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Abstract 
Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. 
SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These 
models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also 
being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use 
have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic 
modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.
Key words: differentiation; pancreatic differentiation; pluripotent stem cells; diabetes modeling; transplantation; diabetes; cellular therapy; 
immunosuppression.
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Significance Statement
Stem cell-derived islets (SC-islets) are a promising technology enabling cell replacement therapy and development of improved disease 
modeling of diabetes. This review highlights progress made in the field, including SC-islet differentiation, encapsulation, immunomodulatory 
molecules, gene editing, and disease-mimicking approaches. Continued development of SC-islets will lead to new treatments for many 
different types of diabetes.
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Introduction
The differentiation of stem cell-derived islets (SC-islets) can 
be used to model and treat diabetes. Diabetes affects approx-
imately 537 million adults worldwide.1 This disease is due 
to loss or improper function of pancreatic β-cells, which are 
important to regulate blood glucose levels.2,3 The mechanism 
of β-cell death or dysfunction in different forms of diabetes is 
unknown. To better investigate diabetes pathology, SC-islets 
provide a platform for disease modeling and drug discovery. 
Avenues of study include using patient-derived SC-islets to 
understand the pathophysiology of monogenic forms of di-
abetes, genetically altering SC-islets to recapitulate patient 
mutations, or exposing SC-islets to compounds that induce a 
diabetic phenotype.

The current standard of care for diabetes requires a com-
bination of rigorous monitoring of blood glucose levels, ex-
ogenous insulin injections, and lifestyle changes.2 However, 
this treatment does not mitigate micro- and macrovascular 
changes that lead to end organ damage and the development 
of secondary complications of diabetes such as diabetic reti-
nopathy, neuropathy, nephropathy, and coronary artery dis-
ease, all of which decrease patient quality of life.2-5 As such, a 
therapy capable of mimicking islet function and replacing the 
lost or dysfunctional β-cells would be a breakthrough in di-
abetes treatment. Currently, SC-islets are being pioneered for 
this purpose as they can be produced at scale and have many 
of the defining characteristics found within primary human 
islets. While much work has been done to produce and facil-
itate SC-islet transplantation, challenges such as finding an 
alternative to immunosuppressant use are still being actively 
investigated.6 This review will summarize recent papers using 
SC-islets for disease modeling and for improving transplanta-
tion by creating less immunogenic SC-islets.

Generating stem cell-derived islets
Current differentiation methods
The foundation of modern SC-islet protocols stems from 
understanding the endogenous embryonic development of 
pancreatic islets. In humans, the definitive endoderm (DE) 
is the first stage of pancreatic islet development.7 This can 
be replicated by inducing TGFβ8 and Wnt signaling9 in stem 
cells, creating FOXA2 and SOX17 positive cells (Figure 1). 
Next is the formation of the primitive gut tube by activation 

of RTK signaling.10 The cells are then further differentiated 
into the posterior foregut and then pancreatic progenitor 
cells using various combinations of RTK activation, retinoic 
acid, hedgehog signaling inhibition,10 bone morphogenetic 
protein (BMP) signaling activation,11,12 and PKC signaling 
activation.13,14 The pancreatic progenitor cells express NKX6-
112 (Figure 1). The addition of thyroid hormones and reti-
noic acid, and inhibition of hedgehog, TGFβ, and Notch13 or 
BMP14 signaling create pancreatic endocrine cells. The first 
stem cell-derived endocrine precursor cells contained insulin 
but had low secretion in response to glucose,10 prompting 
many groups to pursue functional improvement of these cells. 
Interestingly, Kroon et al.11 transplanted SC-derived pancre-
atic progenitor cells into diabetic mouse models and found 
that after transplantation, the cells secreted insulin and signif-
icantly lowered blood glucose, illustrating the functional mat-
uration of the SC-derived pancreatic progenitor cells in vivo. 
The field took another step forward when the production of 
similarly functional cells was achieved solely in vitro.13-15 The 
modulation of TGFβ signaling in later stages further improved 
the maturation of SC-endocrine cells leading to a dynamic 
response to glucose.16 Additional studies have targeted the 
cytoskeleton,17 used aggregation methods,16,18 or circadian 
entrainment19 to improve SC-islets maturation in vitro.

