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Abstract

Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes.
SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These
models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also
being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use
have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic
modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.
Key words: differentiation; pancreatic differentiation; pluripotent stem cells; diabetes modeling; transplantation; diabetes; cellular therapy;
immunosuppression.
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Significance Statement

Stem cell-derived islets (SC-islets) are a promising technology enabling cell replacement therapy and development of improved disease
modeling of diabetes. This review highlights progress made in the field, including SC-islet differentiation, encapsulation, immunomodulatory
molecules, gene editing, and disease-mimicking approaches. Continued development of SC-islets will lead to new treatments for many
different types of diabetes.
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Introduction

The differentiation of stem cell-derived islets (SC-islets) can
be used to model and treat diabetes. Diabetes affects approx-
imately 537 million adults worldwide.! This disease is due
to loss or improper function of pancreatic B-cells, which are
important to regulate blood glucose levels.>* The mechanism
of B-cell death or dysfunction in different forms of diabetes is
unknown. To better investigate diabetes pathology, SC-islets
provide a platform for disease modeling and drug discovery.
Avenues of study include using patient-derived SC-islets to
understand the pathophysiology of monogenic forms of di-
abetes, genetically altering SC-islets to recapitulate patient
mutations, or exposing SC-islets to compounds that induce a
diabetic phenotype.

The current standard of care for diabetes requires a com-
bination of rigorous monitoring of blood glucose levels, ex-
ogenous insulin injections, and lifestyle changes.? However,
this treatment does not mitigate micro- and macrovascular
changes that lead to end organ damage and the development
of secondary complications of diabetes such as diabetic reti-
nopathy, neuropathy, nephropathy, and coronary artery dis-
ease, all of which decrease patient quality of life.>S As such, a
therapy capable of mimicking islet function and replacing the
lost or dysfunctional B-cells would be a breakthrough in di-
abetes treatment. Currently, SC-islets are being pioneered for
this purpose as they can be produced at scale and have many
of the defining characteristics found within primary human
islets. While much work has been done to produce and facil-
itate SC-islet transplantation, challenges such as finding an
alternative to immunosuppressant use are still being actively
investigated.® This review will summarize recent papers using
SC-islets for disease modeling and for improving transplanta-
tion by creating less immunogenic SC-islets.

Generating stem cell-derived islets

Current differentiation methods

The foundation of modern SC-islet protocols stems from
understanding the endogenous embryonic development of
pancreatic islets. In humans, the definitive endoderm (DE)
is the first stage of pancreatic islet development.” This can
be replicated by inducing TGFf® and Wnt signaling’ in stem
cells, creating FOXA2 and SOX17 positive cells (Figure 1).
Next is the formation of the primitive gut tube by activation
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of RTK signaling.!” The cells are then further differentiated
into the posterior foregut and then pancreatic progenitor
cells using various combinations of RTK activation, retinoic
acid, hedgehog signaling inhibition,'” bone morphogenetic
protein (BMP) signaling activation,'*!> and PKC signaling
activation.'>!"* The pancreatic progenitor cells express NKX6-
1'2 (Figure 1). The addition of thyroid hormones and reti-
noic acid, and inhibition of hedgehog, TGFf3, and Notch'? or
BMP'* signaling create pancreatic endocrine cells. The first
stem cell-derived endocrine precursor cells contained insulin
but had low secretion in response to glucose,'® prompting
many groups to pursue functional improvement of these cells.
Interestingly, Kroon et al.!! transplanted SC-derived pancre-
atic progenitor cells into diabetic mouse models and found
that after transplantation, the cells secreted insulin and signif-
icantly lowered blood glucose, illustrating the functional mat-
uration of the SC-derived pancreatic progenitor cells in vivo.
The field took another step forward when the production of
similarly functional cells was achieved solely in vitro.!3"*s The
modulation of TGFp signaling in later stages further improved
the maturation of SC-endocrine cells leading to a dynamic
response to glucose.'® Additional studies have targeted the
cytoskeleton,!” used aggregation methods,'®!® or circadian
entrainment' to improve SC-islets maturation in vitro.

