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ABSTRACT

Next-generation sequencing has paved the way for
the reconstruction of genome-scale metabolic net-
works as a powerful tool for understanding metabolic
circuits in any organism. However, the visualiza-
tion and extraction of knowledge from these large
networks comprising thousands of reactions and
metabolites is a current challenge in need of user-
friendly tools. Here we present Fluxer (https://fluxer.
umbc.edu), a free and open-access novel web ap-
plication for the computation and visualization of
genome-scale metabolic flux networks. Any genome-
scale model based on the Systems Biology Markup
Language can be uploaded to the tool, which auto-
matically performs Flux Balance Analysis and com-
putes different flux graphs for visualization and anal-
ysis. The major metabolic pathways for biomass
growth or for biosynthesis of any metabolite can be
interactively knocked-out, analyzed and visualized
as a spanning tree, dendrogram or complete graph
using different layouts. In addition, Fluxer can com-
pute and visualize the k-shortest metabolic paths be-
tween any two metabolites or reactions to identify
the main metabolic routes between two compounds
of interest. The web application includes >80 whole-
genome metabolic reconstructions of diverse organ-
isms from bacteria to human, readily available for
exploration. Fluxer enables the efficient analysis and
visualization of genome-scale metabolic models to-
ward the discovery of key metabolic pathways.

INTRODUCTION

Metabolic reconstructions from whole-genome sequencing
and biochemical data aim to determine all metabolic pro-
cesses occurring within a cell or whole organism, which
can then be integrated into genome-scale metabolic mod-
els (GEMs) able to predict cellular phenotypes (1,2).
Constraint-based analytical methods such as Flux Balance
Analysis (FBA) can be applied to such models to predict

the steady-state metabolic fluxes during cellular growth (3)
and trace the metabolic flux from input nutrients to biomass
growth and output metabolites (4). Several software tools
have been developed for performing FBA (5,6). However,
the analysis and visualization of the resultant mathemati-
cal solutions is a current challenge due to the large num-
ber of reactions that a typical GEM contains. This hinders
our ability to identify the global metabolic flux through all
reactions in the network and understand how the differ-
ent metabolites participate in different growth phenotypes.
The identification of key chemical routes between metabo-
lites of interest, biomass growth and output bioproducts
toward metabolic engineering applications requires novel
user-friendly pathway analysis tools able to process and ef-
ficiently visualize genome-scale models with thousands of
reactions and metabolites.

Several tools currently exist for the analysis and visual-
ization of GEMs. The Systems Biology Markup Language
(SBML) (7) is the standard format to specify and store
GEMs. Cytoscape is a popular network visualization and
analysis desktop tool (8,9), for which several plugins are
available for processing SBML metabolic models (10,11).
However, the resultant networks including all the reactions
and metabolites in a GEM are typically a ‘hairball’ of re-
actions, making it difficult to visualize and understand in-
dividual pathways. The visualization tools ModelExplorer
(12) and Grohar (13) for metabolic networks have a sim-
ilar limitation when visualizing complete GEMs. Escher
(14) is one of the most widely used tools for GEM inter-
active visualization, with an easily accessible web-based in-
terface. However, Escher only displays a sub-set of reactions
in the model, using predefined maps to position pre-selected
metabolites and reactions. A current extension (15) is also
able to perform FBA through the Escher web application,
but is still limited to the subset of metabolites and reactions
predefined in the layout map. Similarly, Pathview (16) and
its web implementation (17) can visualize metabolic path-
ways for GEMs using predefined layout maps for a subset
of reactions, which are obtained from KEGG (18). MetEx-
plore (19) is a web application able to import and explore
GEMs and visualize them with the MetExploreViz com-
ponent (20). However, the application is optimized for vi-
sualizing small subsets of reactions and is not suitable for

*To whom correspondence should be addressed. Tel: +1 410 455 5726; Fax: +1 410 455 3875; Email: lobo@umbc.edu

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4666-6118
https://fluxer.umbc.edu


W428 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

visualizing whole GEMs with an automated clean layout
that is easy to explore. There is thus a need for user-friendly
tools based on robust graph-theory methods (21–24) that
can automatically visualize with efficient and clean layouts
a complete GEM and its FBA solution fluxes directly from
an SBML model.

