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ABSTRACT Microbes adapt their metabolism to take advantage of nutrients in their
environment. Such adaptations control specific metabolic pathways to match ener-
getic demands with nutrient availability. Upon depletion of nutrients, rapid pathway
recovery is key to release cellular resources required for survival under the new nu-
tritional conditions. Yet, little is known about the regulatory strategies that microbes
employ to accelerate pathway recovery in response to nutrient depletion. Using the
fatty acid catabolic pathway in Escherichia coli, here, we show that fast recovery
can be achieved by rapid release of a transcriptional regulator from a metabolite-
sequestered complex. With a combination of mathematical modeling and experi-
ments, we show that recovery dynamics depend critically on the rate of metabolite
consumption and the exposure time to nutrients. We constructed strains with re-
wired transcriptional regulatory architectures that highlight the metabolic benefits of
negative autoregulation over constitutive and positive autoregulation. Our results
have wide-ranging implications for our understanding of metabolic adaptations, as
well as for guiding the design of gene circuitry for synthetic biology and metabolic
engineering.

IMPORTANCE Rapid metabolic recovery during nutrient shift is critical to microbial
survival, cell fitness, and competition among microbiota, yet little is known about
the regulatory mechanisms of rapid metabolic recovery. This work demonstrates a
previously unknown mechanism where rapid release of a transcriptional regulator
from a metabolite-sequestered complex enables fast recovery to nutrient depletion.
The work identified key regulatory architectures and parameters that control the
speed of recovery, with wide-ranging implications for the understanding of meta-
bolic adaptations as well as synthetic biology and metabolic engineering.

KEYWORDS metabolic dynamics, metabolic regulation, synthetic biology,
transcription factor

Bacteria constantly adapt to changing environments by coordinating multiple levels
of their intracellular machinery. Metabolic regulation provides a control layer that

adapts metabolic activity to nutritional conditions. Such regulation relies on a complex
interplay between gene expression and metabolic pathways (1). In the case of meta-
bolic pathways, genes for nutrient uptake and consumption need to be upregulated
when the specific nutrient is available in the environment. Failure to quickly increase
pathway capacity may result in missed metabolic resource opportunity and a potential
cost on fitness (2) and population survival (3–5). Conversely, upon nutrient depletion,
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the expression of specific metabolic enzymes can become wasteful and lead to a
suboptimal use of biosynthetic resources (6, 7).

Metabolite-responsive transcription factors are a widespread regulatory mechanism
in microbes. Upon sensing nutrient availability, they trigger changes in enzyme expres-
sion and metabolic flux (8). This strategy has been shown to control the dynamics of
pathway upregulation in various ways (9–11). For example, negative autoregulation of
transcription factors can speed the response time of gene expression (12), and feed-
back circuits based on metabolite-responsive transcription factors have been demon-
strated to accelerate metabolite responses (13). While much of the literature has
focused on the control of activation dynamics upon nutrient induction (14–16), little is
known on how these regulatory mechanisms shape pathway recovery after depletion
of nutrients.

Here, we study a common regulatory architecture found in over a dozen bacterial
nutrient uptake systems (17) (Fig. 1A; see also Table S1 in the supplemental material).
When a nutrient is absent from the environment, a metabolite-responsive transcription
factor (MRTF) represses the expression of uptake and catabolic enzymes. When the
nutrient is present, the nutrient is internalized and sequesters the transcription factor
via reversible binding, thus preventing gene repression. This causes an upregulation of
metabolic enzyme genes and an increase in the rate of nutrient import and utilization.
A common feature of these control systems is the presence of negative autoregulation
of the transcription factor (Table S1). After nutrient depletion, the MRTF must recover
its repressive activity on the catabolic pathway genes to rapidly shut down pathway
activity; yet, it is unclear which components of the regulatory system help accelerate
the recovery dynamics.

