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Background
Over the past three decades, the cancer research community has amassed large quanti-
ties of gene expression data from tumors. The premier example of such data was gener-
ated by The Cancer Genome Atlas [4], which generated bulk RNA-seq and microarray 
data from thousands of tumors across dozens of cancer types. These data have enabled 
a greater understanding into the molecular biology of cancer and have revealed great 
heterogeneity not only between cancer types, but also between tumors of the same 
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information about cellular heterogeneity within a tissue. This is especially important 
in cancer, where tumor and tumor microenvironment heterogeneity directly impact 
development, maintenance, and progression of disease. While publicly available 
scRNA-seq cancer data sets offer unprecedented opportunity to better understand the 
mechanisms underlying tumor progression, metastasis, drug resistance, and immune 
evasion, much of the available information has been underutilized, in part, due to the 
lack of tools available for aggregating and analysing these data.

Results:  We present CHARacterizing Tumor Subpopulations (CHARTS), a web appli-
cation for exploring publicly available scRNA-seq cancer data sets in the NCBI’s Gene 
Expression Omnibus. More specifically, CHARTS enables the exploration of individual 
gene expression, cell type, malignancy-status, differentially expressed genes, and gene 
set enrichment results in subpopulations of cells across tumors and data sets. Along 
with the web application, we also make available the backend computational pipeline 
that was used to produce the analyses that are available for exploration in the web 
application.

Conclusion:  CHARTS is an easy to use, comprehensive platform for exploring single-
cell subpopulations within tumors across the ever-growing collection of public scRNA-
seq cancer data sets. CHARTS is freely available at charts.morgridge.org.
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cancer type [2]. Unfortunately, investigations utilizing this resource are limited by the 
fact that gene expression was profiled using bulk methods, which measure gene expres-
sion on average across thousands, or tens of thousands, of cells in a sample. With the 
advent of single-cell RNA-seq (scRNA-seq), investigators are now able to measure gene 
expression at the single-cell level thereby gaining access to the substantial heterogeneity 
of cells within a tumor and the tumor microenvironment [9]. Publicly available scRNA-
seq cancer data sets offer unprecedented opportunity to better understand the mecha-
nisms of tumor progression, metastasis, drug resistance, and immune evasion. However, 
analyzing these data in the aggregate is challenging, especially for those without strong 
computational skills. To this end, easy-to-use web-based tools are important for ena-
bling the broader research community to perform integrative analyses and, in doing so, 
to increase their ability to leverage their knowledge and comprehensively examine scien-
tific and/or clinically relevant hypotheses in multiple data sets.

While a few web-based tools for analyzing scRNA-seq data are available, they are not 
designed specifically for cancer research or do not easily enable exploration of existing 
public data sets. For example, recent tools such as Alona [7] and Granatum [29] enable 
scRNA-seq analysis in the web browser; however, these tools are not cancer-specific 
and therefore do not enable important cancer-specific tasks such as classifying cells as 
being either transformed malignant cells or untransformed cells of the tumor microen-
vironment. Furthermore, these tools do not enable exploration of preprocessed, publicly 
available scRNA-seq data sets. Another tool, GREIN [16], enables exploration of public 
gene expression data, but it is neither single-cell specific nor cancer-specific and, conse-
quently, does not implement features necessary for single-cell analysis such as cell type 
identification, clustering, or gene set enrichment, nor does it implement cancer-specific 
analyses such as malignancy classification. CancerSEA [27] enables exploration of gene 
set enrichment scores for gene sets pertaining to cancer-related processes, but does not 
enable visualization, differential expression, or cell type identification. In short, while 
web-based tools exist for exploring expression data, most do not allow for detailed anal-
ysis of scRNA-seq data across diverse tumors and data sets.

