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Abstract
Background: Immune checkpoint inhibitors (ICIs) have shown numerous clini-
cal benefits in multiple cancer types, but good predictive biomarkers are severely 
lacking. Although increasing evidence has linked Hedgehog (Hh) signaling path-
way with tumor development, a systematic investigation for its potential as a bio-
marker remains elusive.
Methods: We collected and analyzed the transcriptional data and clinical out-
comes of diverse cancers from the Cancer Genome Atlas and four published ICI 
datasets. Hh activity was estimated by conducting a single-sample gene-set en-
richment analysis (ssGSEA) for the Hh-related genes and calculating the ssGSEA 
score in each tumor sample.
Results: Our findings suggest that tumors with high Hh activity displayed mul-
tiple immunosuppressive characteristics, including lack of anti-tumor response 
pathways, downregulation of immune effectors, enrichment of immunosup-
pressive cells and chemokines, and activation of immunosuppressive signaling. 
Notably, patients in the non-response group had enriched Hh activity and showed 
worse overall survival (OS; pooled HR = 1.50, 95% CI = 1.02–2.21, p = 0.039). In 
the subgroup of high programmed cell death ligand 1 (PD-L1) expression, pa-
tients who harbored high Hh activity displayed a dramatically lower response 
rate to ICIs and a strikingly worse OS (pooled HR = 2.89, 95% CI = 1.53–5.49, 
p < 0.001).
Conclusion: Increased Hh activity correlates with tumor immunosuppression 
across diverse cancers. Hh activity is not only a predictive biomarker for resist-
ance to ICIs but can also better predict clinical outcomes in combination with 
PD-L1 expression.
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1   |   INTRODUCTION

In the past decades, the application of immune check-
point inhibitors (ICIs) has dramatically improved 
the prognosis of patients with advanced or metastatic 
cancer, especially in melanoma1,2 and lung cancer3,4 
However, considerable clinical heterogeneity across dif-
ferent populations has restricted the broad application 
of ICIs in various cancers, hence, promoting the devel-
opment of effective biomarkers is vital to enhance tumor 
immunotherapy.5 Several well-known biomarkers such 
as programmed cell death ligand 1 (PD-L1) and tumor 
mutation burden (TMB) have been developed and val-
idated in various studies.6–10 Nevertheless, several pa-
tients still receive limited or no clinical benefit from ICI 
therapy.11,12 This is mainly because the single-biomarker 
strategy is not accurate enough to pinpoint patients who 
could benefit from such treatment.13 Recently, growing 
evidence reveals that PD-L1 expression status or TMB 
alone is an unstable metric that could potentially cause 
debatable repercussions to population classification in 
different cancers.14–16 Therefore, it is urgent to develop 
a novel predictive biomarker and strategy to identify the 
population of patients that can benefit from ICI therapy.

Hedgehog (Hh) signaling plays a critical role in sev-
eral development processes, including cell proliferation, 
differentiation, pattern formation, and vascularization, 
all of which are often disrupted and uncontrollable in 
tumor cells.17 Recent studies have linked Hh signaling 
with tumor immunosuppression, including polarization 
of tumor-associated macrophages,18 upregulation of 
PD-L1 expression,19 and suppression of CD8+ T cells.20 
Interestingly, a clinical retrospective study found that 
tumor regression induced by Hh signaling inhibition 
was accompanied by recruitment of cytotoxic T cells 
into the tumor microenvironment (TME) of a basal 
cell carcinoma (BCC),21 indicating the great potential 
of targeting the Hh pathway in tumor immunotherapy. 
However, the role of Hh signaling in the TME across di-
verse cancers and the potential as a biomarker for im-
munotherapy remains elusive.

In this study, we performed an integrated bioinfor-
matic analysis to investigate the role of Hh signaling 
in the TME across 14 cancer types from the Cancer 
Genome Atlas (TCGA). Importantly, we explored the 
potential of Hh signaling as a negative biomarker for ICI 
therapy in four independent cohorts. Furthermore, the 

prediction efficiency of PD-L1 expression was also eval-
uated. Notably, we further developed a joint prediction 
strategy by combining Hh signaling with PD-L1 expres-
sion to identify the population who may benefit from 
ICI therapy.