Single-cell profiling
While SC-islets are similar to primary islets, they neither
fully recapitulate primary islet function® nor express all the
same markers.”! This led to the investigation of islet com-
position using single-cell sequencing. The pancreatic islet
of Langerhans is a heterogeneous tissue composed of mul-
tiple cell types, including p-, a-, 8-, e-cells, and pancreatic
polypeptide cells.?*?* Transcriptional profiling of cell types
has indicated that MAFA and SIX3, maturation markers
expressed in primary human islets, are not expressed in SC
[3-cells.??5 After transplantation into a diabetic mouse model,
NOD.Cg-Prkdcsd 1127'V!/Sz] (NSG), single-cell sequencing
revealed the expression of MAFA, UCN3, and G6PC22%
increased with time,”” although the mechanism for this in
vivo maturation remains unknown. Single-cell sequencing
data also identified a surface marker CD49a, which could be
used to sort for SC p-cells.?

SC-islet  differentiations produce stem cell-derived
enterochromaffin-like cells (SC-EC cells),”* regardless of the
differentiation protocol.?! These off-target SC-EC cells are
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Figure 1. Representative diagram of the differentiation of SC-islets. While the differentiation protocols for SC-islets can differ in the small molecules or
growth factors used, they all go through similar developmental stage progression.’® The nomenclature for each stage can vary between protocols. The
first stage is the definitive endoderm, characterized by the induction of FOXA2, SOX17, and CD177. FOXA2 and HNF1B are markers of the next stage,
the primitive gut tube. Pancreatic progenitor cells express PDX1, SOX9, NKX6-1, and GP2. In addition to PDX1 and NKX6-1, endocrine progenitor cells
express CHGA and NGN3. Common markers for SC-islets are INS, SIX2, GCG, SST, and NKX6-1.
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an enteroendocrine cell type found within the intestine?® and
are not found in primary human islets. TPH1, DDC, and
LMX1A are key markers used to identify SC-EC cells.?® The
gene expression profiles of SC f-cells and SC-EC cells led
to the hypothesis that these cell types arise from a common
progenitor but acquire different expression patterns at the
very end of the differentiation. More recently, the addition
of single nuclei assay for transposase-accessible chromatin
sequencing (snATAC-seq) has provided evidence indicating
that SC B-cells and SC-EC cells are more related to each other
than previously thought.?”*® In addition, snATAC-seq has
allowed for the identification of candidate genes to improve
the differentiation of SC-islets.”

Disease modeling

Mouse models are commonly used to model diabetes.
However, mouse islets have distinct differences compared to
human islets.?3? Primary human islets have a lower propor-
tion of B- to a-cells than mouse islets.’> Spatially, mouse is-
lets have a core composed of B-cells, while human islets have
[-cells distributed throughout the islet,>® which affects func-
tion.** Isolating human islets from deceased donors provides
another cell source to study diabetes; however, these cells
cannot be cultured in vitro for an extended period, a limited
supply of donors are available, and there is donor-to-donor
variability. SC-islets have provided a valuable resource by
being readily available and plentiful, and they can be cultured
for extended periods. Here, recent literature is highlighted
that use genetic and chemical methods to model diabetes
using SC-islets (Figure 2). This review mainly focuses on re-
cent publications to provide a contemporary perspective on
disease modeling and to build upon previously published
reviews.33?

Patient-derived or genetically edited SC-islets

Various studies use human induced pluripotent stem cells
(iPSCs) derived from patients with diabetes or CRISPR/Cas9
to introduce a mutation into human pluripotent stem cells
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(hPSC). iPSC- or hPSC-derived SC-islets are used to inves-
tigate many diabetes-associated diseases such as Maturity-
onset diabetes of the young (MODY), Wolfram Syndrome
(WFS), permanent neonatal diabetes (PNDM), congenital
hyperinsulinemia (CHI), type 1 diabetes (T1D), and type 2
diabetes (T2D; Figure 2).

Induced pluripotent stem cells have been derived from a va-
riety of MODY patients.**> HNF1A mutations, which cause
MODY-3, a monogenic form of diabetes, have been studied
using SC-islets.***¢ Recent studies used iPSCs from HNF1A-
MODY patients or CRISPR/Cas9 to target HNF1A and
differentiate the stem cells into SC-derived endocrine cells.
These HNF1A mutations caused the differentiation to favor
an a-cell signature, reduced insulin secretion,** decreased
calcium levels, changed morphology of insulin granules,*
and reduced metabolic function* in SC-derived endocrine
cells. In opposition, a different mutation in HNF1A induced
insulin hypersecretion and increased calcium signaling.* A
common truncated mutation in HNF1A induced disruptions
to the differentiation by interacting with HNFIB, leading
to reduced PDX1 and NKX6.1 expression in pancreatic
progenitors.* These studies have added to the existing liter-
ature on pathogenesis of MODY-3 and emphasized the im-
portance of studying different mutations within the HNF1A
gene.

