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Malignant melanoma (MM) recognition in whole-slide images (WSIs) is challenging due

to the huge image size of billions of pixels and complex visual characteristics. We

propose a novel automatic melanoma recognition method based on the multi-scale

features and probability map, named MPMR. First, we introduce the idea of breaking

up the WSI into patches to overcome the difficult-to-calculate problem of WSIs with

huge sizes. Second, to obtain and visualize the recognition result of MM tissues in

WSIs, a probability mapping method is proposed to generate the mask based on

predicted categories, confidence probabilities, and location information of patches. Third,

considering that the pathological features related to melanoma are at different scales,

such as tissue, cell, and nucleus, and to enhance the representation of multi-scale

features is important for melanoma recognition, we construct a multi-scale feature

fusion architecture by additional branch paths and shortcut connections, which extracts

the enriched lesion features from low-level features containing more detail information

and high-level features containing more semantic information. Fourth, to improve the

extraction feature of the irregular-shaped lesion and focus on essential features, we

reconstructed the residual blocks by a deformable convolution and channel attention

mechanism, which further reduces information redundancy and noisy features. The

experimental results demonstrate that the proposed method outperforms the compared

algorithms, and it has a potential for practical applications in clinical diagnosis.

Keywords: malignant melanoma, whole slide image, multi-scale feature, probability map, neural networks

1. INTRODUCTION

Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues
to increase at a great rate worldwide (1). It is characterized by an extraordinary metastasis capacity
and chemotherapy resistance, and the difficulty of effective treatment increases with its continually
developing aggression. Therefore, early diagnosis is essential to improve the survival rate of MM
patients. Pathological examination is the gold standard for the diagnosis of MM (2), which enables
the most reliable diagnosis based on pathological features at the cell level compared to other
methods. Tissue cut from the lesion on the skin is made into pathological slices and scanned by
a Digital Pathology Microscope Slide Scanner to get a whole-slide image (WSI). Through the WSI,
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the pathologist finds out the property of the tissue and marks
the MM region, if it exists, to measure related pathological
indicators, such as lesion size, invasion depth, etc., which provide
an important reference for treatment planning and surgical
prognosis (3).

Analyzing WSIs is a challenging task (4). Even an experienced
pathologist spends an average of 10-20 min recognizing the
region of MM in a WSI, of which identifying the MM region
takes up much time. First, a WSI has billions of pixels, and
the physician needs to perform a scanned screening of the
pathology images in a zoomed-in window. Second, the complex
visual characteristics of the skin lesions, such as irregular-
shaped texture, fuzzy boundaries, etc., increase the difficulty of
recognition. Some MM tissues are hard to distinguish from some
benign tissues (5), which is a challenge for MM recognition.
These problems aggravate the work burden of pathologists,
affecting the efficiency of pathological examination. Third, the
difficulty in training and scarcity of pathologists, as well as
the uneven distribution of medical resources, make it difficult
to obtain a timely and accurate diagnosis for every melanoma
patient. Therefore, there is an urgent need for an effectivemethod
for automatic MM recognition in WSIs.

MM region screening in WSIs is an image recognition task
that utilizes computer vision. Since convolutional neural
networks (CNNs) have provided state-of-the-art image
classification and segmentation performance, medical image
analysis methods based on CNNs have been developed. The
U-Net proposed by Ronneberger et al. (6) and its derivative
improved networks (7–10) have achieved considerable success in
medical image segmentation in recent years. However, pixel-wise
image segmentation methods have limitations in MM region
recognition in WSIs. The huge size of WSIs poses problems
to the computation of the network. Some MM recognition
methods based on deep learning are proposed. For example,
Hekler et al. (11) trained a CNN based on ResNet-50 (12)
to realize the classification of histopathological images of
melanomas and nevi with an accuracy of 81%. The limited
feature extraction capabilities of ResNet make it challenging
to achieve higher accuracy. Wang et al. (13) used a deep CNN
to establish a diagnosis model through the patch of eyelid
melanoma histopathological slides and obtained good results.
Yu et al. (14) proposed a method for melanoma recognition by
leveraging very deep CNNs and constructed a fully convolutional
residual network for accurate MM segmentation. However, it
applies only to dermoscopy images analysis, which is easier
to realize but not as reliable and detailed as pathological
analysis.