Here we present Fluxer, a web-application for the au-
tomated computation of GEM graphs based on flux and
their interactive visualization with a user-friendly inter-
face. The application is able to take as input an arbitrary
GEM specified in SBML format and automatically com-
pute and efficiently visualize the complete network and
their metabolic fluxes. The tool performs FBA of the model
and includes several algorithms to compute optimized vi-
sualizations of complete GEMs, including spanning trees,
dendrograms and physics-based force layouts. The applica-
tion can also compute and display the k-shortest metabolic
paths between two reactions or metabolites, using a user-
customizable metric for the link weights based on the com-
puted metabolic fluxes. The graph visualizations are inter-
active, and the user can select any metabolite or reaction as
the root for the flux tree, obtain information about the re-
actions and metabolites such as their chemical structures,
and easily adjust the node labels, weight calculations, and
inclusion or not of cofactors, zero-flux reactions or cellular
localizations in the visualized graph. Fluxer allows any user
with no programming experience to exploit the potential of
genome-scale metabolic models in their ability to assist in
the understanding of the whole metabolic network of an or-
ganism and predict specific phenotypes. Fluxer’s combined
use of FBA and graph theory for metabolic network visual-
ization and analysis in a user-friendly web-application can
pave the way for advancements in applications for metabolic
engineering.

FEATURES

Fluxer computes genome-scale metabolic flux networks, an-
alyze and visualize them in the form of spanning trees,
k-shortest paths and complete graphs with an interactive
and user-friendly web interface. Any GEMs in SBML for-
mat can be uploaded to the tool, which then performs
FBA optimization and calculates and renders the complete
model with different interactive graph visualizations. The
metabolic networks are encoded as bipartite graphs, where
nodes represent metabolites or reactions and edges the in-
volvement of a metabolite in a reaction as a product or a
reactant. Nodes can be selected to display detailed infor-
mation including metabolite structures and reaction fluxes.
Furthermore, any number of reactions can be knocked-out
through the interface to simulate enzyme gene deletions
and their phenotypic effects in terms of growth rates and
fluxes. The different available graph representations make
use of the computed steady-state reaction fluxes, which
together with the stoichiometric coefficients and molecu-
lar weights constitute the weight of each edge. The span-
ning tree graph calculates the input flux pathways toward
the root node––the biomass growth or any other reaction
or metabolite of interest––visualizing the most important
pathways contributing to the root node. The k-shortest
paths graph calculates the shortest pathways with highest

fluxes between two metabolites or reactions of interest, eas-
ily visualizing each separate path in an interactive graph.
Finally, the complete graph includes all the reactions and
metabolites of the model, which can be visualized as a reac-
tion network or as a tree rooted with a particular metabolite
or reaction of interest. The models uploaded to the appli-
cation can be privately shared with an automatically gen-
erated unique web link, and >80 genome-scale metabolic
reconstructions from the BiGG Models knowledge base
(25,26) are readily available in the web server for their anal-
ysis and visualization. The web application includes a tuto-
rial explaining the main analysis options and features of the
tool.

Spanning tree

A GEM can contain thousands of metabolites participat-
ing in thousands of reactions, which represents a challenge
for their complete visualization and understanding. The
most important pathways leading to a given metabolite
or reaction can be buried in the complexity of a whole-
genome metabolic network. Most current network visual-
ization tools overcome this topological problem by dividing
the network into different submodules and either requiring
the users to manually place the nodes or have pre-defined
maps of the most popular pathways. However, manually
placing nodes in a neat layout is a time-consuming task and
when dividing the whole metabolic network into submod-
ules, it is difficult to have a complete and global understand-
ing of the main pathways leading to a given metabolite.

