0.90 × 106, confirming better performance of 
FDRc. Moreover, the results showed that FDRc and FDRs 
estimated using the polarity-switching method often underes-
timated the FDR in certain cases (Fig. 2E, Table S1).

3.2. Pseudo-target–decoy approach using 
mirroring and spectral-sampling methods

Next, mirroring and spectral sampling methods were used 
to generate decoy spectra. In the mirroring method, a decoy 

spectrum is generated by horizontally flipping the target 
spectrum (Fig. 1E). Spectral sampling was used to generate 
decoy spectral databases for spectral similarity search.18) The 
product ions were randomly sampled from a set of target 
spectra sharing identical precursors and product ions (Fig. 
1F; See Experimental Procedures for details).

Using the decoy spectra generated by the mirroring and 
spectra-sampling methods, FDRs and FDRc levels were 
determined for the CommonPos dataset using the SIRIUS 5 
CSI:FingerID scoring method (Fig. 3, Table S1). For the mir-
roring method, the results showed that the estimation by FDRc 
was a better approximation at FDR = 0.05 than that of FDRs 
(Fig. 3A and 3B). For instance, the number of hits estimated 
by FDRc at FDR = 0.05 was 860, similar to the number of hits 
(907) determined by the true FDR (FDRmes). However, the 
mirroring method significantly overestimated the FDR levels 
in the low-score region (Fig. 3A). The numbers of hit com-
pounds at FDR = 0.05 were compared among all 12 combina-
tions (Fig. 3C, Table S1). The results showed that FDRc always 
produced a more conservative FDR estimation than the FDRs. 
Moreover, the estimations by FDRc at FDR = 0.05 were similar 
to those of FDRmes among all 12 combinations, indicating 
that the mirroring method generated reasonable decoy spectra 

A

B

C D E

Fig. 2. � Performance evaluation of the pseudo-target–decoy approach using the polarity-switching method. (A) Score 
distribution of true- and false-positive hits in the compound identification result. Total of 3388 high-resolution 
mass spectra data obtained at positive ion mode were collected from MassBank. The CommonPos dataset was 
served for the compound search by the SIRIUS 5 CSI:Finger ID scoring method using HMDB as the compound 
database. (B) Score distribution of searching results of target and decoy CommonPos datasets. (C) Relationship 
between the CSI:Finger ID score and FDR levels. FDRmes indicate true FDR levels measured from the number of 
true and false hits in panel A. FDRs and FDRs represent estimated FDR levels from the number of target (T) and 
decoy (D) hits in panel B. FDRs = D/T, FDRc = 2D/(T + D). (D) Relationship between the score ranking of top 
hits and FDR levels. (E) Comparison between the number of hits determined by the true FDR (FDRmes) and 
estimated FDR (FDRs and FDRc). The number of hit compounds at FDR = 0.05 was compared among all 12 
combinations of the 4 datasets (CommonPos, CommonNeg, OhtersPos, and OthersNeg) and 3 compound data-
bases (YMDB, HMDB, and BioDB). The RSS levels between the true FDR (FDRmes) and estimated FDR (FDRs 
and FDRc) are also shown. FDR, false discovery rate; RSS, residual sum of square. 
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(Fig. 3C, Table S1). Indeed, the RSS levels of FDRs and FDRc 
were 0.32 × 106 and 0.37 × 106, which were smaller than that of 
the polarity-switching method (Fig. 3C, Table S1).

The performance of the spectral sampling method was 
evaluated using the same procedure. The RSS levels of FDRs 
and FDRc were 1.56 × 106 and 1.08 × 106 (Fig. 3D–3F, Table 
S1). The results show that the FDR estimation capability 
of the spectral sampling method is lower than that of the 
mirroring method. It has been reported that the spectral 
sampling method is useful in constructing a decoy data-
base for spectral similarity searches.18) However, this study 
demonstrated that the decoy spectra generated by the 
spectra-sampling method are unsuitable for FDR estimation 
in a compound search. Similar overestimations and under-
estimations were observed for the SIRIUS 5 with the confi-
dence score method (Table S1).