Using the Escherichia coli fatty acid catabolic pathway as our model system, we took
a theoretical-experimental approach to study its recovery dynamics in response to a
nutrient shift from an on state to an off state. As illustrated in Fig. 1B, these two states
are defined as an environment with and without the presence of oleic acid as a carbon
source, respectively. In the on state, oleic acid is imported as fatty acyl coenzyme A
(acyl-CoA), which binds to the transcription factor FadR and sequesters it into a
complex. This acyl-CoA sequestration releases FadR from its cognate DNA elements

FIG 1 General architecture of a bacterial nutrient uptake system. (A) Regulation of nutrient uptake by
a metabolite-responsive transcription factor, a ubiquitously observed control system in bacteria (Ta-
ble S1). (B) We use the Escherichia coli fatty acid uptake as a model system. The on state is defined by
induction at a constant level of oleic acid, which is imported as acyl-CoA by the uptake enzyme FadD.
Acyl-CoA sequesters the transcription factor FadR, which derepresses expression of the uptake enzyme.
The off state is defined by the washout of oleic acid after some time (t0) in the on state. The release of
sequestered FadR recovers its repression on FadD synthesis. FadR is also subject to negative autoregu-
lation. (C) Schematic of the experiments and simulations in this work, with defined exposure time to oleic
acid (green area) and with recovery time of FadD levels in the off state (�50) defined as the time to reach
to halfway between the maximum and minimum concentrations.
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(18), which relieves the repression of the uptake gene fadD and thus accelerates the
import of oleic acid. We found that upon the depletion of oleic acid, repression by FadR
is recovered via its rapid release from the sequestered complex, which in turn is driven
by the consumption of acyl-CoA. We further found that the architecture of FadR
autoregulation affects the maintenance of a sequestered pool of FadR. In particular,
negative autoregulation enables a large sequestered transcription factor (TF) pool
during the on state and, at the same time, a reduced biosynthetic cost in the off state.
Our results shed light on the regulatory mechanisms that allow cells to rapidly adapt to
environmental shifts and provide insights for the design of gene circuits in synthetic
biology and metabolic engineering applications, particularly where strain performance
is sensitive to nutrient fluctuations and inhomogeneities typical of large-scale fermen-
tations.

RESULTS
Recovery dynamics in the fatty acid uptake system. To study the recovery

dynamics of fatty acid uptake, we built a kinetic model based on four core components
of the regulatory system, FadD (D), free FadR (R), acyl-CoA (A), and sequestered FadR
(aR). The model represents cells growing at a fixed growth rate with oleic acid at a fixed
concentration in the medium. We simulated the recovery dynamics by mimicking the
following three stages in our experimental setup: preculture without oleic acid, re-
sponse to induction in the on state, and recovery in the off state. During preculture, we
ran the model to steady state in the absence of oleic acid and then initiated simulations
of the on state from the steady state achieved in preculture, with a fixed concentration
of oleic acid for a defined exposure time. The concentrations achieved at the end of the
on state were used as initial conditions for the off state, which was simulated without
oleic acid until the system recovers to the steady state in preculture (Fig. 1C).

We defined two metrics to quantify the recovery dynamics after the switch from the
on to the off state (Fig. 1C). First, we define the recovery time as the time taken for FadD
to decrease to halfway between its maximum and minimum steady-state value after
nutrient depletion (�50) (Fig. 1C). Second, we defined the metric � as the proportion
of free FadR released from the sequestered complex after one doubling time, shown in
equation 1:

� �
FadRDT � FadRDT-new

FadRDT
(1)

where FadRDT and FadRDT-new are the concentrations of free FadR and newly expressed
FadR in the off state after one doubling time (DT). This definition allows us to quantify
the contribution of free FadR released from the sequestered pool to the recovery
dynamics.

Since pathway recovery depends on the system state at the time of the on to off
switch, we used the kinetic model to study the relation between the initial conditions
at the time of the switch and the recovery dynamics. To this end, we studied the impact
of exposure time to oleic acid during the on state, as well as the amount of acyl-CoA-
consuming enzyme. We simulated the off-state dynamics for 2,500 combinations of 50
acyl-CoA-consuming enzyme concentrations and 50 exposure times and calculated the
�50 and � for each. The simulation results of the off-state dynamics (Fig. 2A) suggest
that the �50 decreases with increasing concentrations of consuming enzyme, while the
amount of released FadR (�) increases with both the consuming enzyme and
the exposure time. Further simulations suggest that when exposure time increases, the
pool of acyl-CoA accumulates further, with a rise time from 8.5 to 10 h, for levels of
consuming enzyme between 100 �M and 6 �M (Fig. S2B). This larger pool takes a
longer time to be consumed in the off state (Fig. S2A) and so delays the release of FadR
from the complex. This results in a longer recovery time (details in Text S1 and Fig. S2).
Model simulations also reveal a strong inverse relation between �50 and � (Fig. 2B),
indicating that the release of FadR from sequestration by acyl-CoA provides a mecha-
nism for cells to achieve rapid recovery during nutrient depletion. Further, the sensi-
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tivity of this inverse relation increases when cells are exposed to a longer on state.
Simulations show that longer cell exposure times to oleic acid increase the pool of
sequestered FadR (Fig. S2). Consequently, in the off state, more FadR can be released
from sequestration than with new FadR synthesis, thus increasing the sensitivity of �50