Fluxer is able to automatically and efficiently visualize
any GEM as a spanning tree rooted with the objective func-
tion reaction defined in the model (usually the biomass
growth reaction) or any other reaction or metabolite of in-
terest. The spanning tree is recursively connected with the
upstream most important reactions and metabolites lead-
ing to the root to neatly visualize the whole network. Each
metabolic input and output for each reaction (an edge in
the graph) is assigned a weight, which is the product of a
user-selectable combination of the reaction metabolic flux
(calculated from the FBA analysis), stoichiometry coeffi-
cient and metabolite molecular weight. The tree includes
every node (metabolite or reaction) in the model once, with-
out duplication. Starting from the root node, the algorithm
builds the tree by iteratively adding the edge with the high-
est weight that connects a current node in the tree with a
node not yet present in the tree; in case of more than one
candidate edge having the same weight, the edge with the
shortest path to the root node is selected; and in case of sim-
ilar depth, the edges are selected according to the alphabet-
ical order of their labels. In addition, precedence is always
given to the edges with fluxes toward the root node, so the
elements participating in the production of the metabolite
or reaction of interest are always added first to the tree. In
this way, the selected edge weights determine the layout of
the tree. By default, the weights are calculated as the prod-
uct of the reaction metabolic flux and metabolite stoichiom-
etry coefficient, so the metabolites selected first are those
that contribute the most amount (or mass if the molecular
weight is also selected) to the root metabolite or reaction. If
none of the weight options are selected, all edges would have
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a default weight of 1 unit, and the spanning tree algorithm is
equivalent to an alphabetically sorted breadth-first search,
showing the shortest metabolic paths to the root node from
every metabolite and reaction in the model.

Five different layouts can be used to visualize the result-
ing spanning tree. A tree layout based on Reingold and Til-
ford’s tidy drawing algorithm (27) shows the nodes in hier-
archical order, where the leaf nodes of the tree are placed on
the left of the graph and the root node is placed on the right.
In this way, the graph shows the metabolic flux toward the
root node from left to right. A dendrogram layout can be
selected to show all the leaf nodes at the same level in the
left side of the graph, so they are easily identified, whereas
the root node is placed in the right location of the graph. In
addition, the tree and dendrogram layouts can be visualized
with a radial configuration, useful for a more compact rep-
resentation. Finally, a physics-based force layout simulation
based on a velocity Verlet numerical integrator for simulat-
ing particles motion dynamics (28) can be selected to display
the spanning tree. In this force layout, nodes dynamically
repeal each other with repulsive forces, whereas edges keep
them connected. This results in a dynamic arrangement of
the position of the nodes, which tends to converge to organic
configurations where related metabolites and reactions are
clustered together.

The spanning tree with the different layouts can be vi-
sualized in Fluxer with an interactive user-friendly inter-
face, which allows the exploration and customization of
the different options for the graph and layout computa-
tions. Figure 1A shows the web application interface dis-
playing the spanning tree for a GEM of Escherichia coli
BL21 (29), excluding reactions with zero flux and cofactor
metabolites. The tree is rooted with the cell biomass reac-
tion, which represents the objective function in the FBA.
The FBA optimization resulted in a growth rate of 0.820
h−1, as shown in the interface––a value identical to the orig-
inal report (29). The left card also shows various graph op-
tions including layouts, weight metrics and other general
customizations. The right card displays the chemical struc-
ture, names, id, crosslink and reactions and metabolites of
the selected node. Figure 1B shows the zoomed region in
the graph top area marked with the red box in Figure 1A,
which includes reactions leading to the biosynthesis of cit-
rate for energy production during glycolysis and the citric
acid cycle. These pathways were reported to carry the high-
est flux in the organism (29), and Fluxer placed them at the
top of the graph as the most important pathways for the
selected tree root––the cell biomass reaction for this model.
Figure 1C shows the spanning tree with a radial layout when
including the cofactor metabolites, which results in a more
compact visualization useful for large graphs. These results
show how Fluxer can categorize and recognize the most im-
portant pathways in a GEM by combining the computed
fluxes with the spanning tree algorithm to display on the
top area of the visualization the reactions and metabolites
highly contributing to the root node selected for the tree.