However, these methods only work for the region of interest
marked by pathologists. They cannot achieve good results in
WSIs. The huge number of pixels makes network training
difficult or impossible. Resizing images by down-sampling will
lead to the loss of detailed information, which is unacceptable
for MM diagnosis focusing on pathological features at the
cellular level. Furthermore, due to the characteristics of WSIs
and the limited feature extraction capability of related networks,
the existing methods are difficult to adapt for WSIs-based
MM recognition.

Based on the above considerations, we proposed a novel MM
recognitionmethod based on amulti-scale feature representation
and probability map to recognize the MM tissue region in WSIs,
as shown in Figure 1. The following contributions are made to
our work.

• Aiming at the difficult and inaccurate problems of recognizing
the enormous size of WSIs, the breaking up the whole into
parts idea is introduced to recognize melanoma. Furthermore,
using predicted results and probabilities generates the mosaic-
style mask and lesion region.

• To take both global and local features, we propose an
efficient multi-scale network for improving melanoma
recognition, combining high-level features with more
semantic information and low-level features with more detail
information. A multi-scale sliding cropping operation is used
to obtain patch and sub-patch images.

• To enhance the feature representation of irregular-shaped
lesions, highlight the critical features, and reduce the
impact of information redundancy and data noise, we
reconstruct the residual block by deformable convolution and
channel attention.

The paper is arranged as follows. Section 2 details the proposed
method, including the description of our method’s framework,
the realization principles, and the equations of each module.
Section 3 shows the experimental results of our method,
compares algorithms on an available WSI dataset, and further
provides the ablation analysis to prove the effectiveness and
rationality of the proposed method. Section 4 provides a
further discussion on the feature representation capability of the
proposed multi-scale network. And section 5 provides a brief
summary and the conclusions of this work.

2. METHODOLOGY

2.1. Framework of Our Method
On super-largeWSI images, patch-based recognition is necessary
and feasible. Melanoma pathological analysis mainly focuses
on cell-scale characteristics. We set patch size according
to pathologists’ professional advice, which ensures that cell
morphology and local distribution are well represented in the
patches. On the boundary of the patch, some cells may be
torn, but the overlapping sampling method can effectively avoid
the loss of information caused by incomplete splitting. For
lesion areas without clear boundaries, mixed cell tissue limits
feature extraction by conventional rectangular convolution.
Therefore, the proposed method reconstructed the residual
block by deformable convolution and channel attention to
overcome the irregular-shaped lesion and focus on important
features. Furthermore, to overcome the influence of cell-
scale differences, we built multi-scale feature fusion layers
to enhance feature information and improve identification
accuracy. The framework of the proposed method shown in
Figure 2 consists of the following seven components: patch
processing, feature extraction, feature fusion, feature selection,
predictive classification, mask generation, and loss function
in training.
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FIGURE 1 | The idea of the proposed method. The WSI is broken up into patch images. The classification results are aggregated and generate the mosaic-type mask

based on the probability map, and the MM regions are segmented based on a settable probability threshold.

FIGURE 2 | The framework of the proposed method. (A) Patch processing, (B) feature extraction, (C) feature fusion, (D) feature selection, (E) predictive classification,

(F) probability map generation, and (G) loss function of training model.

• Patch processing: A WSI is broken up into N patches
through sliding cropping (N depends on the sliding window
size and sliding stride), from which tissue-contained patches
are picked out by a color analysis method. Each tissue-
contained patch is broken up into sub-patches. And then,
patch images and sub-patch images are normalized to a
uniform size.

• Feature extraction: The lesion features are extracted by
backbone Conv1 to Conv5. Considering the irregular-
shaped cells, and focusing on essential features, deformable
convolution (DC) and channel attention (CA) operations are
embedded in the Conv2 to Conv5 layers to enhance the feature
extraction capability of the network. Then extracted features
Fconvi(i = 2, 3, 4, 5) are produced separately from Conv2
to Conv5.

