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ABSTRACT
Background. Plant innate immunity relies on a broad repertoire of receptor proteins
that can detect pathogens and trigger an effective defense response. Bioinformatic
tools based on conserved domain and sequence similarity are within the most popular
strategies for protein identification and characterization. However, the multi-domain
nature, high sequence diversity and complex evolutionary history of disease resistance
(DR) proteins make their prediction a real challenge. Here we present RFPDR, which
pioneers the application of Random Forest (RF) for Plant DR protein prediction.
Methods. A recently published collection of experimentally validated DR proteins was
used as a positive dataset, while 10x10 nested datasets, ranging from 400-4,000 non-DR
proteins, were used as negative datasets. A total of 9,631 features were extracted from
each protein sequence, and included in a full dimension (FD) RFPDRmodel. Sequence
selection was performed, to generate a reduced-dimension (RD) RFPDRmodel. Model
performances were evaluated using an 80/20 (training/testing) partition, with 10-
cross fold validation, and compared to baseline, sequence-based and state-of-the-art
strategies. To gain some insights into the underlying biology, the most discriminatory
sequence-based features in the RF classifier were identified.
Results and Discussion. RD-RFPDR showed to be sensitive (86.4± 4.0%) and specific
(96.9 ± 1.5%) for identifying DR proteins, while robust to data imbalance. Its high
performance and robustness, added to the fact that RD-RFPDR provides valuable
information related to DR proteins underlying properties, make RD-RFPDR an
interesting approach for DR protein prediction, complementing the state-of-the-art
strategies.

Subjects Agricultural Science, Bioinformatics, Computational Biology, Genomics, Plant Science
Keywords Disease resistance, Plant immunity, Defense response, Machine learning, Random
forest

INTRODUCTION
Plants account for a double-layered immune system for protecting themselves against a
broad spectrum of pathogens. The first layer of defense is composed by transmembrane
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pattern recognition receptors (PRRs) that can recognize pathogen associated molecular
patterns (also known as PAMPs), leading to a pattern-triggered immunity response (PTI,
Hofberger et al., 2014). The PTI usually involves defense gene induction (Chinchilla et al.,
2006), while lead cell wall reinforcement thought callose deposition, and the secretion of
antimicrobial compounds (Zipfel & Robatzek, 2010).

Successful pathogens overcoming PTI can face the second layer of defense. This second
layer is composed mostly by intracellular nucleotide-binding, leucine-rich repeat (NLR)
type proteins. NLRs can recognize specific pathogen effectors, leading to a gene-for-gene
resistance, known as effector-triggered immunity (ETI). Sometimes, pathogens overcome
ETI by gaining new effectors or losing the recognizable ones (Asai et al., 2018); but some
plants can also evolve to recognize new effectors, re-establishing ETI and returning to a
resistant state (Lu & Tsuda, 2020). This ‘zigzag model’ (Jones & Dangl, 2006) summarizes
the evolutionary dynamics between host and pathogen, and allows us to understand why
NLRs are one of the most variable protein families. NLRs diversity relies not only on their
extraordinarily polymorphic nature, but also on their presence-absence and copy-number
variation, observed even between closely related individuals (Van de Weyer et al., 2019).

PRRs, including receptor-like proteins (RLP) and receptor-like kinases (RLK) lack a
unifying conserved architecture. On the other hand, NLRs are usually described as multi-
domain proteins with a highly conserved architecture, including a variable N-terminal
domain (with a coiled-coil domain or a Toll/interleukin-1 receptor), a central nucleotide-
binding (NB) domain, and a C-terminal leucine-rich repeat (LRR) domain (Cesari et al.,
2014). Nevertheless, recent studies suggest that NLRs are more diverse, not only in terms
of sequence, but also in terms of structure and activity, than previously thought (Cesari,
2018; Barragan & Weigel, 2021).

Characterizing the complete repertoire of these plant disease resistance (DR) proteins has
been one of themain objectives of the plant research and breeding community (Hofberger et
al., 2014). Nevertheless, their multi-domain nature, high sequence diversity and structural
complexity, make DR proteins prediction a real challenge (Kourelis & Kamoun, 2020).
Some bioinformatic tools have been developed for DR protein annotation, mostly based
on conserved domain or sequence similarity (Meyer et al., 2003; Steuernagel et al., 2015; Li
et al., 2016; Osuna-Cruz et al., 2018; Santana Silva & Micheli, 2020; Toda et al., 2020).