changes in the amount of released FadR.

FIG 2 Nutrient exposure time and speed of metabolite consumption in the off state shape the recovery time. (A) Predicted recovery time (�50) and proportion
of free FadR released from sequestration after one doubling time (�) for variations in the amount of consuming enzyme and nutrient exposure time. (B) Inverse
relation between the proportion of released FadR (�) and the predicted recovery time. (C) Simulated time course of FadD concentration during the off state
and predicted recovery times for increasing concentrations of acyl-CoA consuming enzyme. (D) Measured time course of fadD expression when switching from
an on to off state for strains with low (ΔfadE mutant reporter) and high (WT reporter) concentrations of acyl-CoA-consuming enzyme. Strains were switched
from M9G plus 1 mM oleic acid to M9G medium at time zero. Error bars represent standard error of the mean (SEM) of the results from biological triplicates
(n � 3). Recovery times were calculated from exponential fits to each of the triplicate time course data (inset). Error bars represent the SEM of the results from
biological triplicates (n � 3). (E) Time course simulations of FadD induction and recovery dynamics, and predicted recovery times, for increasing exposure times.
(F) Measured time course of fadD expression from the WT reporter strain grown for 3, 6, and 9 h of exposure to oleic acid (M9G plus 1 mM oleic acid) and then
switched to an off state (M9G). Error bars represent the SEM of the results from biological triplicates (n � 3). Recovery times were again calculated from
exponential fits, with error bars indicating the SEM of the results from triplicates (n � 3).
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To verify the model predictions, we sought to experimentally perturb � through two
complementary strategies, as follows: (i) by engineering strains with different amounts
of acyl-CoA consuming enzymes and (ii) by manipulating the exposure time to oleic
acid. We first constructed a reporter strain with a decreased consumption rate of
acyl-CoA, the ΔfadE mutant reporter strain (see Table S3B), where we deleted the fadE
gene encoding the second step of the fatty acid �-oxidation pathway. This prevents
metabolization of acyl-CoA by �-oxidation and leaves membrane incorporation (cata-
lyzed by enzyme PlsB) as the only pathway for acyl-CoA consumption. We measured
fadD expression dynamics after switching the strains from the on state (M9G plus 1 mM
oleic acid medium) to the off state (M9G medium) using a red fluorescent protein (RFP)
reporter fused downstream of the fadD promoter. The fadE knockout strain displayed
a slower recovery than did the wild type, with a �60% increase in recovery time
(Fig. 2D), confirming our theoretical prediction shown in Fig. 2C. The measured increase
in recovery time entails an increased expenditure of biosynthetic resources to import a
metabolite that is no longer present in the environment.

Next, we measured the fadD recovery dynamics after switching the cultures from
growth with 3, 6, and 9 h of exposure time in the on state. As predicted from the model
in Fig. 2E, the measured recovery time decreased for an increase in exposure time
(Fig. 2F). However, we observe that recovery time is not decreased further beyond 6 h
of exposure to oleic acid. We speculate that faster recovery is counteracted by the delay
of having to consume a higher level of accumulated acyl-CoA or because the maximum
level of sequestered FadR may already have been achieved at 6 h.