• Feature fusion: As the network is gradually deepened, the
resolution of the feature map decreases, and the semantic
properties of the features are enhanced. The features of the
next layer, which contains richer semantic information, are
concatenated with those of the current layer, which contains
richer detailed texture information, to enhance the lesion
feature representation capability of the network.

• Feature selection: After the fused features Fi(i = 2, 3, 4, 5),
the channel attention mechanism is separately used to select
the critical features and to enhance the correlation between
high-level semantic features and low-level detailed features.

• Predictive classification: The output features from each
branch are flattened into a vector, respectively, and then they
are concatenated. Fully connected layers are constructed to
obtain the predictive classification results of patch images.
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• Probabilitymap generation: The prediction results of patches
(containing prediction labels and confidence probabilities)
are combined with the location information to generate
the probability map of malignant tissues. And a mosaic-
type mask of MM regions is obtained through a confidence
probability threshold.

• Loss function: Sigmoid binary cross-entropy loss function is
used in training for parameter optimization.

2.2. Multi-Scale Features
In the pathological examination, it is necessary to carry out
comprehensive analysis according to various characteristics of
lesions, such as tissue morphology and cell distribution, which
are reflected on a large scale, and cell morphology and nuclear
size, which are reflected on a smaller scale (15). Therefore,
computational analysis of WSIs at different scales is beneficial to
represent pathological features at different scales. A multi-scale
sliding cropping method is embedded in the proposed algorithm.
For each patch of a WSI, besides the whole patch image, cropped
sub-patch images from the patch are normalized to a uniform
size and input into the network together for the classification of
the patch. The size and quantity of the sub-patch depend on the
cropping method, for example, Figure 2A shows five sub-patches
cropped from a patch image.

Furthermore, the idea of multi-scale is also reflected in the
construction of the feature extraction network. As the network
deepens, feature resolution decreases and channels increase,
low-level detail information is being transformed into higher-
level semantic information. However, factors such as data noise
and chain derivative attenuate or lose the information in the
forward and back propagation, which becomes more and more
apparent with increasing network depth. The fusion of shallow
features and deeper features, which are with different scales, to
supplement the semantic information of high-level features is
beneficial to improve the feature representation capability of the
network. Based on the above considerations, a network with
enhanced multi-scale feature extraction capability is constructed.
As Figure 2 shows, additional branches are added to the
backbone network for feature fusion. In each branch, the feature
of (i + 1)-th level FConvi+1(i = 2, 3, 4) is concatenated with the
feature of i-th level FConvi(i = 2, 3, 4) after 1× 1 convolution and
up-sampling, as shown in Figure 2C, and then Fi(i = 2, 3, 4) is
obtained, as shown in Equation (1).

Fi = f(1×1)∗2 (Fi+1) ⊕ FConvi (1)

where f(1×1)∗2(∗) indicates that the Fi is obtained by the
convolution of 1×1 and double up-sampling of features Fi+1 and
has the same shape maps as the i-th conv output features FConvi.
⊕

denotes the concatenation of the normalized features of the
two groups.

The concatenated features F2 ∼ F4, together with F5, which
is obtained from FConv5, are transferred to feature vectors and
input into the fully connected layer via shortcut connections
for classification.

FIGURE 3 | Structure of deformable convolution module. (A) The deformable

convolution and (B) the deformable convolution layer.

2.3. Deformable Convolution
MM tissues in histopathological images mainly show as
interstitial or heterogeneous tumor cells, which are mainly
enlarged and darkly stained nuclei with varying shapes (16). This
irregularity leads to the inadequate learning of melanoma feature
information by traditional convolution for its fixed rectangular
receptive field of the kernel. Inspired by Dai et al. (17) and Zhu
et al. (18), we introduce offsets in the traditional convolution
to make the geometry of the kernel more flexible, as shown in
Figure 3, which improves the representation of irregular-shaped
features. The deformable convolution format for each position p
in the input feature map is shown in Equation (2).

y(p) =
∑

pk∈R

w
(

pk
)

· x
(

p+ pk + 1pk
)

(2)

where y(p) indicates the feature obtained by the convolution on
one sampling point p of the feature map. R is the receptive field
size of the regular kernel. pk denotes the difference between the
sampling points and y(p), k = 1, 2, 3 . . .N,N = |R|, 1pk is the
learned offset, and w is the kernel parameter. The offset of the
deformable convolution has a dilated value, which determines the
maximum distance for resampling and is set to 2.