However, the main drawback of those strategies is that when the relevant signals are too
weak to be detected by general consensus, protein annotationmay fail. By contrast, machine
learning (ML) classifiers, as random forest, can learn specific ‘DR protein rules’ from
positive and negative training datasets without doing previous assumptions. Moreover,
they can extract relevant signatures that are hidden in the sequence data (Sperschneider et
al., 2016; Sun et al., 2020).

The success of a ML strategy relies on the availability of reference datasets. But, curated
collections of experimentally validated sequences are scarce, even for widely studied protein
families (Kourelis & Kamoun, 2020). Indeed, until recently PRGdb (http://prgdb.org/prgdb/)
was the most comprehensive DR database, with only 153 reference proteins (including
both PPRs and NLRs,Osuna-Cruz et al., 2018). This fact definitely limited the development
of ML strategies for DR protein prediction, evidenced by only two reports until now
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(Pal, Jaiswal & Chauhan, 2016; Kushwaha et al., 2016). In mid-2020, RefPlantNLR, an
experimentally validated reference dataset of 415NLRs, was published (Kourelis & Kamoun,
2020), thus providing the necessary framework for the development of robust ML-based
prediction strategies for DR proteins.

Here, we present RFPDR, the first random forest-based disease resistance protein
predictor. RFPDR was trained using a range of feature categories, estimated on a broad set
of validated DR proteins. Features included protein length, sequence-based composition
estimates (amino acid, dipeptide and tripeptides), autocorrelation (normalized Moreau-
Broto, Moran and Geary; Kawashima et al., 2008), composition/transition/distribution
(CTD, Dubchak et al., 1995; Dubchak et al., 1999), and conjoint triad descriptors (Shen et
al., 2007). Added to its predictive capacity, RFPDR provides valuable information related
to DR protein subjacent properties, including their proper grammar. This way, RFPDR
emerges as an attractive and powerful strategy for DR protein prediction, that complements
the current state-of-the-art methods.

MATERIALS & METHODS
Positive and negative datasets construction
Reference DR proteins (i.e., cloned or experimentally validated) from 79 species (32
genera), were selected from bibliography: (a) Osuna-Cruz et al. (2018), 153 DR proteins
(including NLRs and PRRs); (b) Tang, Wang & Zhou (2017), 58 PRRs; (c) Kanyuka &
Rudd (2019), 19 PRRs; (d) Kourelis & Kamoun (2020), 415 NLR. In addition, a literature
revision was performed, in order to broaden the number of validated DR which conform
the positive dataset, with special emphasis on PRRs (Table S1). Clustering (0.95, CD-HIT,
Fu et al., 2012) was used for redundancy removal, retaining a final number of 400 DR
proteins for positive dataset construction (289 NLRs and 111 non-NLRs).

In parallel, the whole proteome FASTA sequence (El-Gebali et al., 2019) of six well
annotated species (three monocots: Hordeum vulgare, Oryza sativa japonica and Triticum
aestivum, and three dicots: Arabidopsis thaliana, Glycine max and Solanum lycopersicum)
were retrieved from Ensembl Plants (https://plants.ensembl.org, release 47). Interproscan
(Jones et al., 2014) was run for these proteomes, and sequences containing Pfam motifs
associated with DR proteins (Osuna-Cruz et al., 2018) were removed, keeping an initial
number of 529,203 potential non-DR proteins. As a second step, an annotation-based filter
was applied, by removing all of the remaining proteins that were previously annotated as
involved in the defense process. Clustering (0.50, word length 3, CD-HIT) was performed
for redundancy removal. Finally, CD-HIT-2D (Fu et al., 2012) was used to compare the
positive and negative datasets. Those sequences belonging to the negative dataset that
showed more than 63% of similarity to one of the positive dataset were blasted, and
eliminated if BLAST showed the best hit with proteins associated with defense processes.
After removing proteins shorter than 113 amino acids (i.e., 113 was the minimum length
observed in the positive dataset), and applying the ‘sanity-check’ routine implemented in
the protr R package (Xiao et al., 2015), a final number of 64,024 non-DR proteins were
kept for negative datasets construction. A custom R script was used for the generation
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Figure 1 Schematic representation of the steps followed for automatic disease resistance protein pre-
diction.

Full-size DOI: 10.7717/peerj.11683/fig-1

of 10 nested random samplings (with ten replicates), ranging from 400 to 4,000 non-DR
proteins (from ratio 1:1, completely balanced; to 1:10, totally unbalanced, positive:negative
datasets, Fig. 1).

An Intel R© CoreTM i9-7960X CPU with 2.80 GHz and 128 GB (8x16GB with
2,666MHz), running Ubuntu 18.04.5 LTS (GNU/Linux 4.15.0-140-generic x86_64),
was used in data modelling. The source code and datasets presented here are available at:
https://github.com/cvfilippi/rfpdr.