Impact of autoregulatory architecture on recovery dynamics. Among the uptake
systems in E. coli with the architecture of Fig. 1A, we found that the majority have a
transcriptional regulator that represses its own expression, few systems have constitu-
tive expression of the regulator, and no systems display positive autoregulation (see
Table S1). To better understand the salient features of each regulatory architecture and
how they affect recovery dynamics, we built variants of our kinetic model with FadR
under constitutive expression and positive or negative autoregulation (details in Ma-
terials and Methods). Simulations of the recovery dynamics in the off state for various
exposure times in the on state suggest that these architectures behave similarly for
short exposure times (�1 h), quickly sequestering all of the free FadR (Fig. 3A, top). For
longer exposure times (�1 h), model simulations suggest important differences in the
dynamics of sequestered FadR among the various modes of autoregulation. Negative
autoregulation shows an accumulation of sequestered FadR, while positive autoregu-
lation leads to an overall depletion of sequestered FadR. Constitutive expression causes
the total level of sequestered FadR to be maintained at a constant level (Fig. 3A).

To elucidate whether these predicted trends are a consequence of the model
parameters or are inherently determined by the autoregulatory architecture, we ana-
lyzed the model and found relationships for the change in steady-state concentrations
of total FadR (ΔRT) in each autoregulatory architecture (the details of the derivation are
in Text S1), as follows: negative autoregulation, ΔRT � 0; positive autoregulation, ΔRT �

0; constitutive expression, ΔRT � 0. These relationships are valid for any combination of
positive parameters, and therefore, the long-term trends observed in Fig. 3A are
structural properties of the model.

To determine the effect of the three regulatory architectures on the recovery time,
we simulated the recovery dynamics of each architecture for various exposure times
and calculated the recovery time (Fig. 3A, bottom). We observe that the overall
relationships between recovery time and exposure time are similar across the three
architectures (Fig. 3A, bottom inset). However, for positive autoregulation, we found
recovery to be significantly slower for a wide range of exposure times. To test this
prediction, we engineered an E. coli strain with positively autoregulated FadR expres-
sion by replacing the native fadR promoter with one that activated by FadR (PfadRpo)
(see Table S4) and a PfadD reporter plasmid. The positively autoregulated reporter strain
(PA reporter) (Tables S3B and S4) was grown in the on state (M9G medium plus 1 mM
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oleic acid) and then rapidly switched to the off state (M9G medium) after 3, 6, and 9 h.
We measured the fadD expression dynamics (see time course dynamics in Fig. S3B) and
calculated the respective recovery times (Fig. 3B). Consistent with the trend predicted
from the model, the recovery times for the positively autoregulated strain increased
with the exposure time of oleic acid in the on state (Fig. 3C).

Negative autoregulation provides a resource-saving recovery strategy. The
results from the above-described autoregulation relationships suggest that constitutive
expression and negative autoregulation can both maintain large amounts of seques-
tered FadR for long exposure times to oleic acid. Our earlier results showed that longer
exposure times lead to a larger pool of sequestered FadR (Fig. S2D), which enables a
faster recovery time (Fig. 2E and F). We thus asked which system parameters influence
the steady-state pool size of sequestered FadR in these two architectures. We found
that for high concentrations of oleic acid, the steady-state concentration of sequestered
FadR in the on state is given by equations 2 and 3 (details in Text S1):

negative autoregulation: lim
A→�

aR �
an

�
, (2)

constitutive expression: lim
A→�

aR �
pc

�
, (3)

where A and aR are the steady-state concentrations of acyl-CoA and sequestered FadR,
respectively, and an and pc are the promoter strengths in each case. These results

FIG 3 Impact of regulatory architecture on the recovery time after nutrient depletion. (A) Top, simulated
steady-state concentrations of sequestered (thick lines) and total (thin lines) FadR for various times spent
in the on state for three regulatory architectures of FadR; constitutive expression (black line) is represented
by a blunt line. Bottom, predicted recovery times for each architecture. (B) Measured recovery times in the
WT (WT reporter) and positively autoregulated strain (PA reporter) (Tables S3B and S4) for 3, 6, and 9 h of
exposure in on state. Recovery times were calculated from exponential fits to each of the triplicate time
course data (see File S1 and Fig. S3), and error bars represent the SEM of the calculated values (n � 3). (C)
Schematics illustrating how negative and positive autoregulation affect the buildup of sequestered (Seq.)
FadR in the on state.
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suggest that at high oleic acid concentrations, the amount of sequestered FadR scales
linearly with the strength of its own promoter. In simulations of both architectures in
the on state induced with high concentration of oleic acid (1 mM) and various promoter
strengths, we found that increasing promoter strength both increases the amount of
sequestered FadR in the on state and decreases the recovery time (Fig. 4A).