K-shortest paths

Finding the most important metabolic pathways between
two metabolites of interest can provide insights into the

metabolism of the cell and aid in their optimization for
metabolic engineering applications, as well as for the for-
mulation of therapeutic strategies in metabolic-based dis-
orders (23,24,30). A number of computational approaches
have been proposed for metabolic pathfinding (31). Among
them, the k-shortest path method is a popular approach to
determine the most important and biologically meaning-
ful metabolic pathways by finding the shortest k metabolic
paths between two metabolites given a particular metric
(32). Several tools are available for metabolic pathfinding,
but they are generally restricted to pre-processed GEMs,
not freely-available, or lack an intuitive user-friendly graph-
ical interface (33,34).

Fluxer can compute and visualize the k-shortest paths
between two metabolites or reactions for any GEM. The
method is based on Yen’s algorithm to compute the k-
shortest loop-less paths in a network (35). The algorithm
first finds the shortest path between the two given nodes of
interest. For this, the application uses the same method that
for the spanning tree algorithm, where the edge weights can
be selected to be a combination of the reaction metabolic
flux, stoichiometry coefficient and molecular weight. Next,
the algorithm iteratively removes every edge in the short-
est paths found so far, one at a time, after which the same
shortest path algorithm is applied. The computation stops
when the first k shortest paths have been found or all
edge removals have been exhausted. Alternatively, the al-
gorithm can find the best k-shortest paths by exhausting all
edge removals and then returning the k best paths among
all found, which are guaranteed to be optimal at the ex-
pense of a longer computational time. Similar to (30), co-
factor nodes––including currency metabolites and small
molecules like water and metabolic factors like ATP––can
be excluded from the computation of the shortest paths,
since they are involved in a large number of reactions that
are not connected by any other metabolite. In this way, the
algorithm finds the most important pathways in terms of
number of reactions and flux between two metabolites or
reactions of interest.

The resulting k-shortest paths can be visualized together
as an acyclic graph with a dagre or a force layout. The da-
gre layout (Chris Pettitt) positions the nodes of the acyclic
graph using layered techniques and cross-minimization al-
gorithms (36–39), neatly separating the different paths
found by the algorithm. In addition, the k-shortest paths
can be visualized with the simulation-based force layout,
similar to the method in the spanning tree visualization.
This layout is useful for large k-shortest path graph, which
highlights clustering in the graph.

A set of k-shortest path graphs computed and visualized
with Fluxer for a GEM of Plasmodium falciparum 3D7 (40)
from the BiGG Models knowledge base (26) is presented
in Figure 2. All the graphs shown are visualized with the
dagre layout. Figure 2A shows the five shortest paths be-
tween D-glucose and glyceraldehyde 3-phosphate using just
the number of reactions as a metric. The figure illustrates
how each path is shown with a different color (when over-
lapping, the color of the shorter path is shown). Reactions
from both the glycolysis and the pentose phosphate path-
ways are involved in the shortest paths between the two
metabolites selected, as it was predicted previously (41). In



W430 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 1. Fluxer interface showing a spanning tree visualization of a genome-scale metabolic model of Escherichia coli BL21 (DE3) rooted in the cell
biomass reaction. (A) The interactive web application can display the complete metabolic network with clear layouts computed in base of the optimized
metabolic fluxes. The left card shows general information about the model and gives access to different visualization options. The right card shows details
about the selected metabolite or reaction. (B) Zoomed view of one of the branches in the metabolic flux tree (red box). (C) Radial visualization of the flux
tree including cofactor metabolites. Green nodes represent reactions and yellow nodes represent metabolites. The reaction flux is displayed below each
reaction node. Arrow heads indicate direction of fluxes going toward (blue edges) or coming from (red edges) the reaction or metabolite selected as the
root of the spanning tree.