To address this gap, we present CHARacterizing Tumor Subpopulations (CHARTS), 
a web application and associated computational pipeline for analyzing and characteriz-
ing publicly available cancer scRNA-seq data sets. As described in detail below, for each 
tumor in its database, CHARTS identifies clusters and enables exploration via interac-
tive dimension-reduction methods. Derived clusters are annotated with cell types from 
the Cell Ontology [1] via CellO [3], with information provided on the probability of the 
specific cell type as well as its ancestors. For example, the data may provide substantial 
evidence to classify cells within a cluster as T cells, but less evidence may be available 
to classify cells into more specific functional groups (e.g. helper or memory T cells). In 
addition, for each cluster within each tumor, enrichment of genes involved in biologi-
cal processes and pathways is provided. Genes that are differentially expressed between 
the cluster and others are also available. Finally, CHARTS can be used to distinguish 
malignant vs. non-malignant cells allowing for precise exploration into the interactions 
between cell subpopulations within the tumor microenvironment. CHARTS currently 
enables exploration of 198 tumors across 15 cancer types, and data is being continually 
added. CHARTS is freely available at charts.morgridge.org.
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Implementation
Data set selection and preprocessing

We used the curated database describing single-cell RNA-seq data sets by Svensson 
et al. [22] to identify single-cell cancer data sets that are publicly available in the Gene 
Expression Omnibus (GEO) [6]. We selected all studies that sequenced primary tumor 
samples (i.e., non-cell line and non-xenograft samples) that consist of cells from the 
full tumor microenvironment (i.e., that do not select for a specific cell type). For each 
study, we wrote a custom script for separating cells by their tumor and normalizing the 
data by estimating the transcripts per million (TPM) for each gene and then comput-
ing log(TPM + 1). We note that for droplet-based assays that sequence transcripts only 
from their end, such as Chromium 10x, an estimate of each gene’s TPM in a cell can be 
obtained by dividing each gene’s UMI count by the total UMI count in the cell and mul-
tiplying by one million. By estimating TPM, we measure gene expression using consist-
ent units across assays. We exclude samples for which their corresponding GEO entry 
does not include enough information to estimate TPMs. Specifically, we exclude data 
sets originating from full length assays (i.e., where reads can originate from anywhere 
along the full length of the transcript), such as Smart-seq2 [21], if their GEO entry either 
does not include estimates of TPM, or includes counts, but does not include an esti-
mate of each gene’s expected length, which is required for estimating TPM. This process 
selected 198 tumors across 18 studies comprising a total of 259,488 cells.

These datasets were then processed with an offline computational pipeline. This pipe-
line implements a number of analyses in order to enable comprehensive characterization 
and comparison of tumor subpopulations within and between tumors (Fig. 1). All analy-
sis output is stored in a backend database, which is quickly and easily accessible to a user 
through a frontend web application.

Public scRNA-seq 
Cancer Data

C
el

ls

Genes

Malignancy 
Scoring

Clustering

Dimension 
Reduction

Cell Type 
Annotation

Gene Set 
Enrichment

Differential 
Expression

Web Application

Analysis Pipeline

Backend 
Database

Fig. 1  Overview. A schematic diagram of the CHARTS pipeline. Public scRNA-seq data sets are collected and 
analyzed with a custom pipeline. This pipeline computes clusters, malignancy scores, dimension reduction 
transformations, cell type annotations, gene set enrichment scores, and differentially expressed genes for 
each cluster. Results are stored in a backend database and are accessed from the frontend web application
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Dimension reduction

A user may construct interactive dimension-reduction scatterplots using two or three-
dimensional UMAP [17] or PHATE [18] results. Each cell can be colored by the expres-
sion of a user-specified gene, cluster, malignancy score, cell type, or gene set enrichment. 
Two scatterplots are placed side-by-side enabling users to compare two characteristics 
(e.g. two different genes’ expression values or a gene’s expression value and the predicted 
cell types) within the same tumor or to compare a single characteristic (e.g. a single 
gene’s expression values) between two tumors. For computational efficiency, we perform 
UMAP on the first 50 principal components after running principal components analy-
sis (PCA).