The results shown in Fig. 4A also suggest that through tuning of fadR promoter
strength, in principle, constitutive expression and negative autoregulation can produce
the same recovery time. We thus sought to identify the potential benefits of one
architecture over the other in terms of the recovery dynamics in the off state. Since the
production of FadR entails a biosynthetic cost, we compared both regulatory architec-
tures in terms of the cost of FadR synthesis. From time course simulations of FadR
synthesis rates in the on and off states (Fig. 4B), we computed the total amount of
synthesized FadR for increasing fadR promoter strengths by integrating the area under
the curves (Fig. 4C). Our results show that both architectures require identical biosyn-
thetic costs for FadR in the on state, but negative autoregulation leads to a reduced
biosynthetic cost for FadR in the off state compared to constitutive expression
(Fig. 4C).

DISCUSSION

In this paper, we combined mathematical modeling and experiments to study
metabolic pathway recovery upon depletion of an external nutrient. Changes in
nutrient conditions trigger transcriptional programs that adapt cell physiology (19) to
meet the cellular energy budget (20). We chose the regulation of fatty acid uptake in
E. coli as our model system, as it is representative of a widely conserved transcriptional

FIG 4 Comparison of recovery dynamics in constitutive expression and negative autoregulation. (A)
Simulated recovery times for variations in the strength of FadR’s own promoter, with the two architec-
tures achieving the same recovery times. (B) Time course simulations of FadR synthesis rates for 48 h in
the on state (1 mM oleic acid) and off state, for increasing promoter strengths; the yellow curve
represents the response with the fitted promoter strength value (Table S2B). To ensure fair comparison,
promoter strengths were chosen to achieve the same recovery times in the two architectures. (C) Cost
of FadR synthesis for increasing concentrations of sequestered FadR, modified by changes to fadR
promoter strength. Circles correspond to costs associated with simulations shown in panel B. Details of
the simulations are in Materials and Methods.
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program for controlling the uptake of nutrients in bacteria (see Table S1 in the
supplemental data). We show that fast recovery after nutrient depletion can be
achieved by a rapid release of a transcriptional regulator from a metabolite-sequestered
complex. In particular, a sizable contribution of FadR rapidly made available after oleic
acid depletion came from its release from its sequestered complex form (aR), as
opposed to new synthesis. The rapid availability of FadR quickly recovers its inhibition
on the fad regulon and so shortens the recovery time. Furthermore, our model
simulations and experiments have demonstrated that increasing the amount of FadR
stored in complex form during nutrient exposure and fast consumption of acyl-CoA
(the sequestering metabolite) facilitate a speedy recovery in the off state.

Our model simulations show that pathway recovery is delayed by high intracellular
acyl-CoA concentrations, which slow the release of free FadR from stored complex until
those high concentrations are reduced. This delay occurs because FadR is only able to
sense the intracellular metabolite concentrations, which can remain high even when
extracellular metabolite concentrations are low. During this delay, wasteful expression
of the uptake pathway continues despite the absence of oleic acid in the environment.
Previous research has shown that upon nutrient induction, metabolite dynamics tend
to lag behind slow upregulation of metabolic enzymes (13). In contrast, here we find
that after inducer depletion, the recovery of metabolic enzymes back to their down-
regulated state lags behind the metabolite dynamics. This has important implications
for designing synthetic control circuits which utilize nonmetabolizable inducers such
as isopropyl-�-D-thiogalactopyranoside (IPTG) or methyl-�-D-thiogalactopyranoside
(TMG). Without consumption of the inducer, the postinduction recovery response will
be slow and may cause a dramatic drain of cellular resources. Our simulations of the
relation between sequestered FadR and recovery time suggest that this inherent lag
can be compensated for by storing and releasing larger amounts of TFs, which
highlights the benefits of maintaining a sequestered pool of FadR.

