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Abstract
Background: Immune	checkpoint	inhibitors	(ICIs)	have	shown	numerous	clini-
cal	benefits	in	multiple	cancer	types,	but	good	predictive	biomarkers	are	severely	
lacking.	Although	increasing	evidence	has	linked	Hedgehog	(Hh)	signaling	path-
way	with	tumor	development,	a	systematic	investigation	for	its	potential	as	a	bio-
marker	remains	elusive.
Methods: We	collected	and	analyzed	the	transcriptional	data	and	clinical	out-
comes	of	diverse	cancers	from	the	Cancer	Genome	Atlas	and	four	published	ICI	
datasets.	Hh	activity	was	estimated	by	conducting	a	single-	sample	gene-	set	en-
richment	analysis	(ssGSEA)	for	the	Hh-	related	genes	and	calculating	the	ssGSEA	
score	in	each	tumor	sample.
Results: Our	findings	suggest	that	tumors	with	high	Hh	activity	displayed	mul-
tiple	immunosuppressive	characteristics,	including	lack	of	anti-	tumor	response	
pathways,	 downregulation	 of	 immune	 effectors,	 enrichment	 of	 immunosup-
pressive	cells	and	chemokines,	and	activation	of	immunosuppressive	signaling.	
Notably,	patients	in	the	non-	response	group	had	enriched	Hh	activity	and	showed	
worse	overall	survival	(OS;	pooled	HR = 1.50,	95%	CI = 1.02–	2.21,	p = 0.039).	In	
the	 subgroup	 of	 high	 programmed	 cell	 death	 ligand	 1	 (PD-	L1)	 expression,	 pa-
tients	 who	 harbored	 high	 Hh	 activity	 displayed	 a	 dramatically	 lower	 response	
rate	to	ICIs	and	a	strikingly	worse	OS	(pooled	HR = 2.89,	95%	CI = 1.53–	5.49,	
p < 0.001).
Conclusion: Increased	 Hh	 activity	 correlates	 with	 tumor	 immunosuppression	
across	diverse	cancers.	Hh	activity	is	not	only	a	predictive	biomarker	for	resist-
ance	 to	 ICIs	but	can	also	better	predict	clinical	outcomes	 in	combination	with	
PD-	L1	expression.
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1 	 | 	 INTRODUCTION

In	 the	past	decades,	 the	application	of	 immune	check-
point	 inhibitors	 (ICIs)	 has	 dramatically	 improved	
the	 prognosis	 of	 patients	 with	 advanced	 or	 metastatic	
cancer,	 especially	 in	 melanoma1,2	 and	 lung	 cancer3,4	
However,	considerable	clinical	heterogeneity	across	dif-
ferent	 populations	 has	 restricted	 the	 broad	 application	
of	ICIs	in	various	cancers,	hence,	promoting	the	devel-
opment	of	effective	biomarkers	is	vital	to	enhance	tumor	
immunotherapy.5	Several	well-	known	biomarkers	such	
as	programmed	cell	death	 ligand	1	 (PD-	L1)	and	tumor	
mutation	 burden	 (TMB)	 have	 been	 developed	 and	 val-
idated	 in	 various	 studies.6–	10	 Nevertheless,	 several	 pa-
tients	still	receive	limited	or	no	clinical	benefit	from	ICI	
therapy.11,12	This	is	mainly	because	the	single-	biomarker	
strategy	is	not	accurate	enough	to	pinpoint	patients	who	
could	benefit	from	such	treatment.13	Recently,	growing	
evidence	 reveals	 that	 PD-	L1	 expression	 status	 or	 TMB	
alone	is	an	unstable	metric	that	could	potentially	cause	
debatable	 repercussions	 to	 population	 classification	 in	
different	cancers.14–	16	Therefore,	it	is	urgent	to	develop	
a	novel	predictive	biomarker	and	strategy	to	identify	the	
population	of	patients	that	can	benefit	from	ICI	therapy.

Hedgehog	(Hh)	signaling	plays	a	critical	role	in	sev-
eral	development	processes,	including	cell	proliferation,	
differentiation,	pattern	 formation,	and	vascularization,	
all	 of	 which	 are	 often	 disrupted	 and	 uncontrollable	 in	
tumor	cells.17	Recent	 studies	have	 linked	Hh	signaling	
with	tumor	immunosuppression,	including	polarization	
of	 tumor-	associated	 macrophages,18	 upregulation	 of	
PD-	L1	expression,19	and	suppression	of	CD8+	T	cells.20	
Interestingly,	 a	 clinical	 retrospective	 study	 found	 that	
tumor	 regression	 induced	 by	 Hh	 signaling	 inhibition	
was	 accompanied	 by	 recruitment	 of	 cytotoxic	 T	 cells	
into	 the	 tumor	 microenvironment	 (TME)	 of	 a	 basal	
cell	 carcinoma	 (BCC),21	 indicating	 the	 great	 potential	
of	targeting	the	Hh	pathway	in	tumor	immunotherapy.	
However,	the	role	of	Hh	signaling	in	the	TME	across	di-
verse	cancers	and	 the	potential	as	a	biomarker	 for	 im-
munotherapy	remains	elusive.

In	 this	 study,	 we	 performed	 an	 integrated	 bioinfor-
matic	 analysis	 to	 investigate	 the	 role	 of	 Hh	 signaling	
in	 the	 TME	 across	 14	 cancer	 types	 from	 the	 Cancer	
Genome	 Atlas	 (TCGA).	 Importantly,	 we	 explored	 the	
potential	of	Hh	signaling	as	a	negative	biomarker	for	ICI	
therapy	in	four	independent	cohorts.	Furthermore,	the	

prediction	efficiency	of	PD-	L1	expression	was	also	eval-
uated.	Notably,	we	further	developed	a	joint	prediction	
strategy	by	combining	Hh	signaling	with	PD-	L1	expres-
sion	 to	 identify	 the	 population	 who	 may	 benefit	 from	
ICI	therapy.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Clinical cohorts and patient 
samples

The	study	design	was	depicted	in	a	workflow,	as	shown	
in	Figure 1.	We	downloaded	the	RNA-	seq	data	and	clini-
cal	information	of	14	TCGA	cancer	types	(Table 1)	from	
the	 cBioPortal	 database	 (https://www.cbiop	ortal.org/).	
The	 TGCA	 data	 analyzed	 in	 this	 study	 were	 released	
on	 28	 January	 2016.	 The	 expression	 value	 of	 RNA-	seq	
data	(RNA	Seq	V2	RSEM)	was	preprocessed	by	Z-	score	
standardization	according	to	the	expression	distribution	
of	each	gene	in	all	samples.	A	total	of	5860	tumor	sam-
ples	 were	 included	 in	 this	 study;	 details	 are	 shown	 in	
Table 1.

A	 systematic	 literature	 search	 in	 PubMed,	 Web	 of	
Science,	 and	 EMBASE	 up	 to	 January	 2021	 was	 per-
formed	 to	 collect	 published	 clinical	 cohorts	 associated	
with	 ICIs.	 The	 search	 strategy	 was	 as	 follows:	 (can-
cer	 OR	 carcinoma	 OR	 malignancy	 OR	 malignancies	
OR	 “malignant	 neoplasms”	 OR	 neoplasia	 OR	 neo-
plasm	 OR	 tumor)	 AND	 (PD-	1	 OR	 PD-	L1	 OR	 CTLA-	4	
OR	 “immune	 checkpoint	 inhibitor”	 OR	 “immune	
checkpoint	 inhibitors”	 OR	 “ICI”	 OR	 “ICIs”	 OR	 “im-
mune	 checkpoint	 blocker”	 OR	 “immune	 checkpoint	
blockers”	 OR	 “ICB”	 OR	 “ICBs”	 OR	 Ipilimumab	 OR	
Tremelimumab	OR	Nivolumab	OR	Pembrolizumab	OR	
Lambrolizumab	 OR	 Atezolizumab	 OR	 Avelumab	 OR	
Durvalumab)	 AND	 (RNA-	seq	 OR	 “RNA	 sequencing”	
OR	“RNA	sequence”	OR	“Transcriptome”	OR	“Whole-	
transcriptome	sequencing”	OR	“Transcription	sequenc-
ing”	 OR	 “Transcriptional	 sequencing”).	 The	 included	
criteria	 for	 eligibility	 were	 as	 follows:	 (1)	 studies	 asso-
ciated	 with	 ICI;	 (2)	 available	 data	 on	 response	 or	 sur-
vival	outcomes;	 (3)	available	RNA-	seq	data;	 (4)	studies	
published	 in	 English.	 Reviews,	 letters,	 comments,	
case	 reports,	 editorials,	 and	 abstracts	 were	 excluded.	
Finally,	 four	 eligible	 studies	 with	 clinical	 information	
and	 matched	 RNA-	seq	 data,	 including	 the	 Nathanson	
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cohort,22	Liu	cohort,1	Riaz	cohort,23	and	Kim	cohort,24	
were	 enrolled	 in	 this	 study.	 In	 the	 Nathanson	 cohort,	
a	 total	 of	 21	 patients	 with	 melanoma	 received	 ipilim-
umab	 therapy.	 Seven	 samples	 were	 collected	 prior	 to	
ipilimumab	 therapy,	 while	 14	 samples	 were	 collected	
after	 ipilimumab	therapy.	 In	 the	Liu	cohort,	51	and	70	
patients	with	melanoma	received	nivolumab	and	pem-
brolizumab,	 respectively.	 120	 samples	 were	 collected	
before	 anti-	PD1	 therapy,	 while	 1	 sample	 was	 collected	
after	anti-	PD1	therapy.	In	the	Riaz	cohort,	29	melanoma	
patients	had	previously	progressed	on	ipilimumab	ther-
apy	 before	 receiving	 nivolumab	 therapy,	 while	 20	 pa-
tients	with	melanoma	only	received	nivolumab	therapy.	
Forty-	two	tumor	samples	were	collected	before	adminis-
tering	nivolumab,	while	seven	tumor	samples	were	col-
lected	during	the	treatment	period	In	the	Kim	cohort,	a	
total	of	45	patients	received	nivolumab	therapy	and	all	
tumor	samples	were	obtained	before	initiation	of	study	

treatment.	 Detailed	 baseline	 characteristics	 of	 patients	
are	shown	in	Table S1.