Single-cell profiling
While SC-islets are similar to primary islets, they neither 
fully recapitulate primary islet function20 nor express all the 
same markers.21 This led to the investigation of islet com-
position using single-cell sequencing. The pancreatic islet 
of Langerhans is a heterogeneous tissue composed of mul-
tiple cell types, including β-, α-, δ-, ε-cells, and pancreatic 
polypeptide cells.22-24 Transcriptional profiling of cell types 
has indicated that MAFA and SIX3, maturation markers 
expressed in primary human islets, are not expressed in SC 
β-cells.21,25 After transplantation into a diabetic mouse model,  
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG), single-cell sequencing 
revealed the expression of MAFA, UCN3, and G6PC226 
increased with time,27 although the mechanism for this in 
vivo maturation remains unknown. Single-cell sequencing 
data also identified a surface marker CD49a, which could be 
used to sort for SC β-cells.25

SC-islet differentiations produce stem cell-derived 
enterochromaffin-like cells (SC-EC cells),25 regardless of the 
differentiation protocol.21 These off-target SC-EC cells are 

Figure 1. Representative diagram of the differentiation of SC-islets. While the differentiation protocols for SC-islets can differ in the small molecules or 
growth factors used, they all go through similar developmental stage progression.10-19 The nomenclature for each stage can vary between protocols. The 
first stage is the definitive endoderm, characterized by the induction of FOXA2, SOX17, and CD177. FOXA2 and HNF1B are markers of the next stage, 
the primitive gut tube. Pancreatic progenitor cells express PDX1, SOX9, NKX6-1, and GP2. In addition to PDX1 and NKX6-1, endocrine progenitor cells 
express CHGA and NGN3. Common markers for SC-islets are INS, SIX2, GCG, SST, and NKX6-1.
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an enteroendocrine cell type found within the intestine28 and 
are not found in primary human islets. TPH1, DDC, and 
LMX1A are key markers used to identify SC-EC cells.25 The 
gene expression profiles of SC β-cells and SC-EC cells led 
to the hypothesis that these cell types arise from a common 
progenitor but acquire different expression patterns at the 
very end of the differentiation. More recently, the addition 
of single nuclei assay for transposase-accessible chromatin 
sequencing (snATAC-seq) has provided evidence indicating 
that SC β-cells and SC-EC cells are more related to each other 
than previously thought.29,30 In addition, snATAC-seq has 
allowed for the identification of candidate genes to improve 
the differentiation of SC-islets.29

Disease modeling
Mouse models are commonly used to model diabetes. 
However, mouse islets have distinct differences compared to 
human islets.31,32 Primary human islets have a lower propor-
tion of β- to α-cells than mouse islets.33 Spatially, mouse is-
lets have a core composed of β-cells, while human islets have 
β-cells distributed throughout the islet,33 which affects func-
tion.34 Isolating human islets from deceased donors provides 
another cell source to study diabetes; however, these cells 
cannot be cultured in vitro for an extended period, a limited 
supply of donors are available, and there is donor-to-donor 
variability. SC-islets have provided a valuable resource by 
being readily available and plentiful, and they can be cultured 
for extended periods. Here, recent literature is highlighted 
that use genetic and chemical methods to model diabetes 
using SC-islets (Figure 2). This review mainly focuses on re-
cent publications to provide a contemporary perspective on 
disease modeling and to build upon previously published 
reviews.35-39

Patient-derived or genetically edited SC-islets
Various studies use human induced pluripotent stem cells 
(iPSCs) derived from patients with diabetes or CRISPR/Cas9 
to introduce a mutation into human pluripotent stem cells 

(hPSC). iPSC- or hPSC-derived SC-islets are used to inves-
tigate many diabetes-associated diseases such as Maturity-
onset diabetes of the young (MODY), Wolfram Syndrome 
(WFS), permanent neonatal diabetes (PNDM), congenital 
hyperinsulinemia (CHI), type 1 diabetes (T1D), and type 2 
diabetes (T2D; Figure 2).

Induced pluripotent stem cells have been derived from a va-
riety of MODY patients.40-42 HNF1A mutations, which cause 
MODY-3, a monogenic form of diabetes, have been studied 
using SC-islets.43-46 Recent studies used iPSCs from HNF1A-
MODY patients or CRISPR/Cas9 to target HNF1A and 
differentiate the stem cells into SC-derived endocrine cells. 
These HNF1A mutations caused the differentiation to favor 
an α-cell signature, reduced insulin secretion,43,44 decreased 
calcium levels, changed morphology of insulin granules,43 
and reduced metabolic function44 in SC-derived endocrine 
cells. In opposition, a different mutation in HNF1A induced 
insulin hypersecretion and increased calcium signaling.45 A 
common truncated mutation in HNF1A induced disruptions 
to the differentiation by interacting with HNF1B, leading 
to reduced PDX1 and NKX6.1 expression in pancreatic 
progenitors.46 These studies have added to the existing liter-
ature on pathogenesis of MODY-3 and emphasized the im-
portance of studying different mutations within the HNF1A 
gene.