Clustering

Clustering is performed using the Leiden community detection algorithm [25], as imple-
mented in Python’s Scanpy library [26]. Determining the optimal clustering is a chal-
lenging open problem in single-cell RNA-seq analysis [11]. If clustering is too coarse, 
multiple cell types may be erroneously combined into a single cluster. Similarly, if clus-
tering is too fine, homogenous populations of cells may be broken into multiple clus-
ters. Rather than choose a single clustering granularity for all tumors, CHARTS provides 
clusterings at three levels of granularity via three values for Leiden’s resolution param-
eter (0.5, 1.0, and 2.0). Clustering is performed on the first 50 principal components after 
running PCA. The web interface enables a user to select a level of clustering granularity 
for exploring each tumor.

Cell type annotation

For each clustering granularity, each cluster is annotated with cell types from the Cell 
Ontology [1] via CellO [3]. The Cell Ontology is a hierarchically structured knowledge-
base of known cell types. Specifically, the Cell Ontology forms a directed acyclic graph 
(DAG) where edges in the graph represent “is a” relationships. Because of this DAG 
structure, each cell is assigned to a specific cell type as well as all ancestors of this spe-
cific cell type within the DAG. CellO was executed using the isotonic regression correc-
tion algorithm. CHARTS exposes both CellO’s binary cell type decisions for each cell 
type as well as CellO’s estimated probability that each cell is of a given type.

Gene set enrichment

Each cluster’s mean gene expression profile is scored for enrichment of gene sets 
describing molecular processes. Specifically, CHARTS uses GSVA [10] to score each 
cluster for enrichment of gene sets in the hallmark gene set collection from MSigDB [14] 
and the gene set collection used by CancerSEA. Specifically, we treat the TPM expres-
sion measurements as being distributed according to a log-normal distribution [8] and 
use the Gaussian kernel in the GSVA algorithm.

Malignancy status

Each cell is assigned a malignancy score that describes the likelihood that the cell is 
malignant. The malignancy scoring approach builds upon the approaches used by Tirosh 
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et al. [24] and Couturier et al. [5] for classifying cells as either transformed, malignant 
cells or untransformed cells within the tumor microenvironment (Additional file 1: Sup-
plementary Methods).

Differential expression and cluster comparison

For each cluster within each tumor, CHARTS uses a Wilcoxon rank-sum test, as imple-
mented in Scanpy, to compute the set of genes differentially expressed in the given clus-
ter versus cells outside the cluster within the given tumor. CHARTS presents the top 50 
genes ranked according to their significance. In addition to differential expression analy-
sis, CHARTS also presents boxplots and violin plots for comparing the distribution of 
gene expression for a user-selected gene between clusters.

Results
Two case studies demonstrate how CHARTS can be used, both to examine and generate 
new hypotheses.

Case study: dysfunctional CD8 + T cells in lung adenocarcinoma

Investigators have recently reported a dysfunctional population of CD8 + T cells in 
lung cancer [23] and melanoma [15] that express genes associated with immune sup-
pression. In some melanoma samples, this population was also found to be highly 
proliferative [15]. We used CHARTS to explore whether this dysfunctional state 
was common across the majority of CD8 + T cells, and to evaluate whether dys-
functional CD8 + T cells were also highly proliferative. We used both CellO’s clas-
sification results and CD8 expression to find the CD8 + T cell population. We found 
that in the majority of lung adenocarcinomas, only a subset of CD8 + T cells express 
marker genes for this dysfunctional state. Two adenocarcinomas from [13] are shown 
in Fig. 2. Using the gene set enrichment feature of CHARTS, we further found that 
dysfunctional cells are enriched for cell cycle genes, which may indicate that these 
dysfunctional CD8 + T cells are highly proliferative in lung adenocarcinoma, as has 
been recently observed in melanoma.