2.2	 |	 Estimation of Hh activity in 
patient samples

The	 HALLMARK	 HEDGEHOG	 SIGNALING	 geneset	
was	 obtained	 from	 the	 Molecular	 Signatures	 Database	
(MsigDB)	 (https://www.gsea-	msigdb.org/gsea/msigdb),	
containing	 36	 up-	regulated	 genes	 (named	 as	 Hh-	related	
genes)	after	the	activation	of	Hh	signaling.25	The	details	of	
the	Hh-	related	genes	are	shown	in	Table S2.

Single-	sample	gene-	set	enrichment	analysis	(ssGSEA)	
is	 a	 rank-	based	 method	 that	 estimates	 an	 overexpres-
sion	measure	for	a	geneset	relative	to	other	genes	in	the	
genome.26	 It	 has	 been	 recognized	 as	 a	 powerful	 tool	 to	
estimate	 signaling	 activity	 based	 on	 transcriptome	 data	

F I G U R E  1  Study	workflow.	DEG,	differentially	expressed	gene;	ICIs,	immune	checkpoint	inhibitors;	GSEA,	Gene	Set	Enrichment	
Analysis;	MsigDB,	Molecular	Signatures	Database;	ROC,	receiver	operating	characteristic;	ssGSEA,	single	sample	Gene	Set	Enrichment	
Analysis;	TCGA,	The	Cancer	Genome	Atlas;	TCIA,	The	Cancer	Immunome	Atlas;	OS,	overall	survival;	PFS,	progression-	free	survival

https://www.gsea-msigdb.org/gsea/msigdb
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in	 previous	 bioinformatic	 studies.27,28	 In	 this	 study,	 the	
ssGSEA	algorithm	was	employed	to	assess	the	Hh	activ-
ity	 of	 each	 sample	 across	 diverse	 cancers	 based	 on	 the	
gene	expression	level	of	the	Hh	signaling	pathway.	Based	
on	the	RNA-	seq	data	of	14	TCGA	cohorts	and	four	clini-
cal	cohorts	with	ICI	therapy,	we	estimated	the	Hh	activity	
by	conducting	ssGSEA	analysis	for	the	Hh-	related	genes	
and	calculating	the	ssGSEA	score	of	each	sample	using	
the	R	package	“GSVA”.29	The	median	ssGSEA	score	was	
adopted	as	 the	cutoff	value	 for	dividing	 tumor	 samples	
into	groups	with	low	and	high	Hh	activity	in	each	cohort.

2.3	 |	 Definition of clinical outcomes

In	 this	 study,	 best	 objective	 response,	 durable	 clinical	
benefit	(DCB),	overall	survival	(OS),	and	progressive-	free	
survival	 (PFS)	 were	 adopted	 as	 the	 clinical	 outcomes	 of	
patients	 treated	 with	 ICIs.	 The	 best	 objective	 response	
was	defined	using	Response	Evaluation	Criteria	 in	Solid	
Tumors	 (RECIST)	 version	 1.1.	 DCB	 was	 defined	 as	 a	
composite	 endpoint	 of	 complete	 response	 (CR)	 or	 par-
tial	response	(PR)	to	ICIs	or	stable	disease	(SD)	with	PFS	
more	than	6 months.	No	durable	clinical	benefit	was	de-
fined	as	progressive	disease	(PD)	or	SD	with	PFS	less	than	
6 months.	OS	was	defined	as	the	time	from	the	first	treat-
ment	using	ICIs	to	the	date	of	death	or	censoring	of	data	
for	patients	without	documentation	of	death.	For	patients	
without	documentation	of	death,	OS	was	censored	on	the	
last	contact	date	with	the	patient.	PFS	was	defined	as	the	
time	from	the	first	treatment	of	ICIs	to	the	date	of	disease	

progression	or	censoring	of	data	for	patients	without	doc-
umentation	of	progression.1

2.4	 |	 Gene- set enrichment analysis

Gene	set	enrichment	analysis	(GSEA)	is	a	statistical	method	
that	determines	whether	a	predefined	geneset	shows	statis-
tically	significant,	concordant	differences	between	two	bio-
logical	 states.30	GSEA	 is	more	efficient	 than	conventional	
single-	gene	 methods	 to	 analyze	 coordinate	 pathway-	level	
changes	 in	 transcriptomics	 study.31	 In	 this	 study,	 GSEA	
analysis	 for	 RNA-	seq	 data	 of	 14	 TCGA	 cancer	 types	 was	
performed	 using	 the	 java	 GSEA	 3.0	 Desktop	 Application	
(http://softw	are.broad	insti	tute.org/gsea).32	 We	 performed	
the	GSEA	analysis	by	comparing	the	gene	expression	pro-
files	(GEPs)	between	the	group	with	high	Hh	activity	versus	
low	Hh	activity	and	conducting	pathway	enrichment	analy-
sis	 based	 on	 the	 KEGG	 and	 REACTOME	 pathways.	 The	
significant	 pathways	 enriched	 across	 all	 14	 cancers	 were	
considered	 as	 the	 common	 signaling	 associated	 with	 Hh	
activity	and	were	then	visualized	using	the	R	package	“gg-
plot2”.	FDR < 0.05	was	considered	statistically	significant.

2.5	 |	 Evaluation of immune activity, 
immune cells, key signaling, and 
biomarkers for immunotherapy in tumors

The	 immune-		 and	 stroma-	related	 genesets	 were	 obtained	
from	 published	 literature.33–	39	 Immune-	related	 genesets	

T A B L E  1 	 The	14	TCGA	cancer	types	included	in	this	study

Cancer type Full name

Sample size

Total Low Hh activity High Hh activity

BRCA Breast	invasive	carcinoma 1100 550 550

CESC Cervical	squamous	cell	carcinoma	and	
endocervical	adenocarcinoma

306 153 153

GBM Glioblastoma	multiforme 166 83 83

HNSC Head	and	neck	squamous	cell	carcinoma 522 261 261

KIRC Kidney	renal	clear	cell	carcinoma 534 267 267

KIRP Kidney	renal	papillary	cell	carcinoma 291 146 145

LIHC Liver	hepatocellular	carcinoma 373 187 186

LUAD Lung	adenocarcinoma 517 259 258

LUSC Lung	squamous	cell	carcinoma 501 251 250

OV Ovarian	serous	cystadenocarcinoma 307 154 153

PAAD Pancreatic	adenocarcinoma 179 90 89

SKCM Skin	cutaneous	melanoma 472 236 236

STAD Stomach	adenocarcinoma 415 208 207

UCEC Uterine	corpus	endometrial	carcinoma 177 89 88

http://software.broadinstitute.org/gsea
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included	antigen-	processing	related	genes,	CD8+	TIL	mark-
ers,	 IFN-	γ	 downstream	 genes,	 NK	 cell	 markers,	 cytolytic	
effectors,	 and	 immune	 checkpoints.	 Stroma-	related	 gen-
esets	 included	 the	 hallmark	 genes	 representing	 the	 activ-
ity	of	cancer-	associated	 fibroblast	 (CAF)	and	extracellular	
matrix	(ECM)	remodeling.	Besides,	we	investigated	the	dis-
tinct	expression	pattern	of	immunostimulatory	chemokines	
(CXCL9,	CXCL10,	CXCL11,	CCL4,	and	CCL5)	and	immu-
nosuppressive	 chemokines	 (CXCL8,	 CXCL5,	 CXCL12,	
CCL2,	and	CCL22)	between	groups	with	low	and	high	Hh	
activity.	 The	 fold	 change	 of	 transcriptional	 expression	 in	
these	 genes	 was	 calculated	 using	 the	 software	 R	 package	
limma.40	Fold	change > 1.5	and	FDR < 0.05	were	set	as	the	
cut-	off	values.	Red	or	blue	 in	 the	heatmaps	represent	up-	
or	 down-	regulation	 of	 gene	 expression	 in	 the	 group	 with	
high	Hh	activity,	comparing	to	those	with	low	Hh	activity,	
respectively.	 In	 addition,	 the	 profile	 of	 tumor-	infiltrating	
immune	cells	fractions	in	14	TCGA	cancer	types	was	down-
loaded	from	The	Cancer	Immunome	Atlas	database	(TCIA)	
(https://tcia.at/).	The	immune	cell	types	included	CD8+	T	
cells,	CD4+	T	cells,	regulatory	T	cells,	macrophage	M1	and	
M2,	estimated	by	the	quanTIseq	deconvolution	algorithm.41	
CIBERSORT	was	a	deconvolution	algorithm	to	estimate	the	
cell	proportion	of	22	 immune	cell	 types	with	an	 immune	
geneset	by	support	vector	regression.42	It	has	been	widely	
employed	 in	 previous	 studies	 to	 evaluate	 tumor	 immune	
infiltrating	cells	in	tumor	samples	based	on	transcriptome	
data.43,44	 We	 also	 performed	 the	 CIBERSORT	 algorithm	
to	characterize	the	detailed	types	of	immune	cells	infiltrat-
ing	 the	 tumors.	 Then	 we	 comprehensively	 compared	 the	
relative	fractions	of	these	immune	cells	between	the	groups	
with	low	and	high	Hh	activity.	Furthermore,	transforming	
growth	factor-	beta	(TGF-	β)	and	Wnt	signaling	played	key	
roles	in	resistance	to	ICI	therapy	as	previously	reported.45,46	
In	this	study,	we	performed	ssGSEA	to	estimate	the	path-
way	activity	of	TGF-	β	 and	Wnt	signaling	 in	each	sample,	
then	compared	 them	with	 low	and	high	Hh	activity.	The	
predictive	biomarkers	including	cytolytic	activity	(CYT),38	T	
cell–	inflamed	GEP,47	IFN-	γ	signature	(IFN-	γ),48	and	MHC	
class	 I	 antigen-	presenting	 machinery	 expression	 (APM)49	
were	estimated	based	on	 the	 transcriptional	data	and	 the	
corresponding	geneset	provided	in	the	original	articles.