addition, Fluxer can clearly display fluxes and reactions be-
tween compartments in the model, as it is shown in the
transport reaction of glyceraldehyde 3-phosphate from the
cytosol to the chloroplast (last reaction). Figure 2B shows
the shortest paths obtained when the edges are weighted
with the product between the reaction flux and the metabo-
lite stoichiometric coefficients. In this case, the resulting

graph shows at the top the myo-inositol biosynthesis path-
way, as it is indeed an alternate route when glucose cannot
be converted to fructose 6-phosphate, as previously found in
P. falciparum (42). The reactions that do not carry flux can
be excluded from the shortest path calculation, as shown in
Figure 2C. Finally, Figure 2D shows the best 10 shortest
paths computed between D-glucose and phosphoenolpyru-
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Figure 2. Computation and visualization by Fluxer of different best k-shortest paths in a metabolic model of Plasmodium falciparum 3D7. Each path
is displayed with a different color; when overlapping, the shorter path color is shown. (A) The computed five shortest paths between D-glucose and
glyceraldehyde 3-phosphate using the number of reactions as a metric. (B) Changing the metric to be the product between the reaction flux and the
metabolite stoichiometric coefficients results in longer paths but with higher fluxes. (C) Excluding the zero flux reactions results in only two paths carrying
flux between the source and target metabolites. (D) The ten shortest paths between D-glucose and phosphoenolpyruvate using the number of reactions as
a metric. (E) When including the cofactor metabolites in the graph computation, the ten shortest paths using the number of reactions as a metric contain
fewer reactions.

vate with the number of reactions as a metric. When the
cofactor metabolites are included in the computation of
the 10 shortest paths, the computed pathways are short-
ened considerably, as shown in Figure 2E, due to the re-
actions being connected by small molecules such as hy-
drogen ions and water, or cofactors such as ATP. Thus,
Fluxer shortest path graph can be used to discover alter-
native pathways between metabolites in a GEM through
the use of flux values and stoichiometric coefficients in
the metric, representing an essential tool for metabolic
engineering.

Complete graph

The spanning tree and k-shortest path graphs can be used
to analyze a GEM and discover the most important reac-
tions and metabolites for different applications. However, it
is also useful to display the complete GEM including all the
reactions and metabolite connections, which can highlight
global reaction and metabolite clusters in the model. For
this, Fluxer can visualize the complete graph with all the
reactions and metabolites in the GEM using the same tree
and physics-based force graph layouts as for the spanning
tree graph. The complete graph can be visualized with tree
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Figure 3. Final configuration of a physics-based force layout rendered by Fluxer for the compete graph of a metabolic model of Saccharomyces cerevisiae
S288C. The metabolites and reactions of the whole-genome network are automatically clustered according to their cellular localization. The labels indicate
the main resulting cluster, each corresponding to a particular cellular localization. (A) cytosol, (B) mitochondria, (C) peroxisome, (D) cell nucleus and (E)
endoplasmic reticulum. Red edges indicate product-reaction node connections, while blue edges indicate reaction-reactant node connections. The cellular
localization of the metabolites and reactions are displayed below each node.

layouts rooted in any metabolite or reaction in the model,
which includes all the reaction-metabolite edges. The tree
layouts of the complete graph are computed with a breadth-
first search, and in contrast to the spanning tree, it includes
duplications of metabolite and reaction nodes so all edges
are displayed in the graph. In addition, Fluxer can visual-
ize the complete graph with the layouts information directly
included in GEMs containing the SBML Layout Extension
(43).