WES is caused by mutations in the WEFESI gene, which
can lead to the development of diabetes mellitus and optic
nerve atrophy.*” iPSCs from patients with WFS are used
to study the diabetic aspect of this syndrome.*® A study
investigated a mutation in the WEFESI gene with high prev-
alence in the Ashkenazi Jewish population. iPSCs were
produced from 2 WFS patients with different variants, and
differentiated into SC-islets.*’ The patient-derived SC-islets
had different effects on cell type proportions, although both
variants reduced insulin secretion in response to glucose.
The depleted insulin secretion was improved with the ad-
ministration of Tauroursodeozycholic acid (TUDCA) and
4-phenyl butyric acid (4-PBA), molecular chaperones that
improve protein folding. This data was used as the basis for
an ongoing clinical trial with AMX0035, which reported
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Figure 2. SC-islets as a disease model for diabetes. Here, 3 methods are described using SC-islets to model different forms of diabetes such as
Maturity-onset diabetes of the young (MODY), Wolfram Syndrome (WFS), permanent neonatal diabetes (PNDM), congenital hyperinsulinemia (CHI),
type 1 diabetes (T1D), or type 2 diabetes (T2D). The first method is through the induction of pluripotent stem cells from patients with these forms of
diabetes. These patient-derived stem cells are then differentiated into SC-islets. The second method is by introducing diabetes-associated mutations
into stem cells. Researchers then differentiate the stem cells into stem cell-derived endocrine cells and compare the mutation with wild-type/isogenic
control. The third way is to differentiate SC-islets using nondiabetic stem cells and culture them with compounds that mimic the diabetic environment.
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improvements in the glycemic control and vision of WFS
patients.’® Another study used CRISPR/Cas9 to knockout
(KO) WEST in hPSCs. The authors found that WESI KO
SC-islets had downregulated translational signaling, which
can be indicative of integrated stress response (ISR) acti-
vation.’! Use of the ISR inhibitor, ISRIB, decreased stress
granules and apoptosis in WFEST KO SC-islets compared
to control cells. This previous study provides evidence
that targeting ISR could treat WFS-associated diabetes.
Another approach used CRISPR/Cas9 to correct WFESI
variants in patient-derived iPSCs.’? The SC-islets derived
from the corrected iPSCs had restored insulin secretion.
Transplantation of the corrected SC-islets cured diabetic
mice, indicating the promise of SC-islet autologous cell re-
placement therapy for WES patients.

PNDM is found in babies under 6 months of age who
present with hyperglycemic events.”® Mutations in INS,
which codes for insulin, are present in patients with PNDM.
Heterozygous INS mutations cause dedifferentiation of
patient-derived SC-islets by upregulating ALDH1A3+/
NKX6.1+ cell populations after transplantation into a
mouse model.** The heterozygous mutations* and a pro-
insulin cysteine mutation®* in INS induced endoplasmic re-
ticulum (ER) stress in SC-islets. An intronic INS mutation
created ectopic splicing sites, leading to a splice isoform in
the patient-derived SC-islets, and reduced C-peptide secre-
tion.’® If an INS mutation is corrected, this can restore in-
sulin secretion in vitro.*’

T1D is an autoimmune disease in which T cells attack the
pancreatic B-cells.*’ A variety of differentiation protocols
derived SC-islets from patient-derived iPSCs.’*** These cells
functioned similar to nondiabetic SC-islets. TYK2, a risk var-
iant for T1D, has been knocked out in iPSCs using CRISPR/
Cas9,%! leading endocrine progenitor cells to have increased
KRAS and reduced NEUROG3, NKX6.1, and NKX2-2
expression. Interestingly, when SC-islets were treated with
TNFa, the wild-type SC-islets had high levels of MHC Class
I expression whereas the TYK2 KO SC-islets had almost no
expression. This provides a possible target to reduce the auto-
immune attack on the pancreatic B-cells during T1D.