Further mathematical analyses revealed principles that explain how autoregulation
shapes the recovery time. We found that systems with only negative autoregulation
and constitutive expression can maintain the pool of sequestered FadR needed for a
rapid recovery. In contrast, we found that positive autoregulation loses this storage
over time, resulting in a reduced availability of FadR after nutrient depletion and slower
recovery times. We additionally found that negative autoregulation of the transcription
factor reduces the total biosynthetic cost of for FadR in a full on-off-state cycle
compared to using constitutive expression. This occurs because both systems need to
maintain the same level of sequestered FadR in the on state in order to achieve the
same recovery time, but only negative autoregulation allows FadR synthesis to be
downregulated in the off state. Thus, negative autoregulation provides a resource-
saving strategy for controlling the recovery dynamics compared to constitutive expres-
sion. We found that the transcriptional regulators in 13 out of 18 nutrient uptake
systems (see Table S1) have negative autoregulation, suggesting an evolutionary
pressure for a resource-saving control strategy. Past studies in the literature have found
that expression under negative autoregulation can decrease response times in gene
expression (12), linearize the dose response in responsive systems (21), and even speed
up metabolic dynamics (13). In addition to these properties, we find that negative
autoregulation enables a rapid and more resource-saving metabolic recovery to nutri-
ent depletion.

Recent efforts in synthetic biology focus on engineering gene control circuits to
manipulate microbial metabolism (22–24). One key goal of such control systems is to
rapidly turn off metabolic pathways in response to metabolic signals (25–27). Our
results provide core design principles for engineered metabolic systems with a tunable
response to nutrient depletion, which could be used as a pathway control tool in
bioreactors. Our experiments and simulations reveal that the recovery time can be
simply tuned through well-established promoter engineering techniques (28–30). Fur-
ther, we identified regulatory architectures with differing dynamic responses to nutri-
ent depletion, which provides further avenues for the tuning system response to the
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highly dynamic and heterogeneous environments typical of large-scale fermenters.
These design rules can be readily applied to mitigate against deleterious nutrient
fluctuations found in metabolic engineering applications.

MATERIALS AND METHODS
Materials. Phusion DNA polymerase, T4 DNA ligase, restriction enzymes, and Teknova 5� M9

minimal salts were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Gel purification and
plasmid miniprep kits were purchased from iNtRON Biotechnology (Lynnwood, WA, USA). Oligonucle-
otides were synthesized by Integrated DNA Technologies (Coralville, IA, USA). All other reagents were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

Plasmids, strains, and genome modifications. A list of plasmids used along with promoter
sequences in this study is provided in Text S1 and Tables S3 and S4 in the supplemental data. E. coli
DH10� was used for plasmid construction. The plasmid pSfadDk-rfp was constructed by cloning the fadD
promoter (500 bp upstream of its translation start site) into the 5= end of the rfp gene in a BglBrick vector,
pBbSk-rfp (31), using Golden Gate DNA assembly (32). The positively autoregulated fadR strain was
engineered by replacing fadR’s native promoter with the FadR-activated promoter PfadRpo via CRISPR-
Cas9 genome editing (33). Detailed engineering methods and the characterization of the PfadRpo

promoter are described in Text S1.
Three reporter strains were created to measure expression dynamics from the fadD promoter. These

strains were created by transforming plasmid pSfadDk-rfp into either the wild-type DH1 strain, DH1
ΔfadE, or an engineered strain with positively autoregulated fadR, resulting in the wild-type (WT)
reporter, ΔfadE mutant reporter, and PA reporter, respectively.

Medium conditions. All strains were grown from single colonies and cultivated overnight in
Luria-Bertani (LB) medium before the experiments. For off-state culture conditions, cells were grown in
M9 minimal medium (34) supplemented with 1% glycerol and 0.5% Tergitol NP-40 solution (M9G). For
on-state culture conditions, cells were grown in M9G plus 1 mM oleic acid (M9G�OA). All cultures were
supplemented with appropriate antibiotic selection (50 mg/liter kanamycin, 100 mg/liter ampicillin).