The complexity of GEMs is evident when viewing the
complete model in a force-based layout. Figure 3 shows
the complete graph of a fully compartmentalized GEM for

Saccharomyces cerevisiae S288C (44) using the force layout
in Fluxer. Interestingly, the layout results in the metabo-
lite and reactions in the model forming clusters according
to their location in the cell. The largest cluster is centered
in the graph (A) and contains mostly cytosol associated
metabolites and reactions. These nodes are the closest to
the cell biomass reaction. In addition, four other clusters
are formed with metabolites and reactions associated with
different cellular localizations, as they are visible in the re-
sulting layout. These clusters include metabolites and reac-
tions taking place in the mitochondria (B), peroxisome (C),
cell nucleus (D) and endoplasmic reticulum (E). Although
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the complexity of the complete graph with the force layout
prevents a tidy representation of a complete metabolic net-
work, it is useful for finding global clusters and trends, as
shown in this example.

User interface

The user-friendly and interactive web interface of Fluxer al-
lows the upload of SBML models, optimization and knock-
out of its reactions, selection of the different graph algo-
rithms and layouts to visualize, their customization, navi-
gation through the graphs, and the display of detailed in-
formation of the model metabolites and reactions (Figure
1). A collapsible card gives access to the different options of
the algorithms and displays information about the model,
such as name, objective function and flux optimized value.
Another collapsible card displays information about the
metabolites and reactions, such as names and IDs, molecu-
lar weight and flux, metabolite structures and includes ex-
ternal links to KEGG (18) or MetaNetX (45). The graph
itself can contain labels to dynamically display different in-
formation about the nodes, such as metabolite and reaction
names, fluxes and localizations. In addition, the opacity or
width of the edges can be selected to represent their weights,
resulting in a global clear visualization of metabolic flux.
Metabolite and reaction nodes can be clicked to show their
detailed information, as well as be selected as root for the
different tree layouts or be knocked-out in the flux opti-
mizations. The information card also contains a mini graph
showing all the metabolites participating in the selected re-
action or all the reactions that the selected metabolite is in-
volved in. The interface includes options to exclude from
the computed graphs the reactions with zero flux as well
as the cofactor metabolites. Fluxer is compatible with all
major browsers in desktop and mobile devices and offers
an exporting function to download high-quality raster and
vector images of all the graphs generated.

IMPLEMENTATION

Fluxer is implemented in Python using Flask (Pallets) for
the backend, HTML5 and JavaScript for the frontend,
and SQLite for the database. FBA optimization is per-
formed with COBRApy (46) and the graph layouts use the
D3.js library (47). Reaction and metabolite naming con-
ventions for GEMs is a current challenge in the field (48),
and Fluxer pools information from ModelSEED, BiGG
and MetaNetX (25,26,45,49) to identify molecular weight,
crosslinks, chemical formula, and other metabolite and re-
action information for the GEMs uploaded through the
interface. The list of metabolites considered cofactors was
based on (30). Any SBML file compatible with COBRApy
can be uploaded, optimized and visualized with the web ap-
plication. Fluxer is able to analyze and display graphs for
GEMs even as large as the human metabolic model RE-
CON3D (50), containing over 5000 metabolites and 10 600
reactions.

DISCUSSION

We presented here Fluxer, a user-friendly web applica-
tion for the computation, analysis and visualization of flux

graphs for GEMs. The tool can perform FBA including spe-
cific reaction knockouts and compute metabolic network
representations based on spanning trees, k-shortest paths
and complete graphs. The different networks can be visu-
alized with tree, dendrogram, radial, dagre and force-based
layouts. The web application allows any user to load mod-
els in SBML format and interact and customize the differ-
ent metabolic networks generated. Users require no special
training or software installations to access and use the web
application. The ability of Fluxer to perform visual compar-
isons of reaction fluxes makes it a powerful tool for under-
standing metabolic phenotypes and discovering pathways
for metabolic engineering applications.