Feature extraction and selection
For each protein, the feature vectors were calculated using protr (Xiao et al., 2015): amino
acid, dipeptide and tripeptide composition; autocorrelation (normalized Moreau-Broto,
Moran and Geary; Kawashima et al., 2008); Composition, Transition, Distribution (CTD,
Dubchak et al., 1995; Dubchak et al., 1999); and conjoint triad (Shen et al., 2007). In
addition, sequence length was estimated using a custom script, summarizing a total of
9,631 protein features. All these features were used for full-dimension model estimation.

For dimension reduction, 100 random samplings of n= 400 sequences were performed
on the negative dataset, and combined with the 400 positive sequences (generating 100
1:1 positive:negative datasets). In each dataset, the Mann–Whitney-Wilcoxon U -test
(with Bonferroni correction, Midway et al., 2020) was carried out. All features that were
consistently significant in all datasets were initially kept for reduced-dimension model
estimation. A panel of highly correlated features, capturing the same information, were
also removed from the final set of features used for reduced-dimension model estimation.

Random Forest for Plant Disease Resistance (RFPDR) model estima-
tion and performance computation
The randomForest R package (Liaw &Wiener, 2002) was used for RFPDR models
estimation, based both on full-dimension (FD-RFPDR) and reduced-dimension (RD-
RFPDR). Each replicate of the positive:negative datasets (ratio 1:1 to 1:10), for FD-RFPDR
and RD-RFPDR, were 80/20 train/test partitioned (caTools R package, Tuszynski, 2020).
For validation of training datasets, 10-fold cross-validation was performed (Fig. 1).

Performance metrics were defined from the confusion matrices, which summarize the
results of the RF classification (Silva et al., 2019). Specificity, accuracy, precision, sensitivity
(a.k.a. recall) and F1-score were estimated (Fig. 2). Moreover, the area under the Receiver
Operating Curve (ROC) was also calculated. The R packages vioplot (Adler & Kelly, 2020)
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Figure 2 Performance metrics estimated herein. TN, true negative; FP, false positive; TP, true positive;
FN: false negative.

Full-size DOI: 10.7717/peerj.11683/fig-2

and ROCR (Sing et al., 2005), and R-base functions (R Core Team, 2020), were used for
statistical plots generation.

Feature importance determination
The Gini-based importance (Breiman et al., 1984) was used for the determination of
the most discriminant features for automatic disease resistance protein prediction. In
this regard, the Gini-based importance score for the balanced (i.e., 1:1) FD-RFPDR and
RD-RFPDR models were exploited. After ranking them, the 1% and 5%-top features, and
the first features (which accounted for 50% of the importance), were further evaluated.

Moreover, and in order to get some insights into the DR proteins proper grammar, the
100 most discriminant amino acid, dipeptide and tripeptide composition features in the
balanced (i.e., ratio 1:1) FD-RFPDR and RD-RFPDR models, were also individualized.
Gini-based mean importance values were transformed into their proportional absolute
frequencies, in order to generate word-cloud plots (wordcloud2, Lang & Chien, 2018).

Comparison with sequence-similarity based, baseline and state-of-
the-art strategies
The performance of one replicate 1:1 of our best RFPDR was compared against a sequence-
similarity based strategy (PSI-BLAST, Position Specific Iterated BLAST, Altschul, 1997), a
baseline method (Supported Vector Machine, SVM) and two state-of-the-art DR protein
predictors, for the annotation of an independent test dataset accounting for 160 proteins
(i.e., 20% test partitioned for the selected 1:1 RFPDR).

PSI-BLAST (5 iterations) was run locally, using for database construction all the positive
and negative sequences, except those used as query. For protein prediction, the sequence
accounting for the least e-value and highest score was selected for each query: if it was a
DR sequence, the query was annotated as DR; otherwise, the query protein was annotated
as non-DR.
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Table 1 List of 9,631 sequence-derived features.

Features (classes) No. of extracted
features FD-RFPDR

No. of extracted
features RD-RFPDR

Sequence length 1 1
Amino acid composition 20 4
Dipeptide composition 400 95
Tripeptide composition 8,000 646
Normalized Moreau-Broto autocorrelation 240 139
Moran autocorrelation 240 22
Geary autocorrelation 240 23
Composition 21 10
Transition 21 11
Distribution 105 18
Conjoint triad 343 164
Total 9,631 1,133

Regarding baseline methods, SVMwas trained using the most significant features, on the
same training sequences used for RFPDR model construction. For comparison purposes
with previously reported ML strategies for DR protein prediction, the SVM was trained
based on radial-basis function (RBF) kernel, using the R Packages caret (Kuhn, 2008) and
e1071 (Meyer et al., 2021).