2.4. Channel Attention
First, multi-scale feature fusion enriches the extracted feature
information of the network, but while enhancing feature
representation capability, it also brings some redundant features,
which are unrelated to melanoma recognition, and interferes
with model learning. It is particularly obvious in low-level
features with higher resolution, and this effect becomes more
prominent when low-level features are fused with high-level
features through additional branch paths. Second, the deformable
convolution helps in the feature extraction of irregular lesions
and enhances lesion feature representations, but also generates
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FIGURE 4 | Structure of channel attention module. (A) The intuitive diagram of the channel attention mechanism and (B) channel attention module. It firstly performs

global pooling to the input feature map (128c denotes 128 channels) to obtain the overall representations. Then a weight vector is learned by 1× 1 convolution

operations. The learned weight vector allocates weight coefficients for each channel of the original feature map, and the weighted feature map is output.

some noisy features influenced by non-lesion tissue. Therefore,
to extract more valuable information and suppress the impact
of redundant information and noises features, we need a
mechanism that focuses on essential features and filters the
irrelevant features.

Based on the above considerations, and inspired by the work
of Hu et al. (19), a channel attention mechanism is used in
the shortcut connection between features Fi(i = 2, 3, 4, 5) and
fully connected layers, as shown in Figure 2D. It highlights
high-value feature maps by a series of weights learned by the
channel attention (CA) module. The filtering of channels is
actually the weighting of different types of features. Although
the convolution operation itself also correlates each channel of
the feature map with each other, it is difficult to accurately
assign appropriate weights to each channel due to the influence
of the w and h dimensional feature distributions. To address
this problem, the channel attention mechanism obtains a global
representation of each channel by global pooling, and the weights
of each channel are calculated by 1 × 1 convolution based on
the resulting feature vectors. In Figure 4, the CA module firstly
performs global pooling to the input feature map to obtain the
overall representation of it. Then a weight vector is learned by
1 × 1 convolution. The learned weight vector allocates weight
coefficients for each channel of the original feature map, and the
weighted feature map is output. The mathematic description of
the channel attention module is formatted as Equation (3).

Y = σ



WConv2δ



WConv1
1

hw

∑

i∈h,j∈w

X
(

i, j
)







 ⊗ X (3)

where X means the input feature map, and Y denotes the output
feature map of the channel attention module, h and w are the
height and width in the input feature maps. WConv1 and WConv2

indicate the parameters of two 1 × 1 convolution operations,
which are equivalent operations to fully connected layers. δ is
the ReLU activation. σ is the sigmoid function, and⊗means the
weighting calculation of the learned weight vector and the input
feature map.

In addition to calculating the channel weights of feature
weights, the channel attention mechanism also strengthens the
correlation between channels through global pooling and 1 x 1
convolution; making up for the defect of the weak correlation
between channels in the convolution module is conducive to the
enhancement of feature expression ability. Therefore, the channel
attentionmodules are also embedded into the backbone network,
as shown in Figure 2B.

3. EXPERIMENTS

3.1. Experimental Setup
MM WSIs labeled by pathologists are rare and valuable data.
The dataset is collected from the Second Affiliated Hospital of
Xi’an Jiaotong University (Xibei Hospital), containing 30 WSIs
labeled by experienced pathologists. Sliding window size is set
to 1, 024 × 1, 024, sliding stride is set to 1024, 18,698 tissue-
included patches are obtained, containing 7,369 malignant tissue
patches and 11,329 benign tissue patches. They are divided into
training, validation, and test datasets by a ratio of 6:2:2. Five sub-
patches are cropped from each patch, as shown in Figure 2A, and
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TABLE 1 | The experimental results of the proposed algorithms and comparison algorithms, the higher the values of precision, recall, accuracy, and F1, the better the

recognition performance.