2.6	 |	 Survival analysis and ROC analysis

The	 prognostic	 value	 of	 Hh	 signaling	 in	 14	 TCGA	 cancer	
types	 was	 evaluated	 using	 univariate	 Cox	 regression	 and	
visualized	using	the	R	package	“forestplot.”	Patients	in	the	
Nathanson	cohort,	Liu	cohort,	and	Riaz	cohort	were	grouped	
by	the	median	cutoff	of	a	specific	variable	(Hh	activity,	PD-	L1	
expression,	and	TMB),	then	compared	using	Kaplan–	Meier	
analysis	to	evaluate	the	difference	in	survival	outcomes	(OS	

and	PFS).	Meta-	analysis	was	performed	to	estimate	the	sum-
mary	prognostic	effect	and	the	heterogeneity	among	the	in-
dependent	cohorts	using	the	R	package	“meta”.50	Subgroup	
analysis	 was	 conducted	 to	 preliminarily	 explore	 the	 feasi-
bility	 and	 significance	 of	 biomarker-	combination	 strategy	
between	Hh	signaling,	PD-	L1,	and	TMB	for	predicting	 re-
sponse	to	ICI	therapy.	The	median	value	of	PD-	L1	expression	
or	TMB	was	adopted	as	the	cutoff	in	the	subgroup	analysis.	
Receiver	 operating	 characteristic	 (ROC)	 analysis	 was	 con-
ducted	using	the	R	package	“pROC”51	to	evaluate	the	pre-
dictive	value	of	Hh	signaling	for	resistance	to	ICI	therapy.

2.7	 |	 Total RNA isolation and real- time 
polymerase chain reaction

A	 total	 of	 10	 tumor	 samples	 of	 patients	 with	 gastric	 can-
cer	 (GC)	 were	 obtained	 from	 the	 First	 Affiliated	 Hospital	
of	Zhejiang	University.	Eight	 samples	were	collected	 from	
GC	 patients	 receiving	 neoadjuvant	 immunotherapy,	 while	
two	samples	were	collected	from	GC	patients	receiving	ad-
juvant	 immunotherapy.	Total	RNA	of	 tumor	 samples	was	
extracted	 using	 RNeasy	 Mini	 Kit	 (Cat.	 no.	 74106;	 Qiagen)	
and	 quantified	 using	 NanoDrop	 One	 (Cat.	 ND-	ONE-	W;	
ThermoFisher	 Scientific).	 Real-	time	 PCR	 was	 performed	
using	PrimeScript™	RT	Master	Mix	(Perfect	Real	Time)	(Cat.	
#RR036A;	 TaKaRa)	 and	 TBGreen®Premix	 Ex	 Taq™II	 (Tli	
RNase	 H	 Plus)	 (Cat.	 #RR820A;	 TaKaRa)	 according	 to	 the	
manufacturer's	instruction.	Glyceraldehyde-	3-	phosphate	de-
hydrogenase	(GAPDH)	was	used	as	an	endogenous	control.

2.8	 |	 Statistical analysis

Statistical	analyses	were	performed	using	SPSS	software	(ver-
sion	 21.0;	 IBM	 Corp.)	 and	 GraphPad	 Prism	 (version	 6.01).	
Spearman's	correlation	was	used	to	examine	the	correlation	
between	Hh	activity	and	expression	level	of	the	Hh-	related	
genes,	as	well	as	the	predictive	biomarkers	for	immunother-
apy	(PD-	L1	expression,	CYT,	GEP,	IFN-	γ,	APM,	and	TMB).	
The	prognostic	value	of	Hh	activity	in	14	TCGA	cancer	types	
was	evaluated	using	the	hazard	ratio	(HR)	and	correspond-
ing	95%	confidence	interval	(CI)	from	univariate	Cox	regres-
sion	analysis.	The	 fold	change	of	gene	expression	between	
the	group	with	high	Hh	activity	versus	low	Hh	activity	was	
calculated	using	the	R	package	“limma”.40	Fold	change > 1.5	
and	 FDR  <  0.05	 were	 set	 as	 the	 cut-	off	 values.	 The	 com-
parisons	of	 immune	cell	 fractions	and	WNT/TGF-	β	signal-
ing	between	the	group	with	low	and	high	Hh	activity	were	
conducted	using	the	Mann–	Whitney	test.	The	differences	in	
Hh	activity	and	Hh-	related	gene	expression	level	between	re-
sponse	and	non-	response	groups	were	also	determined	using	
the	Mann–	Whitney	test.	The	predictive	power	of	Hh	activity	

https://tcia.at/
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for	 resistance	 to	 immunotherapy	 was	 evaluated	 using	 the	
area	 under	 the	 curve	 (AUC)	 from	 ROC	 analysis.	 Kaplan–	
Meier	analysis	with	log-	rank	test	was	performed	to	evaluate	
the	association	between	Hh	activity	and	survival	outcomes	
of	patients	 receiving	ICI	 therapy.	 In	 the	meta-	analysis,	 the	
value	of	I2	represented	the	heterogeneity	level	as	follows:	low	
(I2 < 25%),	moderate	(I2 = 25%–	75%),	or	high	(I2 > 75%).	A	
random-	effects	 model	 was	 applied	 for	 meta-	analysis.	 The	
publication	bias	was	estimated	using	Begg's	test	and	Egger's	
test.	 The	 response	 rate	 difference	 between	 the	 group	 with	
low	and	high	PD-	L1	expression/TMB	was	compared	by	the	
χ2	test	or	Fisher's	exact	test.	All	reported	P	values	were	two-	
tailed,	and	p < 0.05	was	considered	statistically	significant.

3 	 | 	 RESULTS

3.1	 |	 The estimation, correlation, and 
survival analysis of Hh activity in diverse 
cancers

Initially,	 upon	 acquiring	 36	 Hh-	related	 genes	 from	
MsigDB	database,	we	performed	ssGSEA	to	estimate	the	

Hh	activity	across	14	TCGA	cancer	types,	including	BRCA,	
CESC,	 GBM,	 HNSC,	 KIRC,	 KIRP,	 LIHC,	 LUAD,	 LUSC,	
OV,	 PAAD,	 SKCM,	 STAD,	 and	 UCEC	 (Table  1).	 There	
was	 a	 broad	 variation	 of	 Hh	 activity	 in	 diverse	 cancers	
(Figure 2A).	The	median	Hh	activity	was	relatively	high	
in	 GBM,	 KIRC,	 and	 PAAD,	 while	 low	 in	 UCEC,	 CESC,	
and	 LIHC.	 We	 then	 performed	 correlation	 analysis	 be-
tween	Hh	activity	and	the	transcriptional	expression	of	36	
Hh-	related	genes;	91.7%	(33/36)	Hh-	related	genes	showed	
positive	correlation	with	Hh	activity	 in	14	TCGA	cancer	
types	(Figure 2B;	Table S3).	Subsequently,	we	performed	
univariate	Cox	regression	to	examine	the	prognostic	 im-
pact	of	Hh	activity	in	14	TCGA	cancer	types	(Figure 2C),	
which	revealed	that	high	Hh	activity	had	a	significantly	in-
creased	risk	of	death	in	CESC	(HR = 2.07,	95%	CI = 1.31–	
3.29,	p = 0.002),	KIRC	(HR = 1.98,	95%	CI = 1.39–	2.83,	
p < 0.001)	and	 SKCM	 (HR =  1.36,	 95%	 CI =  1.01–	1.85,	
p = 0.046).	Besides,	patients	with	high	Hh	activity	tended	
to	 have	 a	 poor	 survival	 outcome	 in	 KIRP	 (HR  =  2.02,	
95%	CI = 0.90–	4.54,	p = 0.087),	STAD	(HR = 1.32,	95%	
CI = 0.94–	1.86,	p = 0.107),	OV	(HR = 1.32,	95%	CI = 0.96–	
1.81,	p = 0.089)	and	LUSC	(HR = 1.32,	95%	CI = 0.96–	1.80,	
p  =  0.084),	 although	 it	 was	 not	 significant	 (Figure  2C).	