WFS is caused by mutations in the WFS1 gene, which 
can lead to the development of diabetes mellitus and optic 
nerve atrophy.47 iPSCs from patients with WFS are used 
to study the diabetic aspect of this syndrome.48 A study 
investigated a mutation in the WFS1 gene with high prev-
alence in the Ashkenazi Jewish population. iPSCs were 
produced from 2 WFS patients with different variants, and 
differentiated into SC-islets.49 The patient-derived SC-islets 
had different effects on cell type proportions, although both 
variants reduced insulin secretion in response to glucose. 
The depleted insulin secretion was improved with the ad-
ministration of Tauroursodeozycholic acid (TUDCA) and 
4-phenyl butyric acid (4-PBA), molecular chaperones that 
improve protein folding. This data was used as the basis for 
an ongoing clinical trial with AMX0035, which reported 

Figure 2. SC-islets as a disease model for diabetes. Here, 3 methods are described using SC-islets to model different forms of diabetes such as 
Maturity-onset diabetes of the young (MODY), Wolfram Syndrome (WFS), permanent neonatal diabetes (PNDM), congenital hyperinsulinemia (CHI), 
type 1 diabetes (T1D), or type 2 diabetes (T2D). The first method is through the induction of pluripotent stem cells from patients with these forms of 
diabetes. These patient-derived stem cells are then differentiated into SC-islets. The second method is by introducing diabetes-associated mutations 
into stem cells. Researchers then differentiate the stem cells into stem cell-derived endocrine cells and compare the mutation with wild-type/isogenic 
control. The third way is to differentiate SC-islets using nondiabetic stem cells and culture them with compounds that mimic the diabetic environment.
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improvements in the glycemic control and vision of WFS 
patients.50 Another study used CRISPR/Cas9 to knockout 
(KO) WFS1 in hPSCs. The authors found that WFS1 KO 
SC-islets had downregulated translational signaling, which 
can be indicative of integrated stress response (ISR) acti-
vation.51 Use of the ISR inhibitor, ISRIB, decreased stress 
granules and apoptosis in WFS1 KO SC-islets compared 
to control cells. This previous study provides evidence 
that targeting ISR could treat WFS-associated diabetes. 
Another approach used CRISPR/Cas9 to correct WFS1 
variants in patient-derived iPSCs.52 The SC-islets derived 
from the corrected iPSCs had restored insulin secretion. 
Transplantation of the corrected SC-islets cured diabetic 
mice, indicating the promise of SC-islet autologous cell re-
placement therapy for WFS patients.

PNDM is found in babies under 6 months of age who 
present with hyperglycemic events.53 Mutations in INS, 
which codes for insulin, are present in patients with PNDM. 
Heterozygous INS mutations cause dedifferentiation of 
patient-derived SC-islets by upregulating ALDH1A3+/
NKX6.1+ cell populations after transplantation into a 
mouse model.54 The heterozygous mutations54 and a pro-
insulin cysteine mutation55 in INS induced endoplasmic re-
ticulum (ER) stress in SC-islets. An intronic INS mutation 
created ectopic splicing sites, leading to a splice isoform in 
the patient-derived SC-islets, and reduced C-peptide secre-
tion.56 If an INS mutation is corrected, this can restore in-
sulin secretion in vitro.57

T1D is an autoimmune disease in which T cells attack the 
pancreatic β-cells.4,5 A variety of differentiation protocols 
derived SC-islets from patient-derived iPSCs.58-60 These cells 
functioned similar to nondiabetic SC-islets. TYK2, a risk var-
iant for T1D, has been knocked out in iPSCs using CRISPR/
Cas9,61 leading endocrine progenitor cells to have increased 
KRAS and reduced NEUROG3, NKX6.1, and NKX2-2 
expression. Interestingly, when SC-islets were treated with 
TNFα, the wild-type SC-islets had high levels of MHC Class 
I expression whereas the TYK2 KO SC-islets had almost no 
expression. This provides a possible target to reduce the auto-
immune attack on the pancreatic β-cells during T1D.