Algorithms Layer Precision Recall Accuracy F1

Inception V3 (2016) 50 0.8919 0.8876 0.8326 0.8897

ResNeXt (2017) 50 0.8974 0.9241 0.8618 0.9106

SENet (2018) 50 0.8915 0.9472 0.8721 0.9185

SENet (2018) 101 0.9120 0.9477 0.8812 0.9295

ResNeSt (2020) 50 0.9314 0.9327 0.8877 0.9321

ResNeSt (2020) 101 0.9526 0.9601 0.9355 0.9513

MPMR (ours) 50 0.9683 0.9709 0.9498 0.9696

MPMR (ours) 101 0.9740 0.9861 0.9553 0.9749

Bold indicate maximum values.

all images are resized to 512 × 512 when input to the network.
Considering that melanoma tissue features are non-directional
and non-chiral, we introduce data augmentation operations by
the mirror and random rotation in the range of (−90◦,+90◦).

The proposed method is developed by Python 3.6 on
Ubuntu18.04, and the hardware is RTX2080-12G with CUDA-
10.1. The development libraries include MXNet-1.5, Gluoncv-
0.5, Numpy-1.17, OpenCV-4.2, etc. Themodels iterate 30 epochs,
and the batch size is 32. Gradient descent with momentum (20) is
used for optimization.We set themomentum to 0.9. The learning
rate is 0.001, and the decay rate is 0.99. Both recall (R) and
precision (P) for MM recognition are considered in diagnosis,
so the evaluation criterion F1 score is used to comprehensively
measure the performance of the proposed method, which is
calculated as Equation (4).

F1 =
2× P × R

P + R
(4)

3.2. Results of Patch Classification
In order to verify the effectiveness and recognition performance
of the algorithm, the proposed method is compared with
some popular algorithms in recent years, including Inception
V3 (21), ResNeXt (22), SENet (19), and ResNeSt (23). The
experimental results are shown in Table 1, the higher the values
of F1, recall, precision, and accuracy, the better the recognition
performance. The F1 values of all algorithms exceeded 90%,
except Inception V3, and the scores of the proposed method
also achieved the best results. SENet and ResNeSt, containing
the channel attention module, outperform other comparison
algorithms, indicating that the channel attention mechanism
improves performance.

The proposed method outperforms all the comparison
algorithms for the same number of layers, mainly benefiting
from the deformable convolution, the channel attention, and the
multi-scale feature fusion. In particular, the learning capability
of multi-scale features in the proposed method effectively adapts
the different scale samples. It sufficiently learns the feature
information of melanoma in the training and validation datasets
and has better robustness on the testing dataset. Therefore, the
proposed algorithm outperforms other algorithms on the WSI
test dataset.

3.3. Results of the Probability Map
The prediction results of patch images containing prediction
labels and confidence probabilities are combined with the
location information to generate the probability map. The
visualization results of a WSI containing malignant melanoma
tissues are shown in Figure 5. The probability of being predicted
as MM tissues is visualized as different colors, from 0 to
1. The threshold of malignant tissues and benign tissues is
set to 0.5; red regions display the recognized MM tissues.
The prediction results of some difficult samples of different
algorithms are compared, and the proposed method provides the
most correctly recognized patches, marked by green boxes, while
other comparison algorithms provide some incorrect recognition
results, marked by red boxes. The results indicate that the
proposed method can obtain more accurate recognition results
in WSIs.

3.4. Ablation Analyses
To analyze the contributions of multi-scale feature fusion,
deformable convolution, and channel attention in the proposed
method, ablation analyses are performed for these impacts. The
results of ablation analyses are shown in Tables 2–4, the higher
the values of precision, recall, accuracy, and F1, the better the
recognition performance.

3.4.1. Multi-Scale Features

The proposed method realizes multi-scale feature fusion by
constructing additional branch paths and adopting shortcut
connections between fused features and the fully connected
layers. Low-level features containing more detail information
are expected to supplement the semantic features of high-level
features for enhancing the classification capability of the model.
The experimental results of the networks with different numbers
of branch paths are shown in Table 2. The more branch paths
added, the higher the values of F1, recall, precision, and accuracy
obtained. It indicates that the prediction method based on
multi-scale features helps the proposed method to recognize
melanoma. In the results of F5/F4/F3/F2, the accuracy of the
proposed method decreases compared to F5/F4/F3, and the
other evaluation indicators show weak increases. It indicates
that multi-scale feature fusion should be carried out in an
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FIGURE 5 | The mosaic-style mask result of a WSI in the test dataset is generated through the probability map obtained through patch image classification. The

recognition results of some patches, which are difficult to recognize, through different algorithms are compared. A green box represents a correct prediction, and a red

box represents a misclassification. The probabilities of being predicted as MM tissues are marked in each patch image, and the threshold is 0.5.