F I G U R E  2  Estimation	of	Hedgehog	activity	and	survival	analysis	in	diverse	cancers.	(A)	Boxplots	of	Hh	activity	showing	variation	
across	14	cancer	types.	The	Hh	activity	of	each	sample	is	estimated	by	ssGSEA	analysis.	A	higher	ssGSEA	score	represents	the	higher	activity	
of	Hh	signaling.	(B)	Heatmap	showing	the	Spearman's	correlation	between	Hh	activity	(ssGSEA	score)	and	the	transcriptional	expression	
level	of	36	Hedgehog-	related	genes	across	14	cancer	types.	The	Hedgehog-	related	genes	contained	in	the	HALLMARK	HEDGEHOG	
SIGNALING	geneset	were	obtained	from	the	MsigDB	database.	Red	and	blue	represent	the	positive	and	negative	correlation,	respectively.	
(C)	Forest	plot	of	univariate	Cox	regression	analysis	showing	the	association	between	Hedgehog	activity	and	overall	survival	across	14	
cancer	types.	The	median	value	of	Hh	activity	was	adopted	as	the	threshold	for	the	groups	with	low	and	high	Hh	activity.	The	hazard	ratios	
are	presented	and	the	horizontal	lines	indicate	the	95%	confidence	intervals.	Hh,	Hedgehog;	HR,	hazard	ratio;	CI,	confidence	interval;	
ssGSEA,	single	sample	Gene	Set	Enrichment	Analysis
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In	 addition,	 prognostic	 value	 of	 Hh	 activity	 was	 absent	
in	other	cancer	types	with	low	median	Hh	activity,	such	
as	 LUAD	 (HR  =  0.95,	 95%	 CI  =  0.70–	1.31,	 p  =  0.771),	
BRCA	(HR = 0.80,	95%	CI = 0.58–	1.10,	p = 0.173),	UCEC	
(HR  =  0.79,	 95%	 CI  =  0.39–	1.61,	 p  =  0.513),	 and	 LIHC	
(HR  =  0.77,	 95%	 CI  =  0.55–	1.10,	 p  =  0.154).	 When	 ad-
justed	by	age,	the	association	between	Hh	activity	and	OS	
in	CESC	(HR = 2.05,	95%	CI = 1.29–	3.26,	p = 0.002)	and	
KIRC	(HR = 2.00,	95%	CI = 1.37–	2.91,	p < 0.001)	were	still	
significant,	whereas	not	significant	in	other	cancer	types	
(Figure S1).

3.2	 |	 The role of Hh signaling in the 
TME of diverse cancers

To	understand	the	role	of	Hh	signaling	in	the	TME	across	
diverse	cancers,	we	performed	GSEA	analysis	based	on	
the	 GEPs	 of	 14	 TCGA	 cancer	 types	 and	 identified	 the	
KEGG/REACTOME	pathways	significantly	enriched	in	
the	tumors	with	low	and	high	Hh	activity,	respectively.	
Most	of	the	enriched	pathways	in	low	Hh	activity	tumors	
were	associated	with	cell	cycle	and	anti-	tumor	immune	
response	 (Figure 3A;	Table S4).	The	 immune	response	
pathway	included	TNFR2	non-	canonical	nuclear	factor-	
kappaB	 (NF-	κB)	 pathway,	 cross-	presentation	 of	 solu-
ble	exogenous	antigens	endosomes,	antigen	processing	
cross-	presentation,	 and	 activation	 of	 NF-	κB	 in	 B	 cells,	
suggesting	the	presence	of	an	active	 immune	microen-
vironment	 in	 low	 Hh	 activity	 tumors.	 In	 contrast,	 tu-
mors	with	high	Hh	activity	 showed	active	 signaling	of	
the	receptor	tyrosine	kinase	MET	and	ECM	(Figure 3A;	
Table  S4).	 The	 ECM-	related	 pathways	 included	 vascu-
lar	 endothelial	 growth	 factor	 (VEGF)	 signaling,	 ECM	
organization,	 ECM	 proteoglycans,	 and	 TGF-	β	 signal-
ing,	indicating	that	high	Hh	activity	was	associated	with	
TGF-	β-	associated	 ECM	 remodeling,	 a	 potential	 pro-
moter	 for	 tumor	 immunosuppression.34	 Subsequently,	
we	 investigated	 the	 differentially	 expressed	 genes	 in-
volved	in	immune-	related	and	stroma-	related	signatures	
by	comparing	tumors	with	high	to	low	Hh	activity.	We	
found	that,	especially	in	UCEC,	SKCM,	OV,	and	CESC,	
tumors	with	high	Hh	activity	had	a	relative	lack	of	im-
mune	 effectors	 but	 showed	 an	 abundance	 in	 immune	
checkpoints,	 the	 former	 including	 antigen	 processing	
genes,	CD8+	TIL	markers,	IFN-	γ	related	genes,	NK	cell	
markers,	 and	 cytolytic	 effectors,	 and	 the	 latter	 includ-
ing	 CD274	 (also	 named	 PD-	L1),	 PD-	L2,	 and	 VTCN1	
(Figure  3B).	 As	 expected,	 compared	 with	 tumors	 with	
low	 Hh	 activity,	 tumors	 with	 high	 Hh	 activity	 showed	
dramatically	 active	 signatures	 of	 CAFs	 and	 ECM	 re-
modeling	 in	 14	 cancer	 types,	 such	 as	 the	 upregulated	
expression	 of	 COL11A1,	 DDR2,	 COMP,	 FN1,	 VCAN,	

and	COL1A1,	most	of	which	correlated	with	tumor	im-
munosuppression	(Figure 3B).

Furthermore,	 based	 on	 the	TCIA	 data,	 we	 found	 sig-
nificantly	 different	 fractions	 of	 immune	 cells	 between	
tumors	 with	 low	 and	 high	 Hh	 activity.	 Compared	 with	
tumors	with	low	Hh	activity,	tumors	with	high	Hh	activ-
ity	 showed	significantly	 lower	 fractions	of	CD8+	T	cells,	
the	 major	 effector	 for	 anti-	tumor	 immune	 response,	
especially	 in	 CESC	 (p  <  0.01),	 GBM	 (p  <  0.05),	 HNSC	
(p  <  0.0001),	 KIRC	 (p  <  0.0001),	 LUAD	 (p  <  0.0001),	
LUSC	 (p  <  0.0001),	 SKCM	 (p  <  0.0001),	 and	 STAD	
(p  <  0.05)	 (Figure  3C).	 Interestingly,	 regulatory	 T	 cells	
were	significantly	enriched	in	tumors	with	high	Hh	activ-
ity,	especially	in	BRCA	(p < 0.05),	CESC	(p < 0.05),	KIRC	
(p < 0.01),	LIHC	(p < 0.001),	LUAD	(p < 0.0001),	PAAD	
(p < 0.05),	and	SKCM	(p < 0.001)	(Figure 3C).	Also,	the	
association	between	Hh	activity	and	macrophage	2	(M2)	
cells	showed	an	inconsistent	trend	across	14	cancer	types.	
Tumors	with	high	Hh	activity	harbored	more	abundance	
of	M2	cells	in	KIRC	(p < 0.05),	LUAD	(p < 0.05),	and	STAD	
(p < 0.001)	but	 less	 in	GBM	(p < 0.05).	We	further	con-
ducted	 CIBERSORT	 to	 validate	 the	 different	 abundance	
of	 immune	 cells	 between	 the	 groups	 with	 low	 and	 high	
Hh	activity.	As	shown	in	Figure S2,	the	high	Hh	activity	
group	contained	significantly	decreased	CD8+	T	cells	and	
increased	Treg	cells	compared	with	the	group	with	low	Hh	
activity	in	most	cancer	types.	Besides,	the	memory	CD4+	
T	cells	also	showed	an	unbalanced	distribution;	the	rest-
ing	type	was	enriched	in	the	group	with	high	Hh	activity,	
while	 the	activated	 type	was	enriched	 in	 the	group	with	
low	Hh	activity.	Furthermore,	the	group	with	low	Hh	ac-
tivity	was	more	abundant	in	activated	NK	cells	and	mac-
rophage	M1	cells	in	several	cancer	types,	such	as	LUAD,	
LUSC,	and	SKCM.	Moreover,	we	investigated	the	expres-
sion	 of	 several	 chemokines,	 which	 serve	 as	 key	 regula-
tors	for	the	chemotaxis	of	immune	cells	in	the	TME.	We	
observed	 that	 immunostimulatory	 chemokines	 such	 as	
CXCL9,	CXCL10,	CXCL11,	CCL4,	and	CCL5	were	consis-
tently	down-	regulated	for	the	tumors	with	high	Hh	activity	
across	the	14	cancer	types.	However,	immunosuppressive	
chemokines	such	as	CXCL8,	CXCL5,	CXCL12,	CCL2,	and	
CCL22	 were	 generally	 upregulated	 across	 the	 13	 cancer	
types	(Figure 3D).	Besides,	we	explored	the	association	be-
tween	Hh	activity	and	the	known	pathways	contributing	
to	 immunotherapy	 resistance,	 including	Wnt	 signaling46	
and	TGF-	β	signaling.45	Interestingly,	the	ssGSEA	scores	of	
Wnt	signaling	and	TGF-	β	signaling	were	both	significantly	
higher	in	tumors	with	high	Hh	activity	than	low	Hh	activ-
ity	across	at	least	13	cancer	types	(Figure S3).