3.3.  Second-rank method
Next, another approach was examined. As previously 

mentioned, the top-ranked hits included both true and 
false positives. Each compound search can also provide a 
second-ranked hit in addition to the top-ranked hit. Certain 
second-ranked hits should have high scores that are very 
close to the top-ranked hits and can be considered as failed 
attempts of false-positive hits. Thus, the distribution of high 
scores in the second-ranked hits should be similar to that of 
false positives in the top-ranked hits (Fig. 1C).

To test the second-rank method, the scores of 
second-ranked hits were obtained from the search results of 
the CommonPos dataset (Fig. 4A, Data S3). Treating these 
scores as decoys, score thresholds and numbers of hits were 
determined by FDRrank2 = D/T and compared with those 
from FDRmes (Fig. 4B and 4C). The results showed that the 
estimation using FDRrank2 deviated significantly from that 
using FDRmes, particularly in the low-score region. However, 
FDRrank2 provides a better approximation at FDR = 0.05. For 
instance, the number of hits estimated by FDRrank2 was 1067, 
which approximates the 907 hits obtained by FDRmes. By con-
trast, FDRrank3, calculated using third-ranked data, signifi-
cantly underestimated the FDR. Similar trends were observed 
for the CommonNeg dataset (Fig. S4). A comparison across all 
12 combinations of the 4 datasets and 3 compound databases 
at FDR = 0.05 showed that the RSS levels of FDRrank2 and 
FDRrank3 were 0.2 × 106 and 1.1 × 106 (Fig. 4D, Table S1). The 
results revealed that the estimation by FDRrank2 using the sec-
ond-rank method was better than using the polarity-switching, 
mirroring, and spectral sampling methods (Table S1).

3.4.  Application to human metabolome DDA 
datasets

Previously, DDA metabolomic datasets have been shown 
to contain similar product ion spectra redundantly obtained 
from the same compound.29,30) Integrating similar spectra into 
an averaged spectrum can improve the signal-to-noise ratio.28) 

A B C

D E F

Fig. 3. � Performance evaluation of the pseudo-target–decoy approach using the mirroring (A–C) and the spec-
tral sampling (D–F) methods. (A, D) Relationship between the CSI:Finger ID score and FDR levels. 
FDRmes indicate true FDR levels measured from the number of true and false hits. FDRs and FDRc rep-
resent estimated FDR levels from the number of target (T) and decoy (D) hits. FDRs = D/T, FDRc = 2D/
(T + D) (B, E) Relationship between the score ranking of top hits and FDR levels. (C, F) Comparison 
between the number of hits determined by the true FDR (FDRmes) and estimated FDR (FDRs and 
FDRc). The number of hit compounds at FDR = 0.05 was compared among all 12 combinations of the 4 
datasets (CommonPos, CommonNeg, OhtersPos, and OthersNeg) and 3 compound databases (YMDB, 
HMDB, and BioDB). The RSS levels between the true FDR (FDRmes) and estimated FDR (FDRs and 
FDRc) are also shown. FDR, false discovery rate; RSS, residual sum of square. 
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Table 2.  FDR-based compound searching of human metabolome DDA datasets.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Repository Metabolomics 
Workbench

Metabolomics 
Workbench

Metabolomics 
Workbench

MetaboLights

ID ST001171 ST002338 ST002338 MTBLS417
Title Metabolomics of World 

Trade Center Exposed New 
York City Firefighters31)

Interplay Between 
Cruciferous 
Vegetables and the 
Gut Microbiome: 
A Multi-Omic 
Approach30)

Interplay Between 
Cruciferous 
Vegetables and the 
Gut Microbiome: 
A Multi-Omic 
Approach30)

Customized Consensus Spectral 
Library Building for Untargeted 
Quantitative Metabolomics 
Analysis with Data Independent 
Acquisition Mass Spectrometry 
and MetaboDIA Workflow32)

Author Anna Nolan, Laboratory at 
NYU/Bellevue

Bouranis John, Oregon 
State University

Bouranis John, Oregon 
State University

Zhou Lei, Hyungwon Choi, 
National University of Singapore

Sample Human, serum Human, Feces Human, Feces Human, serum
Mass Spectrometer Q Exactive HF-X Orbitrap, 