T2D is mainly characterized by impaired insulin sensi-
tivity, leading to β-cell dysfunction.3 In Southwestern Native 
Americans, KCNQ1, located in an imprinted gene region, 
is associated with T2D.62 The authors targeted SNPs at the 
KCNQ1 locus in hiPSCs derived from a Native American 
patient with T2D, resulting in a functional hemizygous de-
letion in KCNQ1. In endocrine progenitor cells, this dele-
tion caused increased expression of CDKN1C, known to 
reduce β-cell mass, and decreased expression of H19, known 
to increase β-cell mass. Another T2D study used SC-islets to 
investigate PAX463; variants in PAX4 have been associated 
with T2D in East Asian populations. Knockout of PAX4 in 
nondiabetic iPSCs did not inhibit the differentiation of these 
cells into SC-endocrine cells; however, there was increased 
expression of α-cell markers and decreased β-cell iden-
tity markers in SC-islets. The authors also used nondiabetic 
donor-derived iPSCs containing specific PAX4 variants to dif-
ferentiate SC-islets. These variants increased polyhormonal 
cells, lowered insulin content, and altered glycolysis. When 
they corrected the variant in iPSCs using CRISPR/Cas9, the 
phenotype was rescued. Parallel genomic platforms have also 
been developed to better interrogate T2D genetics with islet 
phenotype.64

There are multiple studies investigating CHI using stem 
cells.65 CHI can be caused by dysregulation of the KATP-channel 
in β-cells. A recent publication used patient-derived iPSCs 
from a CHI patient with a mutation in the gene ABCC8, which 
encodes for the SUR1 protein,66 part of the KATP-channel. This 
mutation increased the cell population, proliferation, and in-
sulin secretion of SC-β cells. SUR1-mutated SC-islets induced 
hypoglycemia in transplanted mice. The in vivo and in vitro 
data from SC-islets recapitulate the phenotype seen in CHI 
patients with SUR1 mutations, leading to a promising disease 
model to further investigate this disease mechanism.

Compounds to model diabetes in SC-islets
SC-islets can be treated with a variety of exogenous agents to 
recapitulate environmental elements of diabetes pathogenesis. 
Many studies have found increases in ER stress during dia-
betic conditions.67,68 Thapsigargin is a known chemical that 
induces ER stress by inhibiting the SERCA2b pump, causing 
changes in calcium levels.69 A study used thapsigargin, cyto-
kine mix (IL1β, TNFα, and IFNy), or high glucose on SC-islets 
to study diabetes-associated stress.70 The authors compared 
the response of primary human islets and SC-islets to the pre-
vious conditions and found both exhibited increased genes 
associated with stress and immune interactions. Both primary 
and SC-islets also had decreased glucose-stimulated insulin 
secretion (GSIS) after treatement with the compounds. The 
authors then knocked down commonly upregulated genes 
under stress, B2M, CDKN1, NLRC5, and XBP1 and found 
these genetic knock downs to reduce apoptosis in stressed 
SC-islets. Another study found that ER stress, in the form of 
thapsigargin, was essential to induce T-cell activation when 
co-culturing nondiabetic (ND) or T1D-derived SC-islets with 
autologous peripheral blood mononuclear cells.71 The authors 
also found the T-cell activation to be specific to co-cultures 
with stressed SC-β cells and not stressed SC-α cells, even 
though ER stress response was similar in both cell types. ER 
stress compounds have also been used to study the effects of 
drugs on pancreatic islets.72 The authors treated SC-islets with 
thapsigargin, or thapsigargin and imeglimin, an antidiabetic 
drug. Administration of thapsigargin alone increased apop-
totic cells, while the addition of imeglimin reduced apoptosis. 
This study highlights the utility of SC-islets as a model system 
to study antidiabetic agents.