Assays of fadD expression dynamics. To measure the recovery dynamics, reporter strains were
grown in 3 ml M9G�OA for 24 to 48 h at exponential-growth state. To rapidly switch nutrients, cells were
centrifuged (5,500 relative centrifugal force [rcf], 2 min) and washed twice in M9G. Cultures were then
diluted in M9G medium to an optical density at 600 nm (OD600) of 0.08 and transferred to a Falcon
96-well imaging microplate (Corning, NY, USA). The microplate was then incubated in an Infinite F200 Pro
plate reader (Tecan, Männedorf, Switzerland) at 37°C with constant shaking. To maintain exponential
growth during measurement, cultures were diluted by a factor of 5 for three times during incubation.
Kinetic measurements of cell density (absorbance at 600 nm) and RFP fluorescence (excitation,
584 � 9 nm; emission, 620 � 20 nm) were taken every 900 s until all diluted cultures reached stationary
phase. Fluorescence from water in the same 96-well plate was used as the background and was
subtracted from all fluorescence measurements. The background-corrected fluorescence was later
normalized by cell density. To calculate the recovery time, the average of three biological replicates were
fitted to an exponential curve, shown in equation 4:

F � a · e�b·t 	 c (4)

where F is the background-corrected, cell-density-normalized fluorescence. The recovery time was
calculated as �50 � log2/b.

For switches after defined times in the on state, cultures were first grown in exponential-growth
phase for 24 to 28 h in M9G. Samples from these cultures were then centrifuged (5,500 rcf, 2 min) and
suspended in M9G�OA with an initial OD600 of 0.08 and cultivated in 96-well plates for various amounts
of time as indicated.

Kinetic model of fatty acid uptake. To study the dynamic response to oleic acid exposure (on
state) and its recovery (off state) (Fig. 1C), we built a kinetic model of the fatty acid uptake system.
We define the model as a system of ordinary differential equations (ODEs) describing the rate of
change of each species, shown in equations 5 to 8:

dR

dt
� PR(R, pr) � kf · R · A2 	 kr · aR � � · R (5)

dD

dt
� bD 	

aD

1 	 (KD · R)2 � � · D (6)

dA

dt
�

kcat,D · OA

Km,D 	 OA
· D �

kcat,B · A

Km,B 	 A
· B � 2(kf · R · A2 � kr · aR) � � · A (7)

daR

dt
� kf · R · A2 � kr · aR � � · aR (8)

where R, D, A, and aR represent the concentrations of transcription factor FadR, uptake enzyme FadD,
internalized fatty acid acyl-CoA, and sequestered complex acyl-CoA-FadR, respectively (Fig. 1B). The
reversible sequestering of one FadR dimer by two acyl-CoA molecules (stoichiometry as defined in
reference 35) is modeled as mass-action kinetics in the term kfRA2 	 kraR. The term PR(R, pr) represents
the expression and autoregulation of the fadR promoter. To model FadR negative autoregulation for the
wild-type strain, we use equation 9:
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PR,n � bn 	
an

1 	 Kn · R
(9)

To fit model parameters, we first extended the model to simulate batch culture and then applied a
least-squares fitting of simulations to time course measurements of RFP fluorescence expressed under an
fadD promoter, from the ΔfadE mutant strain, in various concentrations of oleic acid (see details in Text
S1 and Table S2A). The fitting results are illustrated in Fig. S1, and the fitted parameter values are
reported in Table S2B. These values were used throughout this study, unless otherwise stated. To
understand the impact of the model parameters on the recovery time, we performed global parameter
sensitivity analysis (details in Text S1 and Fig. S4). To model the strains with positive autoregulation and
constitutive expression of FadR, we use equations 10 and 11:

PR,p � bp 	
ap · Kp · R

1 	 Kp · R
(10)

PR,c � pc (11)

Model simulations. The model was solved with the MATLAB R2018a ODE solver suite. To simulate
the on state, simulations were initialized using steady-state values achieved from simulations of the
preculture (oleic acid [OA] concentration, 0 �M), and a constant oleic acid concentration was set to
1,000 �M. Simulations were then run for a defined exposure time. To simulate the off state, the system
was initialized from the state achieved at the end of the on state, and the oleic acid concentration was
set to 0 �M. Simulations were then run to steady state, and recovery times were calculated as the time
from the start of the off state until FadD reached halfway between its initial value and minimum
steady-state value. To calculate the cost of FadR synthesis in the on and off states (Fig. 4C), we integrated
simulations of the FadR synthesis rate over 48 h in each state.

In Fig. 3, for fair comparison, model parameters are set such that the steady-state concentration of
FadR is the same for all three architectures prior to switching to the on state. Likewise, in Fig. 4B and C
for fair comparison, fadR promoter strengths for both architectures were set to achieve the same
concentration of sequestered FadR in the on state (and thus equal recovery times).
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