a

b

Fig. 2  Dysfunctional CD8 + T Cells in Lung Adenocarcinoma. For lung adenocarcinoma tumors LX682 (a) 
and LX676 (b), we used CHARTS to visualize the probability that each cell is a T cell as well as expression of 
CD8A, expression of the dysfunctional CD8 + T cell marker PDCD1, and each cell’s enrichment score for genes 
in CancerSEA’s cell cycle gene set as produced by GSVA
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Case study: monocarboxylate transporters in glioblastoma

We investigated the expression of MCT4, a prognostic biomarker of glioblastoma 
aggression [12, 30]. Using CHARTS, we found that MCT4 tended to be expressed in 
the myeloid tumor-infiltrating immune cells. Two tumors, from Yuan et al. [28] and 
Neftel et al. [19], are shown in Fig. 3a and b respectively. While MCT4 is known to be 
involved in a metabolic symbiosis between hypoxic tumor cells, which express MCT4 
to expel lactate, and oxidative tumor cells, which express MCT1 to intake lactate [20] 
(Fig. 3c), the specific cell types expressing MCT4 in glioblastoma have not been well 
characterized. We used CHARTS to determine which cells express MCT1 in glioblas-
toma and found that this gene was primarily expressed in cells with high malignancy 
scores (Fig. 3a, b). Using the gene set enrichment feature of CHARTS, we observed 
that cells expressing MCT1 tended to express genes enriched for hypoxia, whereas 
cells expressing MCT4 tended to express genes that were less enriched for hypoxia 
(Fig. 3a, b). This observation indicates a possible metabolic symbiosis between malig-
nant cells and myeloid cells in the tumor microenvironment of glioblastoma, which to 
the best of our knowledge, has not been well characterized.

Conclusion
In this work, we present CHARTS: a comprehensive framework for exploring single-cell 
subpopulations within tumors and the tumor microenvironment across ever-growing 
data sets. CHARTS can be used to develop and explore new hypotheses underlying 
tumor progression, drug resistance, and immune evasion. Specifically, CHARTS exposes 
the results of an analysis pipeline executed on publicly available data from GEO.
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Fig. 3  Monocarboxylate Transporter Expression in Glioblastoma. For glioblastoma tumors PJ025 from 
Yuan et al. [28] (a) and MGH125 from Neftel et al. [19] (b), we used CHARTS to visualize the expression of 
MCT4 (gene symbol “SLC16A3” in the CHARTS application), the expression of MCT1 (gene symbol “SLC16A1” 
in the CHARTS application), malignancy score, the probability that each cell is a myeloid cell, and each 
cell’s enrichment score for genes in the Hallmark hypoxia gene set as produced by GSVA. (C) A schematic 
illustration of the metabolic symbiosis between hypoxic, glycolytic tumor cells expressing MCT4 and 
oxidative tumor cells expressing MCT1
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There are a number of avenues that would benefit from further investigation. First, we 
note that CHARTS presents the results of a static analysis pipeline that was executed 
on diverse single cell datasets. Thus, individual datasets may benefit from tweaking the 
pipeline’s parameters on an individual basis (e.g., parameters for clustering or dimen-
sionality reduction). Future work will entail devising methods for fine-tuning the param-
eters used to process each dataset.

We note that this analysis pipeline was executed on published gene expression matri-
ces and did not involve processing the raw sequencing reads. Thus, there may be varia-
bility between data sets due to the varying methods employed by the data submitters for 
alignment, gene expression quantification, and quality control. Future work will seek to 
remove some of this variability by starting with the raw reads from each dataset, rather 
than the expression matrices, and uniformly quantifying expression and filtering cells 
across datasets.

Availability and requirements

Project name: CHARTS
Project home page: https​://chart​s.morgr​idge.org
Operating systems(s): The web application is platform independent. The backend 
pipeline has been tested only on Linux and MacOS.
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License: MIT
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