Thermo Scientific
TripleTOF 5600,  
AB Sciex

TripleTOF 5600,  
AB Sciex

TripleTOF 5600+,  
AB Sciex

HPLC Reverse phase ODS Reverse phase ODS Reverse phase ODS Reverse phase ODS
Polarity Positive Positive Negative Positive
Number of data files 248 40 40 60
The number of raw 
spectra in the dataset

3,242,674 256,580 220,008 548,663

The number of averaged 
spectra (with more than 3 
fragment ion signal)

21,403 (8104) 3062 (1789) 2317 (1170) 3077 (1450)

The number of hits at FDR = 5%
Polarity-switching (FDRc) 709 247 57 166
Mirroring (FDRc) 512 250 12 82
Spectral-sampling (FDRc) 355 186 11 42
Second-rank (FDRrank2) 642 182 41 100
The number of hits 
without HMDB ID in the 
second-rank results

56 24 1 12

FDR, false discovery rate; HMDB, human metabolome database.

A

B C D

Fig. 4. � Performance evaluation of the second-rank method. (A) Distribution of the top- (Target), second-, and 
third-ranked scores in the compound identification result. A total of 3388 high-resolution mass spectra 
data obtained at positive ion mode were collected from MassBank. The CommonPos dataset was 
served for the compound search by the SIRIUS 5 CSI:Finger ID scoring method using HMDB as the 
compound database. (B) Relationship between the CSI:Finger ID score and FDR levels. FDRmes indi-
cate true FDR levels measured from the numbers of true and false hits. FDRrank2 and FDRrank3 rep-
resent the estimated FDR (D/T) levels from the numbers of target (T) and decoy (D) hits. (C) 
Relationship between the score ranking of top hits and FDR levels. (D) Comparison between the num-
ber of hits determined by the true FDR (FDRmes) and estimated FDR (FDRrank2 and FDRrank3). The 
RSS levels between the true FDR (FDRmes) and estimated FDR (FDRs and FDRc) are also shown. 
FDR, false discovery rate; HMDB, human metabolome database; RSS, residual sum of square. 
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Here, 4 human metabolomic DDA datasets were obtained 
from the public repositories.30–32) Averaged spectral sets 
were produced from these datasets and used for compound 
searches using the SIRIUS 5 CSI:FingerID scoring method in 
the Biodatabase. The 4 methods developed in this study were 
used to control the FDR at 0.05. The results are summarized 
in Table 2. For Dataset 1, 3,242,674 product ion spectra across 
248 data files were consolidated into 21,403 averaged spectra 
by spectral averaging. Among them, 8104 spectra included 3 
or more product ions and were used for the compound search. 
The number of hits at FDR=0.05 was estimated to be 709, 512, 
355, and 642 using the polarity-switching, mirroring, spectral 
sampling, and second-rank methods, respectively. Although 
the number of hits varied widely among the 4 methods, the 
results of the second-rank method were in the middle range. 
Similar patterns were observed for Datasets 2, 3, and 4 (Table 2).

A purpose of untargeted human metabolome anal-
ysis is to identify novel human metabolites. Thus, all 
hits were checked using the HMDB24) to identify any 
novel human metabolites in the FDR-controlled com-
pound search results. The HMDB contains 220,945 known 
small-molecule metabolites found in the human body. 
Among the 642 hits in Dataset 1 by the second-rank 
method, 56 hits did not have HMDB identifiers (Data S4). 
For example, the top hit for the spectrum shown in Fig. 5A 

was N-myristoylethanolamide, whose CSI:FingerID score 
(0.18) was the highest among the 56 non-HMDB hits (Data 
S5). The compound search results were confirmed using 
the measured spectrum of N-myristoylethanolamide from 
MassBank (MSBNK-BGC_Munich-RP003002; similarity 
score = 0.7437; data not shown). N-myristoylethanolamide 
is a lipid mediator in mammals, indicating that its detec-
tion in human serum samples is plausible.33,34) Further-
more, in Dataset 2, the spectrum shown in Fig. 5B hit to 
b-casomorphin 4 with the highest CSI:FingerID score 
(−1.01) among the 24 non-HMDB hits (Data S6). Although 
MassBank does not contain any measured spectra of this 
compound (Data S5), the product ion spectrum was con-
sistent with the possible fragmentation of b-casomorphin 
4 by manual curation. b-Casomorphin 4 is a tetrapeptide 
(Tyrosyl-prolyl-phenylalanyl-proline, Fig. 5C) and a deg-
radation product of the milk protein b-casein, likely to be 
detected in human fecal samples.35)