Together,	 these	 findings	 support	 that	 increased	 Hh	
activity	 correlated	 with	 multiple	 immunosuppressive	
characteristics	across	diverse	cancers	and	a	decreased	like-
lihood	for	clinical	response	to	ICIs	(Figure S4).
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3.3	 |	 Predicting clinical outcomes of 
patients treated with ICIs by Hh activity, 
PD- L1 expression, or TMB alone

Through	 literature	 search	 and	 screening,	 we	 collected	
four	 clinical	 cohorts	 to	 explore	 the	 prediction	 of	 clini-
cal	 outcomes	 in	 patients	 treated	 with	 ICIs	 using	 Hh	 ac-
tivity,	 PD-	L1	 expression,	 or	 TMB	 alone.	 We	 found	 that,	
compared	to	the	response	group,	the	non-	response	group	
showed	 higher	 Hh	 activity	 in	 the	 four	 independent	 co-
horts	(Nathanson	cohort:	p = 0.016;	Liu	cohort:	p = 0.089;	
Riaz	cohort:	p = 0.023;	Kim	cohort:	p = 0.022;	Figure 4A).	
As	expected,	 the	group	with	high	PD-	L1	expression	had	
more	 patients	 acquiring	 clinical	 benefit	 than	 the	 group	
with	low	PD-	L1	expression	in	four	cohorts	(Nathanson	co-
hort:	p = 0.01;	Liu	cohort:	p = 0.41;	Riaz	cohort:	p = 0.04;	
Kim	cohort:	p = 0.02;	Figure S5A).	Nevertheless,	we	did	
not	observe	a	significant	difference	in	clinical	benefit	be-
tween	the	subgroups	with	low	and	high	TMB	(Nathanson	
cohort:	 p  =  0.10;	 Liu	 cohort:	 p  =  0.12;	 Figure  S6A).	
Furthermore,	 ROC	 analysis	 revealed	 that	 Hh	 activity	
was	 capable	 of	 predicting	 resistance	 to	 ICIs	 (Nathanson	
cohort:	AUC = 0.817;	Liu	cohort:	AUC = 0.590;	Riaz	co-
hort:	AUC = 0.733;	Kim	cohort:	AUC = 0.725;	Figure 4B).	
Subsequently,	we	evaluated	the	prognostic	value	of	Hh	ac-
tivity,	PD-	L1	expression,	and	TMB	in	the	patients	treated	
with	ICIs.	The	prognostic	value	of	Hh	activity	was	found	
to	be	not	significant	(Nathanson	cohort:	HR = 1.82,	95%	
CI  =  0.59–	5.59,	 p  =  0.290;	 Liu	 cohort:	 HR  =  1.53,	 95%	
CI = 0.92–	2.53,	p = 0.096;	Riaz	cohort:	HR = 1.32,	95%	

CI  =  0.64–	2.75,	 p  =  0.452;	 Figure  4C,D).	 On	 the	 other	
hand,	meta-	analysis	identified	Hh	activity	as	a	significant	
risk	factor	for	OS	in	patients	treated	with	ICIs	(HR = 1.50;	
95%	 CI  =  1.02–	2.21;	 Figure  4D).	 In	 the	 bias	 analysis,	
both	 Begg's	 test	 (p  =  0.60)	 and	 Egger's	 test	 (p  =  0.79)	
suggested	 that	 the	 publication	 bias	 was	 not	 significant.	
Nevertheless,	 in	 the	 sensitivity	 analysis,	 omitting	 one	 of	
the	 included	 cohorts	 led	 to	 the	 insignificant	 association	
between	 Hh	 activity	 and	 OS	 of	 patients	 receiving	 ICI	
therapy	(Figure S7).	To	validate	the	association	between	
Hh	activity	and	clinical	outcomes	in	patients	treated	with	
ICIs,	we	firstly	collected	a	total	of	10	patient	samples	who	
received	neoadjuvant/adjuvant	immunotherapy	from	our	
institution,	then	detected	gene	transcriptional	expression	
levels	of	GLI1	 and	SHH	 (two	key	genes	 in	Hh	signaling	
pathway52,53)	 using	 real-	time	 polymerase	 chain	 reaction	
(RT-	PCR),	and	explored	the	clinical	correlation	and	prog-
nostic	value	of	GLI1	and	SHH.	As	shown	in	Figure S8A,	
the	 response	 group	 (PR/CR)	 tended	 to	 harbor	 lower	 ex-
pression	of	GLI1	and	SHH	 than	the	non-	response	group	
(PD/SD),	 although	 it	 was	 not	 statistically	 significant	
(p = 0.071).	Survival	analysis	revealed	that	patients	with	
low	 expression	 of	 GLI1	 achieve	 a	 better	 OS	 than	 those	
with	high	expression	of	GLI1	 (Median	OS:	29.0	vs.	20.0,	
p = 0.042;	Figure S8B).	A	similar	trend	was	also	observed	
in	SHH	(p = 0.133;	Figure S8B).	Therefore,	these	findings	
preliminarily	 validated	 that	 low	 Hh	 activity	 correlated	
with	a	high	response	rate	and	better	survival	outcomes	in	
patients	receiving	ICI	therapy.	Besides,	patients	with	high	
PD-	L1	expression	were	more	likely	to	achieve	a	better	OS	

F I G U R E  3  Association	between	Hedgehog	activity	and	the	tumor	microenvironment	in	diverse	cancers.	(A)	Representative	pathways	
enriched	in	the	group	with	low	Hh	activity	(left	panel)	and	high	Hh	activity	(right	panel)	across	14	cancer	types.	All	tumor	samples	
in	each	cancer	type	were	divided	into	two	groups	according	to	the	median	value	of	Hh	activity.	Based	on	the	KEGG	and	REACTOME	
pathway	datasets,	GSEA	analysis	was	performed	to	identify	the	significant	pathways	enriched	in	the	group	with	low	and	high	Hh	activity.	
FDR < 0.05	was	considered	statistically	significant.	The	horizontal	axis	shows	the	normalized	enrichment	score	and	the	vertical	axis	shows	
the	representative	pathways	enriched	in	the	group	with	low	and	high	Hh	activity.	Different	cancer	types	are	labeled	with	different	colors.	
KEGG,	Kyoto	Encyclopedia	of	Genes	and	Genomes;	NES,	normalized	enrichment	score;	FDR,	false	discovery	rate.	(B)	Heatmaps	showing	
fold	changes	of	immune-	related	(upper	panel)	or	stroma-	related	(lower	panel)	gene	expression	in	the	groups	with	high	Hh	activity	versus	
low	Hh	activity.	Rows	show	gene	symbols	and	columns	show	cancer	types.	Annotation	bar	indicates	the	fold	change	of	gene	expression	in	
the	groups	with	high	Hh	activity	versus	low	Hh	activity.	Immune-	related	genes	include	antigen-	processing	related	genes,	CD8+	TIL	markers,	
IFN-	γ	downstream	genes,	NK	cell	markers,	cytolytic	effectors,	and	immune	checkpoints.	Stroma-	related	genes	include	CAF-	signature	genes	
and	ECM	remodeling-	related	genes.	Red	and	blue	represent	up-	regulation	and	down-	regulation	of	the	gene	expression	in	the	groups	with	
high	Hh	activity	comparing	to	those	with	low	Hh	activity,	respectively.	Fold	change > 1.5	and	FDR < 0.05	were	set	as	the	cut-	off	values.	
CAF,	cancer-	associated	fibroblast;	ECM,	extracellular	matrix;	NK,	natural	killer	cells;	CYT,	cytolytic	activity.	(C)	Comparisons	of	the	
relative	fractions	of	CD8+	T/TIL,	Treg	/TIL,	and	M2/(M1+M2)	between	the	groups	with	low	and	high	Hh	activity	across	14	TCGA	cancer	
types.	The	horizontal	axis	shows	the	groups	with	low	and	high	Hh	activity.	The	vertical	axis	shows	the	median	value	of	average	immune	
cell	fractions	in	each	cancer	type.	Different	cancer	types	are	labeled	with	different	colors.	The	table	shows	the	statistical	differences	of	
relative	immune	cell	fractions	between	the	groups	with	low	and	high	Hh	activity.	TIL,	tumor-	infiltrating	lymphocytes;	Treg,	regulatory	T	
cells;	M1,	classical	M1	macrophage;	M2,	alternative	M2	macrophage.	*p < 0.05,	**p < 0.01,	***p < 0.001,	****p < 0.0001;	ns,	not	significant.	
(D)	Heatmap	showing	the	fold	changes	of	the	chemokine	expression	at	the	transcriptional	level	in	the	groups	with	high	Hh	activity	versus	
low	Hh	activity.	Rows	show	gene	symbols,	including	immunostimulatory	chemokines	(CXCL9,	CXCL10,	CXCL11,	CCL4,	and	CCL5)	and	
immunosuppressive	chemokines	(CXCL8,	CXCL5,	CXCL12,	CCL2,	and	CCL22).	Columns	show	cancer	types.	Annotation	bar	indicates	the	
fold	change	of	gene	expression	in	the	groups	with	high	Hh	activity	versus	low	Hh	activity



856 |   JIANG et al.