TABLE 2 | The experimental results of the ablation analysis of multi-scale features, the higher the values of precision, recall, accuracy, and F1, the better the recognition

performance.

Multi-scale features Layer Precision Recall Accuracy F1

F5 50 0.9400 0.9457 0.9367 0.9428

F5/F4 50 0.9448 0.9633 0.9493 0.9540

F5/F4/F3 50 0.9590 0.9675 0.9567 0.9632

F5/F4/F3/F2 50 0.9683 0.9709 0.9498 0.9696

Bold indicate maximum values.

TABLE 3 | The experimental results of the ablation analysis of deformable convolution, the higher the values of precision, recall, accuracy, and F1, the better the

recognition performance.

Deformable convolution Layer Precision Recall Accuracy F1

None 50 0.9380 0.9509 0.9387 0.9444

DConv5 50 0.9396 0.9522 0.9402 0.9458

DConv5/4 50 0.9464 0.9563 0.9462 0.9513

DConv5/4/3 50 0.9604 0.9619 0.9569 0.9611

DConv5/4/3/2 50 0.9683 0.9709 0.9498 0.9696

Bold indicate maximum values.

appropriate range, and an excess of fusions will cause information
redundancy, which is not conducive to feature representation.

3.4.2. Deformable Convolution

The melanoma characteristics in the pathological images
are mainly enlarged and darkly stained nuclei with varying
shapes. This irregularity leads to the inadequate learning

of melanoma feature information by traditional convolution.
Deformable convolution is embedded into the convolution
layers of the proposed network to enhance irregular-shaped
feature representation ability. The experimental results of the
networks with different numbers of deformable convolution
layers are shown in Table 3, indicating that the more deformable
convolution layers embedded, the better the recognition
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TABLE 4 | The experimental results of the ablation analysis of channel attention, the higher the values of precision, recall, accuracy, and F1, the better the recognition

performance.

Channel attention Layer Precision Recall Accuracy F1

None 50 0.9320 0.9216 0.9222 0.9242

Backbone (B) 50 0.9340 0.9321 0.9256 0.9331

Shortcut (S) 50 0.9472 0.9552 0.9460 0.9512

Both B and S 50 0.9683 0.9709 0.9498 0.9696

Bold indicate maximum values.

performance of the proposed method. Accuracy decrease occurs
in the results of DConv5/4/3/2. It indicates that too many
deformable convolution layers may amplify the impact of noise
on learning and influence feature representation.

3.4.3. Channel Attention

Channel attention in the proposed method selectively enhances
information-rich features, allowing subsequent processing of the
networks to take full advantage of these features and suppress
noisy features. The experimental results of channel attention
with different numbers of layers are shown in Table 4, where
the B-case indicates that channel attention modules are only
embedded in the backbone network for feature extraction, and
the S-case indicates that channel attention modules are used
in the shortcut connection between fused features and fully
connected layers. The recognition performance of the model is
significantly improved after using channel attention modules.
However, both the embedded B-case and S-case can obtain
the best performance of the proposed method. This further
demonstrates that the embedding of channel attention can
facilitate positive network learning.

4. DISCUSSION

The pathological features related to melanoma are at different
scales, such as tissue, cell, and nucleus, and enhancing the
representation of multi-scale features is important for melanoma
recognition. From the experimental results, it can be concluded
that the residual block based on deformable convolution and
multi-scale feature fusion brings considerable performance
improvement in the patch-wise classification of WSIs.