Finally, two state-of-the-art predictors, RRGPredictor (Santana Silva & Micheli, 2020)
and DRAGO2 (Osuna-Cruz et al., 2018) were used for the annotation of the same
independent test dataset. Both softwares were run locally, with default parameters.

Performancemetrics (specificity, accuracy, precision, recall and F1-score)were estimated
for all evaluated methods.

RESULTS
RFPDR model estimation and performance
A total of 9,631 sequence-derived features, belonging to 11 classes, were initially extracted,
and used for FD-RFPDR. TheMann–Whitney-WilcoxonU -test allowed the discrimination
of the most significant features for DR protein identification (Table S2). After removing
highly correlated features, a total of 1,133 out of 9,631 features were used for RD-RFPDR
model estimation. The list and categories of features used for FD and RD-RFPDR is
summarized in Table 1.

In order to test the effect of the unbalance of training datasets on the predictive
performance, ten different FD-RFPDR and RD-RFPDR models were estimated (ratio
1:1 to 1:10, positive:negative datasets), yielding a total of 20 RFPDR (each one with 10
replicates). The performance metrics of each model are summarized in Fig. 3 and Table 2
(mean ± standard deviation). The corresponding ROC curves are presented in Fig. S1.

Feature importance analysis
To analyze the importance of the features in the RFPDR classifier (balanced model,
i.e., ratio 1:1 positive:negative), the Gini importance function was exploited (Table S3).
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Table 2 The performance metrics of each model (mean± standard deviation).

Specificity Accuracy Precision Recall F1-Score AUC Time (m)

Ratio positive:
negative

FD RD FD RD FD RD FD RD FD RD FD RD FD RD

RFPDR 1:1 96.4± 2.2 96.9± 1.5 92.0± 2.1 91.5± 2.3 96.2± 2.2 96.5± 1.9 87.7± 2.9 86.4± 4.0 91.8± 2.2 91.1± 2.5 96.7± 0.3 96.9± 0.3 3.39± 0.05 0.20± 0.01

RFPDR 1:2 99.0± 1.0 99.2± 0.6 92.0± 0.9 93.1± 1.6 97.8± 2.2 98.2± 1.6 79.2± 3.6 81.2± 4.0 87.4± 1.8 88.9± 2.7 96.8± 0.2 97.2± 0.4 5.34± 0.08 0.35± 0.02

RFPDR 1:3 99.5± 0.4 99.6± 0.4 95.0± 1.3 94.7± 0.7 98.1± 1.4 98.2± 1.8 81.3± 4.6 79.4± 1.7 88.8± 2.8 87.8± 1.4 96.7± 0.3 97.3± 0.3 7.54± 0.17 0.55± 0.03

RFPDR 1:4 99.8± 0.3 99.8± 0.2 95.2± 0.5 95.2± 1.2 99.0± 1.2 99.1± 1.1 76.6± 2.4 77.2± 4.4 86.3± 1.3 86.7± 2.9 97.1± 0.3 97.3± 0.4 9.64± 0.21 0.82± 0.01

RFPDR 1:5 99.8± 0.2 99.9± 0.2 95.8± 1.2 96.0± 1.1 98.8± 1.2 99.5± 1.1 76.7± 5.0 76.8± 5.5 86.3± 3.2 86.6± 3.4 96.8± 0.3 97.2± 0.2 12.40± 0.22 1.16± 0.02

RFPDR 1:6 99.9± 0.1 99.9± 0.2 96.8± 0.6 96.5± 0.8 99.5± 1.1 99.3± 1.4 77.3± 3.2 76.1± 4.2 87.0± 2.1 86.1± 2.7 96.8± 0.4 97.4± 0.2 15.06± 0.39 1.52± 0.03

RFPDR 1:7 99.9± 0.2 99.9± 0.1 96.6± 0.8 96.9± 0.8 99.0± 1.5 99.2± 1.3 74.8± 6.1 76.1± 6.2 85.1± 4.1 86.0± 4.2 96.9± 0.2 97.4± 0.4 18.16± 0.35 1.95± 0.05

RFPDR 1:8 100.0± 0.0 99.9± 0.1 97.2± 0.3 97.2± 0.4 100.0± 0.0 99.4± 0.8 75.2± 2.4 74.1± 3.9 85.8± 1.6 84.8± 2.3 96.8± 0.4 97.6± 0.4 21.67± 0.69 2.38± 0.05