T2D is mainly characterized by impaired insulin sensi-
tivity, leading to pB-cell dysfunction.’ In Southwestern Native
Americans, KCNQ1, located in an imprinted gene region,
is associated with T2D.®? The authors targeted SNPs at the
KCNOQT1 locus in hiPSCs derived from a Native American
patient with T2D, resulting in a functional hemizygous de-
letion in KCNQI. In endocrine progenitor cells, this dele-
tion caused increased expression of CDKNIC, known to
reduce B-cell mass, and decreased expression of H19, known
to increase B-cell mass. Another T2D study used SC-islets to
investigate PAX4%; variants in PAX4 have been associated
with T2D in East Asian populations. Knockout of PAX4 in
nondiabetic iPSCs did not inhibit the differentiation of these
cells into SC-endocrine cells; however, there was increased
expression of o-cell markers and decreased B-cell iden-
tity markers in SC-islets. The authors also used nondiabetic
donor-derived iPSCs containing specific PAX4 variants to dif-
ferentiate SC-islets. These variants increased polyhormonal
cells, lowered insulin content, and altered glycolysis. When
they corrected the variant in iPSCs using CRISPR/Cas9, the
phenotype was rescued. Parallel genomic platforms have also
been developed to better interrogate T2D genetics with islet
phenotype.®

Stem Cells Translational Medicine, 2024, Vol. 13, No. 10

There are multiple studies investigating CHI using stem
cells.®> CHI can be caused by dysregulation of the K,  -channel
in B-cells. A recent publication used patient-derived iPSCs
from a CHI patient with a mutation in the gene ABCCS8, which
encodes for the SUR1 protein,® part of the K, ,-channel. This
mutation increased the cell population, proliferation, and in-
sulin secretion of SC-f cells. SUR1-mutated SC-islets induced
hypoglycemia in transplanted mice. The in vivo and in vitro
data from SC-islets recapitulate the phenotype seen in CHI
patients with SUR1 mutations, leading to a promising disease
model to further investigate this disease mechanism.

Compounds to model diabetes in SC-islets

SC-islets can be treated with a variety of exogenous agents to
recapitulate environmental elements of diabetes pathogenesis.
Many studies have found increases in ER stress during dia-
betic conditions.”*® Thapsigargin is a known chemical that
induces ER stress by inhibiting the SERCA2b pump, causing
changes in calcium levels.®” A study used thapsigargin, cyto-
kine mix (IL1f, TNFa, and IFNy), or high glucose on SC-islets
to study diabetes-associated stress.”” The authors compared
the response of primary human islets and SC-islets to the pre-
vious conditions and found both exhibited increased genes
associated with stress and immune interactions. Both primary
and SC-islets also had decreased glucose-stimulated insulin
secretion (GSIS) after treatement with the compounds. The
authors then knocked down commonly upregulated genes
under stress, B2zM, CDKN1, NLRCS, and XBP1 and found
these genetic knock downs to reduce apoptosis in stressed
SC-islets. Another study found that ER stress, in the form of
thapsigargin, was essential to induce T-cell activation when
co-culturing nondiabetic (ND) or T1D-derived SC-islets with
autologous peripheral blood mononuclear cells.” The authors
also found the T-cell activation to be specific to co-cultures
with stressed SC-f cells and not stressed SC-a cells, even
though ER stress response was similar in both cell types. ER
stress compounds have also been used to study the effects of
drugs on pancreatic islets.”> The authors treated SC-islets with
thapsigargin, or thapsigargin and imeglimin, an antidiabetic
drug. Administration of thapsigargin alone increased apop-
totic cells, while the addition of imeglimin reduced apoptosis.
This study highlights the utility of SC-islets as a model system
to study antidiabetic agents.