2   |   MATERIALS AND METHODS

2.1  |  Clinical cohorts and patient 
samples

The study design was depicted in a workflow, as shown 
in Figure 1. We downloaded the RNA-seq data and clini-
cal information of 14 TCGA cancer types (Table 1) from 
the cBioPortal database (https://www.cbiop​ortal.org/). 
The TGCA data analyzed in this study were released 
on 28 January 2016. The expression value of RNA-seq 
data (RNA Seq V2 RSEM) was preprocessed by Z-score 
standardization according to the expression distribution 
of each gene in all samples. A total of 5860 tumor sam-
ples were included in this study; details are shown in 
Table 1.

A systematic literature search in PubMed, Web of 
Science, and EMBASE up to January 2021 was per-
formed to collect published clinical cohorts associated 
with ICIs. The search strategy was as follows: (can-
cer OR carcinoma OR malignancy OR malignancies 
OR “malignant neoplasms” OR neoplasia OR neo-
plasm OR tumor) AND (PD-1 OR PD-L1 OR CTLA-4 
OR “immune checkpoint inhibitor” OR “immune 
checkpoint inhibitors” OR “ICI” OR “ICIs” OR “im-
mune checkpoint blocker” OR “immune checkpoint 
blockers” OR “ICB” OR “ICBs” OR Ipilimumab OR 
Tremelimumab OR Nivolumab OR Pembrolizumab OR 
Lambrolizumab OR Atezolizumab OR Avelumab OR 
Durvalumab) AND (RNA-seq OR “RNA sequencing” 
OR “RNA sequence” OR “Transcriptome” OR “Whole-
transcriptome sequencing” OR “Transcription sequenc-
ing” OR “Transcriptional sequencing”). The included 
criteria for eligibility were as follows: (1) studies asso-
ciated with ICI; (2) available data on response or sur-
vival outcomes; (3) available RNA-seq data; (4) studies 
published in English. Reviews, letters, comments, 
case reports, editorials, and abstracts were excluded. 
Finally, four eligible studies with clinical information 
and matched RNA-seq data, including the Nathanson 

K E Y W O R D S
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cohort,22 Liu cohort,1 Riaz cohort,23 and Kim cohort,24 
were enrolled in this study. In the Nathanson cohort, 
a total of 21 patients with melanoma received ipilim-
umab therapy. Seven samples were collected prior to 
ipilimumab therapy, while 14 samples were collected 
after ipilimumab therapy. In the Liu cohort, 51 and 70 
patients with melanoma received nivolumab and pem-
brolizumab, respectively. 120 samples were collected 
before anti-PD1 therapy, while 1 sample was collected 
after anti-PD1 therapy. In the Riaz cohort, 29 melanoma 
patients had previously progressed on ipilimumab ther-
apy before receiving nivolumab therapy, while 20 pa-
tients with melanoma only received nivolumab therapy. 
Forty-two tumor samples were collected before adminis-
tering nivolumab, while seven tumor samples were col-
lected during the treatment period In the Kim cohort, a 
total of 45 patients received nivolumab therapy and all 
tumor samples were obtained before initiation of study 

treatment. Detailed baseline characteristics of patients 
are shown in Table S1.

2.2  |  Estimation of Hh activity in 
patient samples

The HALLMARK HEDGEHOG SIGNALING geneset 
was obtained from the Molecular Signatures Database 
(MsigDB) (https://www.gsea-msigdb.org/gsea/msigdb), 
containing 36 up-regulated genes (named as Hh-related 
genes) after the activation of Hh signaling.25 The details of 
the Hh-related genes are shown in Table S2.

Single-sample gene-set enrichment analysis (ssGSEA) 
is a rank-based method that estimates an overexpres-
sion measure for a geneset relative to other genes in the 
genome.26 It has been recognized as a powerful tool to 
estimate signaling activity based on transcriptome data 

F I G U R E  1   Study workflow. DEG, differentially expressed gene; ICIs, immune checkpoint inhibitors; GSEA, Gene Set Enrichment 
Analysis; MsigDB, Molecular Signatures Database; ROC, receiver operating characteristic; ssGSEA, single sample Gene Set Enrichment 
Analysis; TCGA, The Cancer Genome Atlas; TCIA, The Cancer Immunome Atlas; OS, overall survival; PFS, progression-free survival

https://www.gsea-msigdb.org/gsea/msigdb


850  |      JIANG et al.