RFPDR 1:9 100.0± 0.1 100.0± 0.0 97.6± 0.7 97.1± 0.6 99.7± 1.1 99.8± 0.6 75.6± 5.1 72.4± 4.0 85.9± 3.3 83.9± 2.6 96.9± 0.3 97.4± 0.3 25.87± 0.35 2.89± 0.09

RFPDR 1:10 100.0± 0.1 100.0± 0.1 97.5± 0.6 97.6± 0.5 99.6± 0.8 99.5± 0.8 73.2± 5.6 74.1± 4.6 84.3± 3.6 84.8± 3.0 96.9± 0.5 97.3± 0.3 30.72± 0.96 3.46± 0.13

Notes.
The best classification results on each model are underlined and in bold.
RFPDR, Random-Forest plant disease resistance; FD, full dimension; RD, reduced dimension; AUC, Area under the receiver operating curve; Time (m), computation time (minutes).
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Figure 3 Violin plots of model performance metrics. (A) Full-dimension random-forest plant disease
resistance model (FD-RFPDR); (B) Reduced-dimension RFPDR (RD-RFPDR). AUC, Area under the re-
ceiver operating curve. P:N, positive:negative ratio.

Full-size DOI: 10.7717/peerj.11683/fig-3

Figure 4 (left) shows the ranking of the 5% top features by mean Gini importance value,
and the cumulative importance score, in the FD-RFPDR (482 features) and the RD-RFPDR
(57 features). Among models, the single feature importance was diverse and ranged from
1.31 to 0% in FD-RFPDR and from 3.44 to 0.005% in RD-RFPDR. Figure 4 (right) shows
the importance order of the first features, which accounted for 50% of the importance in
FD-RFPDR (213 features) and RD-RFPDR (90 features).

The categories of the most relevant features for each model were further inspected, and
presented in Table 3. A further description of each feature can be accessed at Table S3. In
addition, the top-1% features were used for a simplified model construction, in order to
determine the pertinence of those features as specific for DR protein discrimination. The
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Figure 4 Gini-based importance feature-analysis. (A) Full-dimension random-forest plant disease re-
sistance model (FD-RFPDR); (B) Reduced-dimension RFPDR (RD-RFPDR. Left: Ranking orders of the
5% top features by importance value and their cumulative importance (blue line). Right: The importance
of the top features, which accounted for 50% of the cumulative importance, and their cumulative impor-
tance (blue line).

Full-size DOI: 10.7717/peerj.11683/fig-4

Figure 5 Word cloud plots with the 100-top most relevant amino acid, dipeptide and tripeptide com-
position features. (A) Full-dimension random forest plant disease resistance model (FD-RFPDR); (B)
reduced-dimension RFPDR (RD-RFPDR).

Full-size DOI: 10.7717/peerj.11683/fig-5

obtained metrics were specificity of 88.5± 3.3, accuracy 87.2± 3.1, precision 89.85± 3.6,
recall 77.6 ± 3.6 and F1-score 83.3 ± 3.4.

The word cloud plots, presenting the 100-top most relevant amino acid, dipeptide and
tripeptide composition features for FD-RFPDR and RD-RFPDR are presented in Fig. 5.

Comparison with alternative strategies
Taking into account the results presented in Table 2, the RD-RFPDR models performed
almost equal to the FD-RFPDR, but using a fraction of the features, thus avoiding potential
overfitting. In addition, the RD model showed a significant reduction in processing times.
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Table 3 Categories of the most relevant features for each model.

Features (classes) No. of most relevant features
(FD-RFPDR)

No. of most relevant features
(RD-RFPDR)

Top 1% Top 5% Cumulative
50%

Top 1% Top 5% Cumulative
50%

Sequence length 1 1 1 1 1 1
Amino acid composition 3 6 3 1 1 3
Dipeptide composition 5 68 24 0 4 8
Tripeptide composition 33 150 78 5 29 42
Normalized Moreau-Broto autocorrelation 10 106 30 2 6 12
Moran autocorrelation 3 18 7 0 2 3
Geary autocorrelation 4 19 8 0 3 4
Composition 8 15 9 1 5 8
Transition 5 12 8 2 4 5
Distribution 20 30 21 0 0 0
Conjoint triad 4 57 24 0 2 4
Total 96 482 213 12 57 90

Notes.
RFPDR, Random-Forest plant disease resistance; FD, full dimension; RD, reduced dimension.

Table 4 Performance metrics –Comparison with other methods.