During the early stages of diabetes, immune cells infil-
trate the pancreas and produce proinflammatory cytokines,
such as IL-1, [FNo/y, and TNFa. These cytokines can harm
the pancreatic islet and induce cytocidal effects on isolated
human islets.” To determine if these cytokines had similar
effects in SC-islets, a study compared SC-islets and primary
human islets treated with cytokines.” They found that IFNy
and IL1p increased apoptosis, induced inflammation- and ER
stress-related gene expression, and decreased B-cell identity
gene expression in both SC-islets and primary human islets.
This data indicates that cytokine treatment induces a similar
response in SC-islets and primary human islets.”*”> To un-
derstand inflammatory response during differentiation, in-
flammatory cytokines (IL1p, TNFa, and IFNy) were added
to DE, multipotent pancreatic progenitor, and SC-f cells.”
They found increases in apoptosis in DE and SC-f3 cells, with
a higher level of apoptosis in SC-B cells. There was no dif-
ference in nitric oxide (NO) levels in the supernatants of
cytokine-treated SC-islets, which led to the hypothesis that
the activation of apoptosis used a NO-independent pathway,
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such as JNK or p38 signaling, which were both upregulated
under cytokine exposure. Another group knocked down
PTPN2, a T1D susceptibility gene, in SC-islets, and found
increased cytotoxicity when treated with IFNa or TNFa.”

Hyperglycemia and dysfunction of glucose uptake in the
liver are features of T2D. To model this in vitro, a microfluidic
system was used to co-culture hPSC-derived liver and islet”
cells. Treatment with high glucose for 5 days reduced ox-
ygen consumption rate (OCR) and glucose transporter ex-
pression, reproducing features of T2D. When the co-cultured
cells were treated with high glucose and metformin, a drug to
treat diabetes, this combination improved the OCR and ex-
pression of glucose transporter proteins. Furthermore, com-
bination of disease-relevant hPSC-derived tissues with other
technologies, such as single-cell sequencing,”® would provide
further insights.

SC-islets as a functional cure

Challenges of transplantation

Advances in primary human islet transplantation paved the
way for transplant of their stem cell-derived counterparts.
In humans, cadaveric islet transplantation previously re-
quired that patients use a combination of immunosuppressive
drugs to prevent transplant rejection, including diabetogenic
glucocorticoids, dampening the procedure’s therapeutic
potential. Before 2000, only approximately 8% of allo-
graft patients achieved insulin independence for more than
1 year.” In 2000, Shapiro et al. published the Edmonton
Protocol, which revolutionized islet transplantation by vastly
improving the longevity of these allogeneic transplants. The
authors attributed this to improved methods of islet isola-
tion and the development of new immunosuppressive drugs,
which allowed them to eliminate glucocorticoids in their
islet transplantation protocol. All 7 patients in this land-
mark paper achieved insulin independence. A larger study
used the Edmonton protocol and showed that 16 out of 36
subjects could demonstrate insulin independence for a year
after final transplantation.®® Another study that tracked a co-
hort of transplant patients over 20 years showed that 32%
of patients maintained insulin independence for 5 years, and
20% for 10 years after first transplantation.?!

Though the development of the Edmonton protocol was
a large stride forward in a viable treatment for T1D, failure
to maintain insulin independence remains a challenge. One
paper using positron-emission tomography and computed
tomography (PET-CT) imaging and 18F-fluorodeoxyglucose
(18F-FDG) labeling found that the expected radioactivity of
18F-FDG-labeled islets in the liver peaked at 75%.% They
also observed some radioactivity located in other parts of
the body, and a sharp increase in C-peptide, which occurred
within the first hour post-transplantation. The authors state
that both of these observations corroborate that there is de-
struction of transplanted islets soon after transplantation.

Given the current state of SC-islet transplantation, studies
to optimize the procedure and prevent SC-islet loss would
be valuable to the field. One study investigating aspects of
SC-islet transplantation, focusing on the site of injection,
number of transplanted SC-islets, and diabetic state of mice,
helped elucidate the impact of these factors on transplanta-
tion success.®® Regarding the location of the transplant, the
authors observed that injection into the kidney capsule was
the best location to lower blood glucose levels in diabetic
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mice. The authors also found that at least 2 million SC-islet
cells were needed to reverse streptozotocin (STZ) induced
diabetes and significantly increase C-peptide levels in immu-
nocompromised mice. Interestingly, transplanting 5 million
SC-islet cells underneath the kidney capsules of diabetic and
nondiabetic mice led to similar serum human C-peptide levels
when measured randomly at 2 weeks and via in vivo GSIS.