During the early stages of diabetes, immune cells infil-
trate the pancreas and produce proinflammatory cytokines, 
such as IL-1, IFNα/γ, and TNFα. These cytokines can harm 
the pancreatic islet and induce cytocidal effects on isolated 
human islets.73 To determine if these cytokines had similar 
effects in SC-islets, a study compared SC-islets and primary 
human islets treated with cytokines.74 They found that IFNγ 
and IL1β increased apoptosis, induced inflammation- and ER 
stress-related gene expression, and decreased β-cell identity 
gene expression in both SC-islets and primary human islets. 
This data indicates that cytokine treatment induces a similar 
response in SC-islets and primary human islets.74,75 To un-
derstand inflammatory response during differentiation, in-
flammatory cytokines (IL1β, TNFα, and IFNy) were added 
to DE, multipotent pancreatic progenitor, and SC-β cells.75 
They found increases in apoptosis in DE and SC-β cells, with 
a higher level of apoptosis in SC-β cells. There was no dif-
ference in nitric oxide (NO) levels in the supernatants of 
cytokine-treated SC-islets, which led to the hypothesis that 
the activation of apoptosis used a NO-independent pathway, 
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such as JNK or p38 signaling, which were both upregulated 
under cytokine exposure. Another group knocked down 
PTPN2, a T1D susceptibility gene, in SC-islets, and found 
increased cytotoxicity when treated with IFNα or TNFα.76

Hyperglycemia and dysfunction of glucose uptake in the 
liver are features of T2D. To model this in vitro, a microfluidic 
system was used to co-culture hPSC-derived liver and islet77 
cells. Treatment with high glucose for 5 days reduced ox-
ygen consumption rate (OCR) and glucose transporter ex-
pression, reproducing features of T2D. When the co-cultured 
cells were treated with high glucose and metformin, a drug to 
treat diabetes, this combination improved the OCR and ex-
pression of glucose transporter proteins. Furthermore, com-
bination of disease-relevant hPSC-derived tissues with other 
technologies, such as single-cell sequencing,78 would provide 
further insights.

SC-islets as a functional cure
Challenges of transplantation
Advances in primary human islet transplantation paved the 
way for transplant of their stem cell-derived counterparts. 
In humans, cadaveric islet transplantation previously re-
quired that patients use a combination of immunosuppressive 
drugs to prevent transplant rejection, including diabetogenic 
glucocorticoids, dampening the procedure’s therapeutic 
potential. Before 2000, only approximately 8% of allo-
graft patients achieved insulin independence for more than 
1 year.79 In 2000, Shapiro et al. published the Edmonton 
Protocol, which revolutionized islet transplantation by vastly 
improving the longevity of these allogeneic transplants. The 
authors attributed this to improved methods of islet isola-
tion and the development of new immunosuppressive drugs, 
which allowed them to eliminate glucocorticoids in their 
islet transplantation protocol. All 7 patients in this land-
mark paper achieved insulin independence. A larger study 
used the Edmonton protocol and showed that 16 out of 36 
subjects could demonstrate insulin independence for a year 
after final transplantation.80 Another study that tracked a co-
hort of transplant patients over 20 years showed that 32% 
of patients maintained insulin independence for 5 years, and 
20% for 10 years after first transplantation.81

Though the development of the Edmonton protocol was 
a large stride forward in a viable treatment for T1D, failure 
to maintain insulin independence remains a challenge. One 
paper using positron-emission tomography and computed 
tomography (PET-CT) imaging and 18F-fluorodeoxyglucose 
(18F-FDG) labeling found that the expected radioactivity of 
18F-FDG-labeled islets in the liver peaked at 75%.82 They 
also observed some radioactivity located in other parts of 
the body, and a sharp increase in C-peptide, which occurred 
within the first hour post-transplantation. The authors state 
that both of these observations corroborate that there is de-
struction of transplanted islets soon after transplantation.

Given the current state of SC-islet transplantation, studies 
to optimize the procedure and prevent SC-islet loss would 
be valuable to the field. One study investigating aspects of 
SC-islet transplantation, focusing on the site of injection, 
number of transplanted SC-islets, and diabetic state of mice, 
helped elucidate the impact of these factors on transplanta-
tion success.83 Regarding the location of the transplant, the 
authors observed that injection into the kidney capsule was 
the best location to lower blood glucose levels in diabetic 

mice. The authors also found that at least 2 million SC-islet 
cells were needed to reverse streptozotocin (STZ) induced 
diabetes and significantly increase C-peptide levels in immu-
nocompromised mice. Interestingly, transplanting 5 million 
SC-islet cells underneath the kidney capsules of diabetic and 
nondiabetic mice led to similar serum human C-peptide levels 
when measured randomly at 2 weeks and via in vivo GSIS. 