RD-RFPDR PSI-BLAST SVM RRGpredictor DRAGO2

Specificity 1.000 1.000 0.986 0.986 1.000
Accuracy 0.950 0.799 0.906 0.963 0.969
Precision 1.000 1.000 0.987 0.988 1.000
Recall 0.911 0.640 0.844 0.944 0.944
F1-Score 0.953 0.781 0.910 0.966 0.971

Notes.
The best classification results on each model are underlined and in bold.
RD-RFPDR, reduced dimension - Random forest plant disease resistance predictor; PSI-BLAST, Position Specific Iter-
ated BLAST (Altschul, 1997); SVM, Support Vector Machine; RRGPredictor, (Santana Silva & Micheli, 2020); DRAGO2,
(Osuna-Cruz et al., 2018).

Here, the performance of one replicate of our RD-RFPDR 1:1 model, was compared
to a sequence-similarity based method (PSI-BLAST), a baseline strategy (radial SVM,
following the proposal of Pal, Jaiswal & Chauhan (2016) and two state-of-the-art predictors
(DRAGO2, RRGPredictor, Table S4). The performance metrics for the classification of
independent 160 sequences test dataset (i.e., 20% test partition of the data, for RD-RFPDR
1:1) reached by each strategy are summarized in Table 4.

DISCUSSION
The potential and actual applications of machine-learning (ML) in plant biology have been
exhaustively reviewed (Silva et al., 2019; Mahood, Kruse & Moghe, 2020). Independently
of the field of application, or even the ML strategy, ML robustness strongly depends
on the availability of confident data for model training. The increasing availability of
plant sequencing data, including whole genomes, is opposed to the limited number of
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known and well characterized DR proteins (i.e., cloned or experimentally validated). This
important gap between sequence information and experimental validation has precluded
the development of robust ML classifiers for DR protein prediction, with only two reports
until now.One of them (DRPPP,Pal, Jaiswal & Chauhan, 2016) is a support vectormachine
(SVM) based tool, trained with only 112 validated DR proteins, including both NRLs and
PRRs. The other one (NBSPred, Kushwaha et al., 2016), is also a SVM-based pipeline, that
used predicted NLRs as a training dataset for NLR annotation. Unfortunately, none of
them are available today, due to broken links.

During 2020, a comprehensive collection of experimentally validated NLRs with more
than 400 sequences in 31 plant genera, was published (RefPlantNLR, Kourelis & Kamoun,
2020). This significant increase in validated DR proteins sequence availability, motivates
the development of a new, and more robust, ML approach for DR protein prediction. In
addition, here we complemented the available collection of known DR proteins (Kanyuka
& Rudd, 2019; Kourelis & Kamoun, 2020; Osuna-Cruz et al., 2018; Tang, Wang & Zhou,
2017), which is remarkably enriched in NLRs, with a panel of carefully reviewed PRRs from
bibliography (Table S1).

Beside ML approaches, random forest (RF) emerges as an attractive option for the
current task, given that it is effective in binary classification problems (e.g., is a DR protein
or not), is less computationally expensive, and also allows to understand how each variable
(feature) is contributing to the prediction model.

Even though RF is more robust to overfitting than other ML strategies (Breiman, 2001;
Deneke, Rentzsch & Renard, 2017), feature selection is still recommended (Lv et al., 2019).
Here, feature selectionwas performed by using a non-parametric test (Bonferroni-corrected
Mann–Whitney-Wilcoxon U -test), followed by elimination of some highly correlated
features. As a result, feature counts were reduced from 9,631 to 1,133, significantly
different between DR and non-DR proteins. This way, a full dimension RF model (named
FD-RFPDR), based on 9,631 features and a reduced dimension RF model (named RD-
RFPDR), based on 1,133 features, were developed and used in subsequent analyses.

RF are built on decision trees, which are sensitive to class imbalance. To test this issue,
10 FD- and 10 RD-RFPDR were built based on increasing unbalanced ratios, from 1:1
positive:negative sequences ratio (i.e., 400 positive and 400 negative sequences dataset,
balanced), to 1:10 positive:negative (i.e., 400 positive and 4,000 negative sequences).
Moreover, and given that RF if not deterministic, ten replicates of each model were done,
in order to get a correct estimate of the performance metrics. Therefore, a total of 200 RF
models were trained and tested here.