The visual features of malignant melanoma and benign
nevi tissues are very similar, and the shape of the features is
irregular and has uneven distribution, which further increases
the difficulty of recognition. When learning the feature space
of a histopathological skin image, the traditional convolutional
network is limited by its fixed spatial geometric structure, as
shown in Figure 3, which is not suitable for the irregular
shape of lesions and the uneven distribution of melanoma cells.
However, the deformable convolution layers effectively avoid
the rectangular limitation of traditional convolution sampling.
The experimental results in Table 3 demonstrate that dynamic
convolution can better extract the features of tissue images. The
performance improvement of deformable convolution on the
model grows as the number of layers increases, which introduces
extra computational consumption but can be neglected for some
tasks with low real-time requirements.

Shortcut connections, also known as skip connections, show
considerable advantages in residual networks and U-shaped
networks. The residual connections ensemble the feature at
different layers through sum operation, and (24) put forward
similar views. The connections between the encoder and the
decoder in U-shaped networks, through deconvolution and
concatenation, realize the fusion of features at different scales.
In addition, extra information flows, brought by shortcut
connections, provide shorter paths for the transmission of
parameters in the forward- and back-propagation, reducing
information attenuation. These ideas are embodied in the
construction of the proposed networks. The additional branch
paths in the proposed network realize multi-scale feature fusion
through 1× 1 convolution, 2× up-sampling, and concatenation.
Another fusion of several fused features is performed through
the shortcut connections between the fused features and the fully
connected layers. The above operations are expected to enhance
feature representation and make contributions to improve MM
recognition precision.

In order to further analyze the influence of multi-scale
fusion on the quality of features extracted from the network,
t-distributed stochastic neighbor embedding (t-SNE) (25), a
manifold learning dimensionality reduction method, is used
to visualize the features extracted from the network with the
different number of feature fusion branch paths. The feature
vectors in the second-to-last layer of the full connection layers
are transferred from 1,024 dimensions to 2 dimensions and
visualized as shown in Figure 6. The higher the linear separability
of benign features and malignant features after dimensionality
reduction, the more beneficial the features extracted from the
network are for classification. The dimension reduction results
of F5, which represents the features extracted by the network
without multi-scale feature fusion, are shown in Figure 6A,
and some of the benign features are interspersed with the
malignant features. The results of F5/F4 shown in Figure 6B,
which represents the features extracted by the network with one
branch path for multi-scale feature fusion, show considerable
improvement. Figures 6C,D show more improvements, which
indicates that the additional branch paths for multi-scale
feature fusion improve the quality of the features extracted
by the network, enhancing the feature representation for MM
recognition, and finally provide more accurate MM recognition
results. This is consistent with the experimental results inTable 2.

5. CONCLUSIONS

This work proposes a novel automatic MM recognition method
in WSI based on multi-scale features and the probability map.
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FIGURE 6 | The visualization results of the features extracted by networks with different numbers of feature fusion branch paths. (A) F5, (B) F5/F4, (C) F5/F4/F3, and

(D) F5/F4/F3/F2. The feature vector in the second-to-last layer of the full connection layers are transferred from 1,024 dimensions to 2 dimensions through t-SNE. The

blue scatter plots represent malignant features, and the purple scatter plots represent malignant features. The higher the linear separability of benign features and

malignant features after dimensionality reduction, the more beneficial the features extracted from the network are for classification.

The idea that breaking up a WSI into patches and sub-patches
through multi-scale sliding cropping solves the difficult-to-
calculate problem of WSIs with huge sizes, and the probability
map is generated based on the predicted class and confidence
probabilities and location information of patch images to
visualize the recognition result ofMM tissues inWSIs. Additional
branch paths and shortcut connections are established for multi-
scale feature fusion, which realizes the information supplement
of low-level features containing more detail information to deep
features containing more semantic information. Deformable
convolution operations are embedded into the backbone
network to enhance the representation capability of irregular-
shaped features in tissues. Channel attention modules are
used in the shortcut connection between fused features and
fully connected layers, and also the backbone network to
highlight the high-value features and reduce the negative
impacts of information redundancy caused by additional
branch paths.

The results of comparison experiments indicate that
the proposed method outperforms Inception V3, ResNeXt,
SENet, and ResNeSt. The results of ablation analyses prove

the effectiveness of multi-scale feature fusion, deformable
convolution, and channel attention modules. Through the
proposed method, MM regions in WSIs can be recognized
accurately and efficiently, which is a great help to pathological
examination and the diagnosis of MM.
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