While the above study added to the body of literature 
optimizing the procedure of SC-islet transplantation, un-
derstanding challenges at the cellular level that may have 
led to graft failure is also important. Two main factors that 
are thought to contribute to graft death are oxygen depri-
vation and transplant rejection by the immune system.84–86 
There may be value in the use of biomaterials or vasculariza-
tion approaches to overcome the challenges of islet survival 
after transplantation.87–92 This review will focus on recent 
work improving SC-islet transplantation by reducing graft 
immunogenicity.

Design of hypoimmune SC-islets
The use of immunosuppressive drugs in islet transplantation 
has been previously mentioned in this review as a serious risk of 
islet transplantation.84,93 Patients taking immunosuppressants 
are at increased risk of malignancy and infections. Specific 
immunosuppressants such as calcineurin inhibitor tacrolimus, 
which was used in the 2000 Edmonton protocol paper, have 
been shown to be nephrotoxic. Current solutions for immu-
nosuppression include the use of encapsulation devices or 
encapsulating biomaterials, combination approaches using 
encapsulation alongside immunomodulatory molecules, and 
genetic engineering to prevent immune rejection (Figure 3).

The encapsulation devices for islet transplantation are 
designed to contain islets and have pores that allow nutrients 
and waste products to diffuse through, but prevent immune 
cells from infiltrating the graft.84,94,95 The device also keeps the 
transplanted islets from leaving the graft. Keeping the graft 
within the device would allow for swift removal should the 
cells become malignant or the graft fibrotic, which has been 
a major problem when it comes to encapsulation devices. 
In 2015, a macroencapsulation device was reported to be 
able to maintain a graft of pancreatic endoderm cells that 
could mature into islet-like cells upon transplantation into 
mice.96 The encapsulated islet-like cells showed improved 
in vivo GSIS performance over time. Data from a phase I/
II clinical trial building upon this technology reported that 
a number of patients receiving these encapsulated grafts had 
increased fasting C-peptide and post-meal C-peptide levels.97 
Since then, many groups have reported success with islet 
macroencapsulation.98–103

An alternative to macroencapsulation is microencapsulation,  
in which biomaterials are used to encapsulate individual islets, 
improving nutrient exchange relative to macroencapsulation. 
In 2016, a group was able to show that SC-islets encapsulated 
in triazole–thiomorpholine dioxide alginate were able to main-
tain normoglycemia in diabetic immunocompetent C57BL/6J 
mice upon transplantation, and showed less immune cell infil-
tration 2 weeks post-transplantation.104 The incorporation of 
immunomodulatory molecules into biomaterials has paved the 
way for an alternate strategy that focuses on building immune 
tolerance to the islet transplant. One group investigated the 
ability of CXCL12 to enhance SC-islet microencapsulation.105 
To do this, CXCL12 was mixed with alginate prior to SC-islet 
encapsulation. The authors found that encapsulation with 
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CXCL12 improved SC-islet C-peptide secretion by in vitro 
GSIS. The encapsulated SC-islets containing CXCL12 were 
able to stably reduce the blood glucose of diabetic mice for 
a longer period of time than those encapsulated with algi-
nate microcapsules alone. At 20 weeks post-transplantation, 
mice who had received encapsulated islets with CXCL12 had 
a significantly higher fasting serum C-peptide compared to 
that of mice that received encapsulated islets alone. Another 
group found that cotransplantation of islet allografts and 
polyethylene glycol hydrogel microspheres presenting a chi-
meric protein consisting of Fas ligand and streptavidin into 
diabetic nonhuman primates was able to decrease blood glu-
cose levels.106 A preliminary study has investigated the use 
of human elastin-like recombinamers as an alternative to 
the aforementioned biomaterials in microencapsulation of 
human SC-islets.107

Taking the concept of immunomodulation one step fur-
ther, genetic engineering of the islet cells themselves to pre-
vent immune rejection is another strategy that has been 
investigated. For example, the transplantation of islet-like 
organoids overexpressing PD-L1 was able to improve 
blood glucose levels of NSG and diabetic immunocompe-
tent C57BL/6J mice, similar to the transplantation of mouse 
islets.108 Another approach to genetically engineering pro-
tection from the recipient immune system is the deletion 
of human leukocyte antigens (HLAs). One group showed 
that deletion of all classical HLAs with the exception of 
HLA-A2 and HLA-E/F/G can reduce NK cell activation 
in response to SC-islet exposure in vitro.109 For 8 weeks, 
these deletions helped maintain the graft better than wild-
type SC-islets when transplanted into NSG mice. Another 
group has shown the promise of combining HLA class I 
and II deletions with CD47 overexpression.110 They show 
that B2m−/− Ciita−/− Cd47-overexpressing mouse and B2M−/− 
CIITA−/− CD47-overexpressing human iPSC derivatives 
can be transplanted into allogeneic mice and humanized 
mice, respectively. The authors also observed that the 
gene-edited mouse and human iPSCs and iPSC derivatives 
grew or maintained their volume when compared with 
injected wild-type counterparts. These cells also reduced 