Independently of the imbalance ratio, the overall performance metrics were always
high: specificity values ranged from 96.4 ± 2.4 to 100.0 ± 0.1; accuracy from 91.5 ± 2.3
to 97.6 ± 0.5; precision from 96.2 ± 2.2 to 100.0 ± 0.0; recall from 72.4 ± 4.0 to 87.7
± 2.9; F1-score from 83.9± 2.6 to 91.8± 2.2 and AUC from 96.7± 0.3 to 97.6± 0.4 (Fig.
3, Table 2). When analyzing each model separately, the main impacts of the imbalance
increase became apparent in specificity, accuracy, recall and F1-score metrics, while
precision and AUC seemed unaffected. As expected, a higher proportion of the ‘negative
class’ increases the specificity score, which is a measure of ‘true negative’ assignment.
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Imbalance also has a positive impact on accuracy values, which take into accounts overall
classification performance. This effect is also expected: the higher the imbalance, the higher
the probability of assigning a correct value to the most abundant class, even by chance. On
the other hand, the imbalance increase had a negative impact in recall and F1-score values.
Recall measures the ‘true positive’ assignment (in this case, reference DR proteins that were
correctly classified) while F1 is a more comprehensive score, as it combines precision and
recall into one metric. In this regard, the balanced model (ratio 1:1) reached the higher
performance for DR protein classification, in terms of recall and F1-score, and was selected
for further analysis.

Something to highlight is that, when working with big data, computation time and
complexity became key factors on determining the best bioinformatics approach and
language (Fourment & Gillings, 2008). Beside models, RD-RFPDR outperformed FD-
RFPDR, not only when considering performance metrics, but also by showing a significant
processing time reduction. Moreover, dimension reduction also impacts on memory
footprint requirements, pointing RD-RFPDR as our best model.

This fact was also apparent when analyzing the feature importance in the RFPDR
classifier. The analysis of features by Gini importance value showed a significant number
of features in FD-RFPDR with importance equal to zero, suggesting that they are not
informative for DR protein prediction, while could increment noise. On the other hand, all
the features used in RD-RFPDR model construction showed importance values different
from zero.When analyzing the cumulative Gini importance score, more than twice features
were needed in FD-RFPDR to reach the same 50% cumulative importance score. Themodel
trained using only the top 1% features achieved a high performance, suggesting that those
top 1% can be considered ‘intrinsic features’ for predicting DR from non-DR proteins.

To further analyze the feature biological meaning, the categories of the most important
features were evaluated. From a numeric perspective, dipeptide and tripeptide composition,
normalized Moreau-Broto autocorrelation, conjoint tried and composition (C) emerged
as the most frequent categories (both in top 5% and cumulative 50% importance, for FD-
RFPDR and RD-RFPDR) (Table 3). Conjoint triad and distribution (D) features were also
abundant in FD-RFPDR, but not in RD-RFPDR. From the ranking perspective, sequence
length (and features capturing length information, as D) emerge as the most important
feature, followed by some transition (T) attributes related to polarity and hydrophobicity,
normalized Moreau-Broto autocorrelation, selected tripeptides (GKT, KTT, VLD) and the
leucine amino acid (Table S3). The fact that features capturing sequence length-related
information emerge among the most important ones makes sense, given that DR proteins
often contain tandem repeats (i.e., leucine-rich repeats, LRRs). Tandem repeats are present
in the longer proteins, as has already been documented (Delucchi et al., 2020). From the
three types of autocorrelation descriptors estimated herein (Moreau-Broto, Moran and
Geary), normalized Moreau-Broto’s were within the most discriminant features for DR
protein classification. This could be a consequence of the definition of each descriptor:
while Moreau-Broto uses the property values on measurement basis, Moran and Geary
measure spatial-autocorrelation (Ong et al., 2007). From the different properties used for
defining the autocorrelation descriptors, hydrophobicity emerged as the most discriminant
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for DR protein classification. Hydrophobicity, added to polarity and normalized Van der
Waals volume, were also among the most discriminant attributes, when considering C and
T features (Table S3). The emergence of hydrophobicity as one of the most discriminant
properties is in accordance with both PRRs and NLRs proteins structure and function,
as described by Morita et al. (2016), Gómez-Gómez & Boller (2000); El Kasmi & Nishimura
(2016), beside others. Regarding their structure, N-terminus hydrophobic domains are
consistent with signal peptides and transmembrane domains (Gómez-Gómez & Boller,
2000). Moreover, the LRR domains in LRR-RLKs were reported to be composed of parallel
β sheets, with their L residues facing towards the inner side of the molecule, generating
a hydrophobic core (Morita et al., 2016). Hydrophobic residues were also reported to
be required for NLR dimerization (El Kasmi & Nishimura, 2016). Moreover, the highly
conserved Walker B motif, located in the nucleotide-binding site of NLRs, is characterized
by the signature hhhhDD/E (where h represents a hydrophobic amino acid, Proell et al.,
2008). When considering their function, DR receptors perceive and interact with signatures
of pathogens and pests to initiate immune pathways. All these interactions are related to
Van der Waals, electrostatic and hydrophobic interactions (Bentham et al., 2017; Burdett
et al., 2019; Wróblewski et al., 2018). Regarding the last feature group evaluated herein, all
the top important conjoint triads contained in their triad an amino acid belonging to the
group {IFLP}, which includes leucine (Table S3).