While the above study added to the body of literature
optimizing the procedure of SC-islet transplantation, un-
derstanding challenges at the cellular level that may have
led to graft failure is also important. Two main factors that
are thought to contribute to graft death are oxygen depri-
vation and transplant rejection by the immune system.+5¢
There may be value in the use of biomaterials or vasculariza-
tion approaches to overcome the challenges of islet survival
after transplantation.’=> This review will focus on recent
work improving SC-islet transplantation by reducing graft
Immunogenicity.

Design of hypoimmune SC-islets

The use of immunosuppressive drugs in islet transplantation
has been previously mentioned in this review as a serious risk of
islet transplantation.?*%3 Patients taking immunosuppressants
are at increased risk of malignancy and infections. Specific
immunosuppressants such as calcineurin inhibitor tacrolimus,
which was used in the 2000 Edmonton protocol paper, have
been shown to be nephrotoxic. Current solutions for immu-
nosuppression include the use of encapsulation devices or
encapsulating biomaterials, combination approaches using
encapsulation alongside immunomodulatory molecules, and
genetic engineering to prevent immune rejection (Figure 3).

The encapsulation devices for islet transplantation are
designed to contain islets and have pores that allow nutrients
and waste products to diffuse through, but prevent immune
cells from infiltrating the graft.®** The device also keeps the
transplanted islets from leaving the graft. Keeping the graft
within the device would allow for swift removal should the
cells become malignant or the graft fibrotic, which has been
a major problem when it comes to encapsulation devices.
In 2015, a macroencapsulation device was reported to be
able to maintain a graft of pancreatic endoderm cells that
could mature into islet-like cells upon transplantation into
mice.” The encapsulated islet-like cells showed improved
in vivo GSIS performance over time. Data from a phase I/
II clinical trial building upon this technology reported that
a number of patients receiving these encapsulated grafts had
increased fasting C-peptide and post-meal C-peptide levels.””
Since then, many groups have reported success with islet
macroencapsulation.’$-1%3

An alternative to macroencapsulation is microencapsulation,
in which biomaterials are used to encapsulate individual islets,
improving nutrient exchange relative to macroencapsulation.
In 2016, a group was able to show that SC-islets encapsulated
in triazole-thiomorpholine dioxide alginate were able to main-
tain normoglycemia in diabetic immunocompetent C57BL/6]
mice upon transplantation, and showed less immune cell infil-
tration 2 weeks post-transplantation.'® The incorporation of
immunomodulatory molecules into biomaterials has paved the
way for an alternate strategy that focuses on building immune
tolerance to the islet transplant. One group investigated the
ability of CXCL12 to enhance SC-islet microencapsulation.'®
To do this, CXCL12 was mixed with alginate prior to SC-islet
encapsulation. The authors found that encapsulation with
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Figure 3. Strategies to achieve SC-islet immune protection. There are 4 main methods that have been investigated to protect SC-islets from

the recipient immune system. One method uses a macroencapsulation device to contain the entire SC-islet transplant. Building on the idea

of encapsulation, another method uses biomaterials to surround individual SC-islets—a technique called microencapsulation. This can include
immunomodulatory molecules embedded into the encapsulating material to induce immune tolerance. A closely related method jointly transplants
SC-islets with separate nonencapsulating biomaterials presenting the immunomodulatory molecules. The fourth method involves gene editing of

SC-islets so that they themselves are immune evasive or not immunogenic.

CXCL12 improved SC-islet C-peptide secretion by in vitro
GSIS. The encapsulated SC-islets containing CXCL12 were
able to stably reduce the blood glucose of diabetic mice for
a longer period of time than those encapsulated with algi-
nate microcapsules alone. At 20 weeks post-transplantation,
mice who had received encapsulated islets with CXCL12 had
a significantly higher fasting serum C-peptide compared to
that of mice that received encapsulated islets alone. Another
group found that cotransplantation of islet allografts and
polyethylene glycol hydrogel microspheres presenting a chi-
meric protein consisting of Fas ligand and streptavidin into
diabetic nonhuman primates was able to decrease blood glu-
cose levels.!® A preliminary study has investigated the use
of human elastin-like recombinamers as an alternative to
the aforementioned biomaterials in microencapsulation of
human SC-islets.”