4.  DISCUSSION
This study examined 4 methods for controlling the FDR 

in the compound search results of untargeted metabolom-
ics: polarity-switching, mirroring, spectral sampling, and 
second-rank methods (Fig. 1). It is important to note that 

A

B

C

Fig. 5. � Two annotation examples with compounds not included in the HMDB. (A) Product ion spectrum 
derived from Dataset 1. The spectrum was annotated as N-myristoylethanolamide by the SIRIUS 5 
CSI:Finger ID scoring method using Biodatabase as the compound database. (B) Product ion spectrum 
derived from Dataset 2, annotated as b-casomorphin 4. (C) Structure of b-casomorphin 4 and estimated 
assignment of fragment ions. HMDB, human metabolome database 
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the calculated FDRs are approximate estimates because 
these methods rely on invalid heuristics or assumptions. 
Estimations at FDR = 0.01 or 0.10 were particularly prone 
to large errors (Figs. 2–4). Among the 4 methods developed, 
the second-rank method provided the best FDR estimation 
in the performance test using the 4 spectral datasets from 
MassBank (Fig. 4D and Table S1). Furthermore, compound 
search results of 4 human metabolome DDA datasets with 
FDR = 0.05 showed that the number of hits determined by 
the second-rank method was neither extremely large nor 
small, suggesting that it avoided significant over- or under-
estimation (Table 2). The FDR-controlled compound search 
results identified compounds not present in the HMDB, such 
as N-myristoylethanolamide and β-casomorphin 4 (Fig. 5).

The 4 methods examined in this study offer the advan-
tage of simplicity and do not require any modifications to 
the structural elucidation software. Moreover, the polarity 
switching, mirroring, and second-rank methods do not 
require random sampling techniques. However, the FDR esti-
mates provided by these methods are rough approximations 
of the true FDR. To improve the estimation, the application 
of FDR estimation methods for spectral similarity searches, 
such as the fragmentation tree-based construction of decoy 
spectra,18) is promising for the construction of decoy query 
spectra datasets.

Moreover, the versatility of these methods requires fur-
ther investigation. Software packages and scoring methods 
are being developed rapidly. Recently, SIRIUS 6, with an 
updated scoring method, was made available to the public 
from the developer’s webpage (https://bioinformatik.uni-
jena.de/software/sirius/). Furthermore, this study used the 
product ion spectral data stored in MassBank for method 
verification owing to their structural variety. Additional ver-
ification is required to handle product-ion spectral datasets 
with less structural variation, such as those in lipidomics. 
In the future, more accurate FDR estimation is expected to 
be achieved by developing methods based on more valid 
assumptions or methods for constructing valid decoy com-
pound databases.

ACKNOWLEDGMENTS
We thank Prof. Yoshihiro Izumi at Kyushu University, Aki-

yoshi Hirayama at Keio University, Hiroshi Tsugawa at Tokyo 
University of Agriculture and Technology, Shujiro Okuda at 
Niigata University, and all Shin-MassBank project members 
for their helpful comments and support. This study was sup-
ported by the JST-NBDC Life Science Database Integration 
Project (grant number: JPMJND2305).

SUPPLEMENTARY AND SPECTRUM DATA
Table S1. Number of hits in the compound searching 

results by SIRIUS 5 CSI:Finger ID scoring method when false 
discovery rate (FDR) is 0.05

Figure S1. Score distribution of true positive and false pos-
itive hits in the compound identification result.

Figure S2. Score distribution of true positive and false pos-
itive hits in the compound identification result using other 
compound search methods.

Figure S3. Performance evaluation of the pseudo-target- 
decoy approach using the polarity-switching method.

Figure S4. Performance evaluation of the second-rank 
method.

Data S1. Parameters used for MetFrag, MSFINDER, and 
SIRIUS5.

Data S2. Compound search results of the CommonPos 
dataset using SIRIUS 5 CSI:FingerID scoring method with 
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dataset using SIRIUS 5 CSI:FingerID scoring method with 
FDR estimation by the second-rank method.

Data S4. Compound search result of Dataset1 using 
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