F I G U R E  4  Predicting	clinical	outcomes	of	patients	treated	with	ICIs	by	Hedgehog	activity	alone.	(A)	Histograms	showing	the	
comparison	of	Hh	activity	between	the	groups	with	NDB	and	DCB	(in	the	Nathanson	cohort	and	the	Liu	cohort)	or	PD/SD	and	PR/CR	
(in	the	Riaz	cohort	and	the	Kim	cohort).	(B)	ROC	curves	for	predicting	resistance	to	ICI	therapy	by	Hh	activity	in	the	Nathanson	cohort	
(orange),	Liu	cohort	(green),	Riaz	cohort	(blue),	and	Kim	cohort	(purple).	The	status	of	NDB	(in	the	Nathanson	cohort	and	the	Liu	cohort)	
or	PD/SD	(in	the	Riaz	cohort	and	the	Kim	cohort)	was	defined	as	resistance	to	ICI	therapy	for	ROC	analysis.	The	values	of	AUC	with	
corresponding	95%	CI	are	presented	in	each	cohort.	AUC,	area	under	the	curve;	ROC,	receiver	operating	characteristic.	(C)	Kaplan–	Meier	
curves	showing	the	association	between	Hh	activity	and	OS	in	the	Nathanson	cohort	(left	panel),	Liu	cohort	(middle	panel),	and	Riaz	cohort	
(right	panel).	The	median	value	of	Hh	activity	is	adopted	as	the	threshold	for	grouping	patients	in	each	cohort.	The	statistical	significance	is	
determined	using	a	log-	rank	test.	(D)	Forest	plot	showing	the	meta-	analysis	for	the	prognostic	value	of	Hh	activity	in	the	Nathanson	cohort,	
Liu	cohort,	and	Riaz	cohort.	The	value	of	I2	represented	the	heterogeneity	level	as	follows:	low	(I2 < 25%),	moderate	(I2 = 25–	75%),	or	high	
(I2 > 75%).	A	random-	effects	model	was	applied	for	this	meta-	analysis.	The	hazard	ratios	in	each	cohort	are	presented	and	the	horizontal	
lines	indicate	the	95%	confidence	intervals.	Melanoma	patients	in	the	Nathanson	cohort	received	anti-	CTLA4	therapy,	whereas	melanoma	
patients	in	the	Liu	cohort	and	Riaz	cohort	received	anti-	PD-	1	therapy.	Patients	with	gastric	cancer	in	the	Kim	cohort	received	anti-	PD-	1	
therapy.	CR,	complete	response;	DCB,	durable	clinical	benefit;	NDB,	no	durable	clinical	benefit;	PD,	progressive	disease;	PR,	partial	
response;	ROC,	receiver	operating	characteristic;	SD,	stable	disease
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in	the	Nathanson	cohort	(HR = 0.25,	95%	CI = 0.08–	0.83,	
p = 0.015;	Figure S5B,C)	and	Riaz	cohort	(HR = 0.50,	95%	
CI = 0.24–	1.05,	p = 0.060;	Figure S5B,C),	as	well	as	in	the	
meta	cohort	(HR = 0.56,	95%	CI = 0.30–	1.03;	Figure S5C),	
although	 there	 was	 low	 heterogeneity	 between	 these	
cohorts	 (I2  =  49%,	 p  =  0.14;	 Figure  S5C).	 However,	 the	
association	 between	 PD-	L1	 expression	 and	 OS	 was	 not	
significant	in	the	Liu	cohort	(HR = 0.84,	95%	CI = 0.51–	
1.39,	p = 0.502;	Figure S5B,C).	 In	addition,	TMB	served	
as	a	significantly	protective	factor	of	OS	in	the	Liu	cohort	
(HR = 0.44,	p = 0.002;	Figure S6B)	in	the	contrast	to	the	
Nathanson	 cohort	 (HR  =  0.39,	 p  =  0.090;	 Figure  S6B).	
Moreover,	we	also	evaluated	PFS	prediction	with	Hh	ac-
tivity,	PD-	L1	expression,	and	TMB	in	the	Liu	cohort.	As	
a	 result,	 Hh	 activity	 was	 identified	 as	 a	 significant	 risk	
factor	 for	 PFS	 in	 the	 Liu	 cohort	 (HR  =  1.75,	 p  =  0.011;	
Figure  S9A).	 However,	 the	 association	 of	 PD-	L1	 expres-
sion	with	PFS	was	not	significant	(HR = 0.93,	p = 0.728;	
Figure S9B).	Besides,	compared	to	the	patients	with	low	
TMB,	 the	 patients	 with	 high	 TMB	 tended	 to	 achieve	
a	 better	 PFS	 in	 the	 Liu	 cohort	 (HR  =  0.67,	 p  =  0.060;	
Figure S9C).	Taken	together,	these	findings	indicate	that	
Hh	 activity,	 PD-	L1	 expression,	 and	 TMB	 were	 potential	
biomarkers	 for	 predicting	 clinical	 outcomes	 of	 patients	
treated	with	ICIs;	however,	the	single-	biomarker	strategy	
showed	unstable	prediction	efficiency	 in	different	popu-
lations	 and	 undeniable	 heterogeneity	 between	 the	 inde-
pendent	cohorts.

3.4	 |	 Predicting clinical 
outcomes of patients treated with ICIs 
by the combination of Hh activity with PD- 
L1 expression or TMB

We	 explored	 the	 joint	 prediction	 power	 for	 clinical	 out-
comes	of	patients	treated	with	ICIs	by	combining	Hh	ac-
tivity	with	PD-	L1	expression	or	TMB.	Firstly,	we	divided	
the	 population	 of	 clinical	 cohorts	 into	 two	 subgroups	
with	 low	 and	 high	 PD-	L1	 expression	 or	 TMB.	 Then	 we	
explored	the	association	of	Hh	activity	with	clinical	out-
comes	 of	 patients	 treated	 with	 ICIs	 in	 these	 subgroups.	
Strikingly,	we	found	that,	for	the	subgroup	with	high	PD-	
L1	expression,	 the	response	group	harbored	consistently	
lower	Hh	activity	than	the	no	response	group	in	four	co-
horts	(Nathanson	cohort:	p = 0.024;	Liu	cohort:	p = 0.002;	
Riaz	cohort:	p = 0.086;	Kim	cohort:	p = 0.030;	Figure 5A).	
However,	 there	 was	 no	 significance	 in	 the	 subgroup	
with	 low	PD-	L1	expression	 (Nathanson	cohort:	NA;	Liu	
cohort:	 p  =  0.263.;	 Riaz	 cohort:	 p  =  0.725;	 Kim	 cohort:	
p = 0.217;	Figure 5A).	ROC	analysis	identified	that	Hh	ac-
tivity	was	a	reliable	biomarker	for	predicting	resistance	to	
ICIs	in	the	high	PD-	L1	expression	subgroup	(Nathanson	

cohort:	AUC = 0.929;	Liu	cohort:	AUC = 0.726;	Riaz	co-
hort:	AUC = 0.721;	Kim	cohort:	AUC = 0.768;	Figure 5B)	
compared	to	the	low	PD-	L1 subgroup	(Nathanson	cohort:	
AUC  =  0.667;	 Liu	 cohort:	 AUC  =  0.474;	 Riaz	 cohort:	
AUC  =  0.591;	 Kim	 cohort:	 AUC  =  0.800;	 Figure  5B).	
Furthermore,	Hh	activity	was	identified	as	a	risk	predictor	
for	 OS	 in	 the	 high	 PD-	L1  subgroup	 (Nathanson	 cohort:	
HR = NA,	95%	CI = NA,	p = 0.032;	Liu	cohort:	HR = 2.98,	
95%	CI = 1.38–	6.43,	p = 0.003;	Riaz	cohort:	HR = 2.71,	
95%	CI = 0.85–	8.61,	p = 0.079;	Figure 5C,D)	in	contrast	to	
the	low	PD-	L1 subgroup	(Nathanson	cohort:	HR = 0.82,	
95%	 CI  =  0.22–	3.09,	 p  =  0.767;	 Liu	 cohort:	 HR  =  0.86,	
95%	CI = 0.43–	1.71,	p = 0.660;	Riaz	cohort:	HR = 0.63,	
95%	CI = 0.24–	1.65,	p = 0.344;	Figure 5C,D).	As	expected,	
meta-	analysis	validated	that	patients	with	high	Hh	activ-
ity	 had	 a	 worse	 survival	 in	 the	 subgroup	 with	 high	 PD-	
L1	expression	(HR = 2.89;	95%	CI = 1.53–	5.49;	p = 0.001;	
Figure  5D)	 in	 the	 contrast	 to	 the	 low	 PD-	L1	 expression	
subgroup	 (HR  =  0.78;	 95%	 CI  =  0.46–	1.31;	 p  =  0.343;	
Figure  5D).	 Besides,	 Hh	 activity	 stratified	 the	 patients	
with	significantly	different	PFS	in	the	subgroup	with	high	
(HR = 3.19,	p < 0.001;	Figure S10)	and	low	PD-	L1	expres-
sion	(HR = 1.00,	p = 0.994;	Figure S10).	In	addition,	we	
investigated	the	joint	prediction	by	combining	Hh	activity	
and	TMB.	We	found	that	the	group	with	low	Hh	activity	
and	high	TMB	showed	the	most	proportion	of	DCBs,	al-
though	it	was	not	significant	(Nathanson	cohort:	p = 0.12;	
Liu	 cohort:	 p  =  0.07;	 Figure  S11A).	 Survival	 analysis	
revealed	 that	Hh	activity	was	a	 risk	 factor	 for	OS	 in	 the	
subgroup	with	high	TMB	in	 the	Liu	cohort	 (HR = 3.35,	
p = 0.012;	Figure S11B),	while	it	was	not	significant	in	the	
Nathanson	cohort	 (HR = 1.23,	p = 0.799;	Figure S11B).	
However,	 we	 did	 not	 observe	 the	 significant	 association	
of	 Hh	 activity	 with	 OS	 in	 the	 subgroup	 with	 low	 TMB	
(Nathanson	 cohort:	 HR  =  2.98,	 p  =  0.122;	 Liu	 cohort:	
HR = 1.21,	p = 0.543;	Figure S11B).	Besides,	patients	with	
high	Hh	activity	had	a	significantly	worse	PFS	both	in	the	
subgroup	with	low	(HR = 1.83,	p = 0.040;	Figure S12A)	
and	high	TMB	(HR = 1.99,	p = 0.041;	Figure S12B).	These	
findings	support	the	combination	of	Hh	activity	with	PD-	
L1	expression	to	stratify	patients	receiving	ICIs	into	sub-
groups	with	distinct	clinical	benefits,	while	combining	Hh	
activity	 with	 TMB	 showed	 undeniable	 heterogeneity	 in	
different	cohorts.