Taking the concept of immunomodulation one step fur-
ther, genetic engineering of the islet cells themselves to pre-
vent immune rejection is another strategy that has been
investigated. For example, the transplantation of islet-like
organoids overexpressing PD-L1 was able to improve
blood glucose levels of NSG and diabetic immunocompe-
tent C57BL/6] mice, similar to the transplantation of mouse
islets.'®® Another approach to genetically engineering pro-
tection from the recipient immune system is the deletion
of human leukocyte antigens (HLAs). One group showed
that deletion of all classical HLAs with the exception of
HLA-A2 and HLA-E/F/G can reduce NK cell activation
in response to SC-islet exposure in vitro.'” For 8 weeks,
these deletions helped maintain the graft better than wild-
type SC-islets when transplanted into NSG mice. Another
group has shown the promise of combining HLA class I
and II deletions with CD47 overexpression.''® They show
that B2m~- Ciita”- Cd47-overexpressing mouse and B2M~"-
CIITA”- CD47-overexpressing human iPSC derivatives
can be transplanted into allogeneic mice and humanized
mice, respectively. The authors also observed that the
gene-edited mouse and human iPSCs and iPSC derivatives
grew or maintained their volume when compared with
injected wild-type counterparts. These cells also reduced

NK cell activation in vitro, as evidenced by decreased
signal on IFNy Elispot assays. These findings have been
more robustly supported with data from transplantation
of human SC-islets and rhesus macaque primary islets
with the aforementioned gene edits into diabetic immu-
nocompetent humanized mice''! and nonhuman primates
respectively. 1113

While the rationale for the above genetic edits came
from prior literature, there have been efforts to do genome-
wide screens using CRISPR/Cas9 to conduct an unbiased
search for genes that would be protective against the im-
mune system. Two papers have reported results from in
vivo CRISPR knockout (CRISPRko) screens. A genome-
wide CRISPRko screen in which CRISPR library-transduced
SC-islets were transplanted into a humanized mouse model
identified CXCL10 as a knockout target to support graft
survival and function.!'* This cytokine is thought to play
a role in recruiting T cells and macrophages in T1D path-
ogenesis. Another group conducted a CRISPRko screen
by transplanting CRISPR library-transduced NIT-1 mouse
insulinoma cells into nonobese diabetic (NOD) mice. They
found that RNLS, a protein that has been shown to help reg-
ulate blood pressure and heart rate, can reduce CD8 T-cell
activation and improve graft survival.''

Concluding statements

Protocols to produce SC-islets are designed to recapitu-
late the endogenous developmental process in humans.
Multiple different protocols exist each creating functional
SC-islets that mimic their primary counterparts. Single-cell
and snATAC sequencing have revealed cell type-specific
transcriptional and chromatin differences between primary
and SC-islets. In particular, a cell type not found in pri-
mary human islets, SC-EC cells, was discovered through
sequencing methods. Further studying of this off-target
cell type could lead to an islet composition more remi-
niscent of primary islets. In addition, studies have found
SC-islets to be immature. In vivo transplantation and cir-
cadian rhythm modification have been shown to improve
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maturation.?®$311¢  Advancements in understanding and
improving SC-islets will lead to progress in disease mod-
eling and as a cell therapy for diabetes.

This review summarizes recent publications using
SC-islets to both study diabetes and develop strategies to
protect transplanted islets. To study diabetes, groups have
differentiated patient-derived iPSCs into SC-islets or used
CRISPR/Cas9 to study specific mutations that cause different
forms of diabetes. In addition, compounds have been added
to SC-islet media to mimic diabetic environments. SC-islets
are not the perfect model system; however, as the protocols
improve, so will disease modeling. Though SC-islets are still
in need of optimization, the cumulative efforts thus far have
demonstrated the vast potential of these cells for transplan-
tation.” However, protecting SC-islets from the recipient im-
mune system remains a challenge. Vertex Pharmaceuticals
has 2 ongoing phase I/II clinical trials (NCT05791201 and
NCT04786262) using SC-islet transplantation to treat T1D
in a small number of patients.'"” These efforts are timely,
as the United States Food and Drug Administration has re-
cently approved the use of primary pancreatic islets as a cell
therapy for T1D. In summary, SC-islets have a multitude of
applications, and improvements to islet identity, function,
and transplantation will advance the study of diabetes and
its treatment.
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