While Fluxer computes graph visualizations centered on
a particular root metabolite or reaction of interest, other
approaches have been proposed for the global analysis of
GEMs. Extreme pathways (51) represent the set of steady
state fluxes that lay at the border of the solution space
given by the model constraints. As such, they are useful
to analyze the full capability of a metabolic model. Ele-
mentary flux modes (52) are the smallest subset of reac-
tions that allow the system to operate in steady state, giving
important insights into the most essential pathways within
a metabolic model. The MinSpan algorithm (53) can de-
compose complete genome-scale models into their most in-
dependent pathways. In this way, it serves as an efficient
method to understand the pathway structures that a whole
model contains. In contrast, the spanning tree computed in
Fluxer is focused on finding the most important pathways
that contribute to a single root metabolite or reaction by
considering the fluxes obtained from a particular FBA so-
lution. Indeed, the spanning tree computed by Fluxer could
be combined in future work with these global model analy-
ses to efficiently visualize their resultant pathway structures.

Further future work will extend the current functional-
ity of Fluxer. The capabilities to perform FBA customiza-
tions beyond the knockout of reactions will be improved
to include different optimization objectives and the ability
to change the flux boundaries of any reaction––particularly
to specify different uptake rates for different growth media.
New graph layouts will be implemented, such as maps to
highlight the metabolic composition of a particular pheno-
type state. Finally, the web server will include the possibility
for the user to make public any model uploaded to the appli-
cation, and then list them in a dynamically updated reposi-
tory of genome-wide metabolic models.

Fluxer provides not only a topological solution for vi-
sualizing genome-scale metabolic models, but also specific
computational methods to analyze reaction networks and
fluxes. The comparison of metabolic network connectiv-
ity and motifs across organisms can provide evolutionary
insights (54), an approach that could be enhanced by ex-
amining metabolic flux networks such as those computed
by the presented application. User-friendly tools, such as
Fluxer, are able to analyze complex datasets, networks and
mechanistic models (55,56), together with novel visualiza-
tion and encoding software applications (57–59), and will
be essential for the understanding of complex biological
mechanisms (60–62) and the discovery of novel phenotypes
(63,64). In conclusion, Fluxer represents a user-friendly
resource to visualize and analyze genome-scale flux net-
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works toward the global understanding of whole-organism
metabolism and the advancement of the much sought-after
applications in metabolic engineering.
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7. Hucka,M., Bergmann,F.T., Dräger,A., Hoops,S., Keating,S.M., Le
Novère,N., Myers,C.J., Olivier,B.G., Sahle,S., Schaff,J.C. et al. (2018)
The Systems Biology Markup Language (SBML): Language
Specification for Level 3 Version 1 Core. J. Integr. Bioinform., 15,
doi:10.1515/jib-2017-0080.

8. Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T., Ramage,D.
and Amin,N. (2003) Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction Networks. Genome
Res., 13, 2498–2504.

9. Smoot,M.E., Ono,K., Ruscheinski,J., Wang,P.L. and Ideker,T. (2011)
Cytoscape 2.8: New features for data integration and network
visualization. Bioinformatics, 27, 431–432.

10. DeJongh,M., Bockstege,B., Frybarger,P., Hazekamp,N.,
Kammeraad,J. and McGeehan,T. (2012) CytoSEED: A Cytoscape
plugin for viewing, manipulating and analyzing metabolic models
created by the model SEED. Bioinformatics, 28, 891–892.

11. Nishida,K., Ono,K., Kanaya,S. and Takahashi,K. (2014)
KEGGscape: A Cytoscape app for pathway data integration [version
1; peer review: 1 approved, 2 approved with reservations].
F1000Research, 3, 144.

12. Martyushenko,N. and Almaas,E. (2019) ModelExplorer - software
for visual inspection and inconsistency correction of genome-scale
metabolic reconstructions. BMC Bioinformatics, 20, 56.
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