4 	 | 	 DISCUSSION

The	 association	 of	 Hh	 signaling	 with	 various	 aspects	 of	
tumor	immunobiology	has	not	been	systematically	stud-
ied	across	multiple	cancer	 types.	 In	addition,	 the	role	of	
Hh	signaling	in	clinical	response	to	ICs	therapy	remains	
poorly	studied.	Herein,	based	on	integrated	bioinformatics	
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analysis,	we	are	first	to	characterize	the	multifaceted	im-
munosuppressive	role	of	Hh	signaling	across	diverse	can-
cers.	 Moreover,	 we	 identified	 Hh	 activity	 as	 a	 negative	
biomarker	 for	 predicting	 response	 to	 ICI	 treatment	 and	
validated	 the	 predictive	 value	 of	 Hh	 activity	 in	 multiple	
independent	cohorts.	Notably,	the	combination	of	Hh	ac-
tivity	with	PD-	L1	expression	showed	better	predictive	effi-
cacy	than	Hh	activity	or	PD-	L1	expression	alone.	Patients	
with	low	Hh	activity	and	high	PD-	L1	expression	harbored	
a	higher	response	rate	for	ICI	therapy	and	achieved	more	
favorable	survival	outcomes.

Hh	activity	has	been	linked	with	immunosuppressive	
TME	 in	 several	 cancers.	 For	 instance,	 Fan	 et	 al.	 found	
that	 active	 Hh	 signaling	 could	 recruit	 immunosuppres-
sive	cells	by	promoting	TGF-	β	secretion	in	BCC.54	Hanna	
et	al.	demonstrated	that	Hh	signaling	inhibitor	could	re-
duce	immunosuppressive	cells,	such	as	M2	macrophages	
and	Treg	cells,	and	increase	the	number	of	cytotoxic	CD8+	
T	 cells	 and	 M1	 macrophages	 in	 breast	 cancer-	engrafted	
mice.18	 In	 this	study,	we	also	observed	that	 tumors	with	
high	Hh	activity	were	more	inclined	to	develop	an	immu-
nosuppressive	TME,	including	decreased	CD8+	T	cells,	in-
creased	Treg	cells,	or	active	TGF-	β	signaling,	especially	in	
KIRC	and	LUAD	(Figure 3C).	Thorsson	et	al.	identified	the	
TGF-	β	immune	phenotype	in	a	group	with	mixed	tumors	
from	33 TCGA	cancer	types	that	displayed	high	TGF-	β	sig-
naling	and	high	infiltration	of	CD4+	and	CD8+	T	cells.55	
Similar	 to	 the	 TGF-	β	 immune	 phenotype,	 active	 TGF-	β	
signaling	was	also	observed	in	the	group	with	high	Hh	ac-
tivity.	Nevertheless,	we	further	found	that	high	Hh	activ-
ity	correlated	with	decreased	CD8+	T	cells	in	TME,	which	
was	 absent	 in	 the	 TGF-	β	 immune	 phenotype.	 Besides,	
apart	from	TGF-	β	signaling,	other	features	such	as	active	
VEGF	signaling	and	ECM	organization	were	 recognized	
as	the	key	promoters	for	tumor	immunosuppression56	and	
were	also	enriched	 in	 the	 tumors	with	high	Hh	activity.	
Therefore,	 we	 considered	 that	 the	 immune	 phenotypes	

based	on	TGF-	β	and	Hh	signaling	shared	some	common	
features	such	as	activated	TGF-	β	signaling,	but	both	har-
bored	other	distinctive	features	associated	with	tumor	im-
munosuppression	 in	 TME.	 Furthermore,	 several	 studies	
suggested	a	direct	regulation	of	Hh	signaling	with	PD-	L1	
expression	 in	 BCC57	 and	 GC.19	 These	 previous	 findings	
may	partly	explain	our	observation	of	why	the	predictive	
value	of	Hh	activity	correlated	with	PD-	L1	expression.

The	 identification	 of	 predictive	 biomarkers	 for	 ICI	
therapy	has	become	the	central	focus	of	intense	research	
in	 the	 era	 of	 tumor	 immunotherapy.	 PD-	L1	 expression	
and	TMB	were	recognized	as	effective	biomarkers	for	pre-
dicting	response	to	immunotherapy.	Besides,	in	previous	
transcriptomic	studies,	a	variety	of	predictive	models	were	
also	identified	as	potential	immunotherapeutic	biomark-
ers,	 such	 as	 CYT,38	 GEP,47	 IFN-	γ,48	 and	 APM.49	 Herein,	
we	 conducted	 correlation	 analyses	 to	 uncover	 the	 asso-
ciation	 between	 Hh	 activity	 and	 these	 immunotherapy	
biomarkers.	 As	 shown	 in	 Figure  S13A,	 a	 strong	 correla-
tion	 between	 TME-	related	 biomarkers	 was	 observed	 in	
all	cancer	types,	indicating	a	robust	accordance	to	reflect	
the	immune	activity	in	TME.	As	expected,	Hh	activity	was	
negatively	correlated	with	at	least	one	of	the	TME-	related	
biomarkers	(CYT,	GEP,	IFN-	γ,	and	APM)	in	71.4%(10/14)	
TCGA	 cancer	 types	 (CESC,	 GBM,	 HNSC,	 KIRC,	 LIHC,	
LUAD,	 LUSC,	 OV,	 SKCM,	 and	 STAD),	 consistent	 with	
our	 previous	 findings	 that	 high	 Hh	 activity	 was	 associ-
ated	with	an	immunosuppressive	TME	in	diverse	cancers	
(Figure  3).	 On	 the	 contrary,	 Hh	 activity	 was	 positively	
correlated	 with	 PD-	L1	 expression	 at	 the	 transcriptional	
level	 in	78.6%(11/14)	TCGA	cancer	 types	 (BRCA,	CESC,	
GBM,	 HNSC,	 KIRC,	 KIRP,	 LIHC,	 LUAD,	 LUSC,	 PAAD,	
and	 UCEC).	 Interestingly,	 Petty	 et	 al.	 observed	 that	 Hh-	
induced	 PD-	L1	 on	 tumor-	associated	 macrophages	 sup-
pressed	 the	 tumor-	infiltrating	 CD8+	 T	 cell	 function	 in	
TME.58	Koh	et	al.	found	that	Hh	signaling-	mediated	PD-	
L1	promoted	infiltration	of	 immunosuppressive	MDSCs,	

F I G U R E  5  Predicting	clinical	outcomes	of	patients	treated	with	ICIs	by	the	combination	between	Hedgehog	activity	and	PD-	L1	
expression.	(A)	Histograms	showing	the	association	between	Hh	activity	and	response	to	ICI	therapy	in	the	subgroups	stratified	by	PD-	
L1	expression	in	the	Nathanson	cohort,	Liu	cohort,	Riaz	cohort,	and	Kim	cohort.	All	tumor	samples	in	each	cohort	were	divided	into	two	
subgroups	according	to	the	median	value	of	the	PD-	L1	expression.	The	comparison	of	Hh	activity	was	conducted	between	the	response	
group	(DCB	or	PR/CR	group)	and	the	non-	response	group	(NDB	or	SD/PD	group)	within	the	subgroups	with	low	and	high	PD-	L1	
expression.	(B)	ROC	curves	for	predicting	resistance	to	ICI	therapy	by	Hh	activity	in	the	subgroups	stratified	by	PD-	L1	expression	in	the	
Nathanson	cohort,	Liu	cohort,	Riaz	cohort,	and	Kim	cohort.	(C)	Kaplan–	Meier	curves	showing	the	association	between	Hh	activity	and	
OS	in	the	subgroups	stratified	by	PD-	L1	expression	in	the	Nathanson	cohort	(left	panel),	Liu	cohort	(middle	panel),	and	Riaz	cohort	(right	
panel).	The	median	value	of	Hh	activity	is	adopted	as	the	threshold	for	grouping	patients	in	each	cohort.	The	statistical	significance	is	
determined	using	a	log-	rank	test.	(D)	Forest	plot	showing	meta-	analysis	for	the	prognostic	value	of	Hh	activity	in	the	subgroups	stratified	
by	PD-	L1	expression	in	the	Nathanson	cohort,	Liu	cohort,	and	Riaz	cohort.	The	value	of	I2	represented	the	heterogeneity	level	as	follows:	
low	(I2 < 25%),	moderate	(I2 = 25%–	75%),	or	high	(I2 > 75%).	A	random-	effects	model	was	applied	for	this	meta-	analysis.	The	hazard	ratios	
in	each	cohort	are	presented	and	the	horizontal	lines	indicate	the	95%	confidence	intervals.	Melanoma	patients	in	the	Nathanson	cohort	
received	anti-	CTLA4	therapy,	whereas	melanoma	patients	in	the	Liu	cohort	and	Riaz	cohort	received	anti-	PD-	1	therapy.	Patients	with	
gastric	cancer	in	the	Kim	cohort	received	anti-	PD-	1	therapy.	CR,	complete	response;	DCB,	durable	clinical	benefit;	NA,	not	available;	NDB,	
no	durable	clinical	benefit;	PD,	progressive	disease;	PR,	partial	response;	SD,	stable	disease
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leading	 to	 the	 failure	 response	 to	 nivolumab	 in	 patient-	
derived	 organoids.59	 In	 the	 subgroup	 with	 high	 PD-	L1	
expression,	we	found	that	patients	with	high	Hh	activity	
showed	dramatically	lower	response	rates	to	ICIs	and	had	
significantly	worse	clinical	outcomes	(Figure 5).	Taken	to-
gether,	we	speculated	that	high	Hh	activity	might	contrib-
ute	to	 immunotherapy	resistance	for	those	patients	with	
high	 PD-	L1	 expression.	 As	 for	 TMB,	 we	 found	 that	 the	
association	with	Hh	activity	varied	widely	across	diverse	
cancers.	 It	was	not	 significant	 in	57.1%(8/14)	of	 cancers	
(Figure S13B).	However,	Hh	activity	positively	correlated	
with	 TMB	 in	 CESC	 and	 was	 negatively	 associated	 with	
BRCA,	LIHC,	LUAD,	LUSC,	and	STAD.	This	demonstrates	
the	 different	 roles	 of	 Hh	 signaling	 in	 genomic	 stability	
and	mutation	burden	across	diverse	cancers	and	warrants	
more	in-	depth	exploration	in	vitro/in	vivo.