NK cell activation in vitro, as evidenced by decreased 
signal on IFNγ Elispot assays. These findings have been 
more robustly supported with data from transplantation 
of human SC-islets and rhesus macaque primary islets 
with the aforementioned gene edits into diabetic immu-
nocompetent humanized mice111 and nonhuman primates 
respectively.112,113

While the rationale for the above genetic edits came 
from prior literature, there have been efforts to do genome-
wide screens using CRISPR/Cas9 to conduct an unbiased 
search for genes that would be protective against the im-
mune system. Two papers have reported results from in 
vivo CRISPR knockout (CRISPRko) screens. A genome-
wide CRISPRko screen in which CRISPR library-transduced 
SC-islets were transplanted into a humanized mouse model 
identified CXCL10 as a knockout target to support graft 
survival and function.114 This cytokine is thought to play 
a role in recruiting T cells and macrophages in T1D path-
ogenesis. Another group conducted a CRISPRko screen 
by transplanting CRISPR library-transduced NIT-1 mouse 
insulinoma cells into nonobese diabetic (NOD) mice. They 
found that RNLS, a protein that has been shown to help reg-
ulate blood pressure and heart rate, can reduce CD8 T-cell 
activation and improve graft survival.115

Concluding statements
Protocols to produce SC-islets are designed to recapitu-
late the endogenous developmental process in humans. 
Multiple different protocols exist each creating functional 
SC-islets that mimic their primary counterparts. Single-cell 
and snATAC sequencing have revealed cell type-specific 
transcriptional and chromatin differences between primary 
and SC-islets. In particular, a cell type not found in pri-
mary human islets, SC-EC cells, was discovered through 
sequencing methods. Further studying of this off-target 
cell type could lead to an islet composition more remi-
niscent of primary islets. In addition, studies have found 
SC-islets to be immature. In vivo transplantation and cir-
cadian rhythm modification have been shown to improve 

Figure 3. Strategies to achieve SC-islet immune protection. There are 4 main methods that have been investigated to protect SC-islets from 
the recipient immune system. One method uses a macroencapsulation device to contain the entire SC-islet transplant. Building on the idea 
of encapsulation, another method uses biomaterials to surround individual SC-islets—a technique called microencapsulation. This can include 
immunomodulatory molecules embedded into the encapsulating material to induce immune tolerance. A closely related method jointly transplants 
SC-islets with separate nonencapsulating biomaterials presenting the immunomodulatory molecules. The fourth method involves gene editing of 
SC-islets so that they themselves are immune evasive or not immunogenic.
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maturation.26,83,116 Advancements in understanding and 
improving SC-islets will lead to progress in disease mod-
eling and as a cell therapy for diabetes.

This review summarizes recent publications using 
SC-islets to both study diabetes and develop strategies to 
protect transplanted islets. To study diabetes, groups have 
differentiated patient-derived iPSCs into SC-islets or used 
CRISPR/Cas9 to study specific mutations that cause different 
forms of diabetes. In addition, compounds have been added 
to SC-islet media to mimic diabetic environments. SC-islets 
are not the perfect model system; however, as the protocols 
improve, so will disease modeling. Though SC-islets are still 
in need of optimization, the cumulative efforts thus far have 
demonstrated the vast potential of these cells for transplan-
tation.93 However, protecting SC-islets from the recipient im-
mune system remains a challenge. Vertex Pharmaceuticals 
has 2 ongoing phase I/II clinical trials (NCT05791201 and 
NCT04786262) using SC-islet transplantation to treat T1D 
in a small number of patients.117 These efforts are timely, 
as the United States Food and Drug Administration has re-
cently approved the use of primary pancreatic islets as a cell 
therapy for T1D. In summary, SC-islets have a multitude of 
applications, and improvements to islet identity, function, 
and transplantation will advance the study of diabetes and 
its treatment.
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