Sequence-based composition importance was further investigated, in order to gain some
insights into the underlying DR proteins proper grammar. Visual inspection of the word
cloud plots generated using the 100-top sequence for both FD and RD-RFPDR, showed
that the tripeptides GKT, followed by KTT, VLD, LSY, NLK, TTL, HRL, LDD, the single
leucine amino acid (L) and other dipeptides containing L (KL and NL) emerge as the most
important features. These results are in agreement with DR protein biological information.
As mentioned before, NLRs, one of the most important DR protein classes (and the most
abundant in our positive dataset), usually contain LRRmotifs, with the conserved signature
sequence LxxLxLxxNxL. In this regard, it is not surprising that L appeared as the main
amino acid. GKT, the most discriminant tripeptide, and KTT, are conserved motif in NBS
phosphate-binding loop (P-loop), the primary structure of which typically consists of a
glycine-rich sequence followed by a conserved lysine and a threonine (GxxGxGKTTx).
VLD and LDD are conserved motif in kinase-2 (LxxLDDV and LvLDDvW ), present
both in NLRs and receptor-like kinases (Di Gaspero & Cipriani, 2003; Shimizu et al., 2015).
Remarkably, even though the aspartate-derived amino acids lysine (K) and a threonine
(T) conform some of the most discriminant dipeptides and tripeptides, they were not
significant as single amino acids.

In the comparison process with alternative and state-of-the art strategies, the least
performance was achieved by the sequence-similarity based method, PSI-BLAST (Table 4,
Table S4). Regarding SVM, even though the unavailability of the DRPPP model reported
by Pal, Jaiswal & Chauhan (2016) precluded direct comparison, here we trained our SVM
based on radial-basis kernel, as suggested by the authors. Our RD-RFPDRoutperformed the
SVM, reinforcing the notion that RF is a robust strategy for the current task. In addition, two
state-of-the-art methods (DRAGO2, Osuna-Cruz et al., 2018, RRGPredictor, Santana Silva
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&Micheli, 2020) were used for DR protein prediction in the same independent test-dataset.
These two strategies, added to RGAugury (Li et al., 2016), are the unique reported methods
for the identification of the full repertoire of DR proteins (i.e., NLRs and non-NLRs). Many
other strategies exist, but focusing only on NLR prediction (e.g., Steuernagel et al., 2015;
Steuernagel et al., 2020; Toda et al., 2020). DRAGO2 (Osuna-Cruz et al., 2018), based on
sequence similarity and domain composition, consists of a Bash script; it requires a FASTA
file as input, and is fast enough. RRGPredictor (Santana Silva & Micheli, 2020) is a Perl
script that depends on Interproscan (Jones et al., 2014) output for DR protein prediction.
RGAugury (not used here) presents a higher complexity, since it requires the installation
of nine softwares, eight modules, four libraries, and three databases (Li et al., 2016). In
contrast, RD-RFPDR can be used under all main operating systems, includingWindows, as
the source code is written in R. Regarding the comparative performance metrics obtained
by our method with respect to the state-of-the-art strategies, our RD-RFPDR performed
slightly better in some cases, and produced similar results in others. Even though we did not
observe a significant performance increase, the fact that the proposed ML strategy does not
rely on previous assumptions, as domain composition and/or sequence similarity, makes
our RD-RFPDR highly flexible for DR protein prediction, even in rare or unknown species.
The independence of domain composition in ML approaches can allow the identification
of DR proteins that lack canonical or standard DR domains. Indeed, our RD-RFPDR was
the unique strategy able to correctly classify Ty-1 (Tomato yellow leaf curl disease resistance
gene Ty-1), a non-canonical DR (Table S4). In this regard, it is feasible that its prediction
can be further enhanced in the future, when a larger number of experimentally validated
DR proteins become available.

CONCLUSIONS
In this work, we present the development of a plant disease resistance protein predictor,
based on random forest (RFPDR). By using a comprehensive set of experimentally validated
NLRs and PRRs, and an efficient feature selection process, RD-RFPDR emerged as our best
model. RD-RFPDR showed to be sensitive and specific in identifying DR proteins, while
robust to data imbalance. Moreover, the independence from sequence-similarity and/or
domain composition gives RD-RFPDR flexibility, for the identification of DR proteins
that lack the standard domains, while providing insight into the DR proteins underlying
biology. These properties, added to the facts that ourmodel is computationally efficient and
can be used under different operating systems, make RD-RFPDR an attractive approach
for DR protein prediction, complementing the current state-of-the-art strategies.
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