In	 clinical	 practice,	 using	 a	 single	 biomarker	 such	 as	
PD-	L1	expression	could	be	limited	and	might	incorrectly	
predict	 effective	 response	 to	 ICI	 therapy.60,61	 Similarly,	
not	all	high	TMB	tumors	harbor	active	 immune	activity	
because	of	the	considerable	variation	across	diverse	can-
cers.38	 This	 study	 also	 evaluated	 the	 predictive	 value	 of	
PD-	L1	and	TMB	in	three	immunotherapy	cohorts.	We	ob-
served	that	the	single-	biomarker	strategy	by	using	PD-	L1	
or	TMB	alone	showed	unstable	prediction	efficiency	in	dif-
ferent	populations	and	undeniable	heterogeneity	between	
the	independent	cohorts	(Figures S5	and	S6).	Interestingly,	
a	 combined	 strategy	 by	 integrating	 Hh	 activity	 and	 PD-	
L1	 expression,	 which	 achieved	 better	 predictive	 power	
than	 Hh	 activity	 or	 PD-	L1	 expression	 alone	 (Figure  5).	
It	 could	be	explained	 that	a	composite	biomarker	might	
capture	 the	 immune	 status	 of	 the	TME	 more	 effectively	
than	a	single	biomarker.62	In	addition	to	those	routine	bio-
markers	used	in	clinical	practice,	numerous	models	have	
also	 been	 established	 to	 predict	 response	 to	 ICI	 therapy	
in	previous	studies.	For	instance,	Jiang	et	al.	developed	a	
model	named	Tumor	Immune	Dysfunction	and	Exclusion	
(TIDE)	 to	 predict	 cancer	 immunotherapy	 response.63	 In	
this	study,	we	further	compared	the	difference	in	predic-
tive	power	between	Hh	activity	and	TIDE.	We	found	that	
Hh	 activity	 showed	 more	 effective	 predictive	 power	 for	
resistance	to	ICI	response	than	TIDE	in	four	independent	
cohorts	 (AUC:	 0.817	 vs.	 0.558	 in	 the	 Nathanson	 cohort;	
0.590	 vs.	 0.554	 in	 the	 Liu	 cohort;	 0.733	 vs.	 0.642	 in	 the	
Riaz	cohort;	0.725	vs.	0.604	in	the	Kim	cohort;	Figure S14;	
Figure 4B).	 In	 summary,	compared	with	 those	biomark-
ers,	 Hh	 activity	 harbored	 several	 advantages	 as	 follows:	
(1)	 Under	 the	 background	 that	 identification	 of	 positive	
predictive	 biomarkers	 has	 become	 a	 hot	 spot	 of	 intense	
research,	Hh	activity	serves	as	a	negative	predictive	bio-
marker,	which	can	exclude	a	considerable	proportion	of	
non-	responders.	Therefore,	Hh	activity	might	be	consid-
ered	as	a	supplementary	index	for	its	negative	predictive	

value	in	tumor	immunotherapy.	(2)	This	study	developed	
a	combined	strategy	by	integrating	Hh	activity	and	PD-	L1	
expression,	which	offered	a	more	comprehensive	immune	
status	of	the	TME	and	provided	more	predictive	efficiency	
than	a	single	biomarker	alone.	(3)	Hh	activity	reflects	the	
activation	status	of	the	Hh	signaling	pathway,	which	has	
been	 recognized	as	a	hallmark	 signaling	 in	various	can-
cers.64	Encouragingly,	a	series	of	Hh	signaling	inhibitors	
have	been	developed	in	preclinical	studies	or	clinical	tri-
als,65	 which	 provide	 substantial	 hope	 for	 targeting	 Hh	
signaling	in	diverse	cancers	to	overcome	tumor	immuno-
therapy	resistance	in	the	future.

In	recent	years,	resistance	to	mono	ICI	therapy	remains	
a	great	challenge	for	a	non-	negligible	number	of	patients	
with	metastatic	cancers.66	Schadendorf	et	al.	reported	that	
nearly	20%	of	melanoma	patients	treated	with	ipilimumab	
show	DCBs	and	long-	term	survival.67	Ribas	et	al.	reported	
that	the	3-	year	response	rate	was	only	33%	for	melanoma	
patients	 treated	 with	 pembrolizumab.68	 Those	 patients	
who	 had	 limited	 or	 no	 response	 to	 mono	 ICI	 therapy	
may	 become	 suitable	 candidates	 for	 the	 combination	 of	
ICI	therapy	with	other	therapeutic	interventions,	such	as	
chemoradiotherapy69	and	target	therapy.70	These	therapies	
may	convert	tumors	from	immune	deserted/excluded	type	
to	 immune	inflamed	type,	 leading	to	the	enhanced	anti-	
tumor	response	after	the	administration	of	ICI	therapy.71	
However,	 the	shallow	understanding	of	potential	 targets	
involved	in	the	immunotype	transformation	from	“cold”	
to	“hot”	has	limited	the	development	of	precise	combina-
tion	treatment.	The	predictive	biomarker	identified	in	this	
study	was	based	on	the	Hh	signaling,	recognized	as	a	ca-
nonical	oncogenic	signaling	and	a	therapeutic	target.72,73	
Otsuka	et	al.	 reported	 that	 tumor	 regression	 induced	by	
Hh	signaling	 inhibitor	was	accompanied	by	 recruitment	
of	cytotoxic	T	cells	into	the	TME	in	BCC,21	indicating	the	
great	potential	of	Hh	signaling	as	a	critical	target	in	com-
bination	 treatments.	 Encouragingly,	 three	 clinical	 trials	
comparing	the	treatment	efficiency	between	the	mono	ICI	
group	or	the	combined	group	(ICI	plus	Hh	inhibitors)	in	
metastatic	BCC	patients	will	provide	evidence	of	whether	
combination	 treatments	 serve	 as	 a	 better	 strategy	 than	
mono	ICI	strategy	in	BCC	(NCT03521830;	NCT03132636;	
NCT02690948).	 Our	 study	 found	 that	 metastatic	 mela-
noma	and	GC	patients	with	high	Hh	activity	developed	a	
limited	response	rate	to	ICI	therapy,	whereas	patients	with	
low	 Hh	 activity	 exhibited	 better	 therapeutic	 outcomes.	
Therefore,	we	speculate	that	the	combination	treatments	
targeting	Hh	signaling	and	immune	checkpoints	may	syn-
ergistically	increase	the	efficacy	and	durability	of	the	ther-
apeutic	outcomes	across	diverse	cancers.

It	is	worth	noting	that	this	study	has	several	limitations.	
First,	 our	 study	 investigated	 the	 relationship	 between	
Hh	 signaling	 and	 TME	 using	 bioinformatic	 analysis;	
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therefore,	further	in	vitro/in	vivo	experiments	need	to	be	
conducted	 for	 substantiation.	 Second,	 the	 inconsistent	
prognostic	 value	 of	 Hh	 activity	 alone	 was	 observed	 be-
tween	the	individual	cohorts	and	meta-	cohorts.	The	small	
sample	size	and	a	 limited	number	of	studies	might	con-
tribute	 to	 the	negative	 results	 in	 the	 sensitivity	analysis.	
The	patient	samples	in	the	cohorts	were	treated	differently	
and	at	different	time	points,	which	might	cause	unavoid-
able	bias	in	this	study.	Therefore,	the	prognostic	value	of	
Hh	activity	in	patients	receiving	ICI	therapy	requires	more	
validation	 in	 large-	scale	clinical	cohorts	and	prospective	
clinical	 trials.	Third,	 a	 total	 of	 14	 cancer	 types	 were	 en-
rolled	in	this	pan-	cancer	analysis,	but	the	predictive	value	
of	 Hh	 activity	 for	 response	 to	 ICI	 therapy	 was	 explored	
in	the	clinical	cohorts	with	metastatic	melanoma	and	GC.	
Therefore,	 the	role	of	Hh	activity	 in	tumor	immunosup-
pression	and	ICI	therapy	could	be	explored	and	validated	
in	more	cancer	types.	In	addition,	we	did	not	distinguish	
the	tumor	samples	from	primary	and	metastatic	lesions	in	
the	TCGA-	SKCM,	which	might	bring	potential	bias	 into	
this	study.	Besides,	considering	the	expensive	cost	and	in-
tense	 time	 from	RNA-	seq,	 the	method	of	estimating	Hh	
activity	needs	to	be	simplified	in	clinical	practice.

In	conclusion,	our	study	highlights	that	increased	Hh	
activity	 correlated	 with	 multiple	 immunosuppressive	
characteristics	 in	the	TME	of	diverse	cancers.	Moreover,	
Hh	activity	was	a	predictive	biomarker	for	resistance	to	ICI	
therapy	in	patients	with	metastatic	cancer.	Furthermore,	
combination	 with	 PD-	L1	 expression	 was	 able	 to	 better	
predict	clinical	outcomes	than	a	single	biomarker.	These	
findings	deserve	experimental	validation	and	prospective	
investigation	in	the	future	to	assist	oncologists	in	precise	
treatment	recommendations	for	cancer	patients.
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