in previous bioinformatic studies.27,28 In this study, the 
ssGSEA algorithm was employed to assess the Hh activ-
ity of each sample across diverse cancers based on the 
gene expression level of the Hh signaling pathway. Based 
on the RNA-seq data of 14 TCGA cohorts and four clini-
cal cohorts with ICI therapy, we estimated the Hh activity 
by conducting ssGSEA analysis for the Hh-related genes 
and calculating the ssGSEA score of each sample using 
the R package “GSVA”.29 The median ssGSEA score was 
adopted as the cutoff value for dividing tumor samples 
into groups with low and high Hh activity in each cohort.

2.3  |  Definition of clinical outcomes

In this study, best objective response, durable clinical 
benefit (DCB), overall survival (OS), and progressive-free 
survival (PFS) were adopted as the clinical outcomes of 
patients treated with ICIs. The best objective response 
was defined using Response Evaluation Criteria in Solid 
Tumors (RECIST) version 1.1. DCB was defined as a 
composite endpoint of complete response (CR) or par-
tial response (PR) to ICIs or stable disease (SD) with PFS 
more than 6 months. No durable clinical benefit was de-
fined as progressive disease (PD) or SD with PFS less than 
6 months. OS was defined as the time from the first treat-
ment using ICIs to the date of death or censoring of data 
for patients without documentation of death. For patients 
without documentation of death, OS was censored on the 
last contact date with the patient. PFS was defined as the 
time from the first treatment of ICIs to the date of disease 

progression or censoring of data for patients without doc-
umentation of progression.1

2.4  |  Gene-set enrichment analysis

Gene set enrichment analysis (GSEA) is a statistical method 
that determines whether a predefined geneset shows statis-
tically significant, concordant differences between two bio-
logical states.30 GSEA is more efficient than conventional 
single-gene methods to analyze coordinate pathway-level 
changes in transcriptomics study.31 In this study, GSEA 
analysis for RNA-seq data of 14 TCGA cancer types was 
performed using the java GSEA 3.0 Desktop Application 
(http://softw​are.broad​insti​tute.org/gsea).32 We performed 
the GSEA analysis by comparing the gene expression pro-
files (GEPs) between the group with high Hh activity versus 
low Hh activity and conducting pathway enrichment analy-
sis based on the KEGG and REACTOME pathways. The 
significant pathways enriched across all 14 cancers were 
considered as the common signaling associated with Hh 
activity and were then visualized using the R package “gg-
plot2”. FDR < 0.05 was considered statistically significant.

2.5  |  Evaluation of immune activity, 
immune cells, key signaling, and 
biomarkers for immunotherapy in tumors

The immune-  and stroma-related genesets were obtained 
from published literature.33–39 Immune-related genesets 

T A B L E  1   The 14 TCGA cancer types included in this study

Cancer type Full name

Sample size

Total Low Hh activity High Hh activity

BRCA Breast invasive carcinoma 1100 550 550

CESC Cervical squamous cell carcinoma and 
endocervical adenocarcinoma

306 153 153

GBM Glioblastoma multiforme 166 83 83

HNSC Head and neck squamous cell carcinoma 522 261 261

KIRC Kidney renal clear cell carcinoma 534 267 267

KIRP Kidney renal papillary cell carcinoma 291 146 145

LIHC Liver hepatocellular carcinoma 373 187 186

LUAD Lung adenocarcinoma 517 259 258

LUSC Lung squamous cell carcinoma 501 251 250

OV Ovarian serous cystadenocarcinoma 307 154 153

PAAD Pancreatic adenocarcinoma 179 90 89

SKCM Skin cutaneous melanoma 472 236 236

STAD Stomach adenocarcinoma 415 208 207

UCEC Uterine corpus endometrial carcinoma 177 89 88

http://software.broadinstitute.org/gsea
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included antigen-processing related genes, CD8+ TIL mark-
ers, IFN-γ downstream genes, NK cell markers, cytolytic 
effectors, and immune checkpoints. Stroma-related gen-
esets included the hallmark genes representing the activ-
ity of cancer-associated fibroblast (CAF) and extracellular 
matrix (ECM) remodeling. Besides, we investigated the dis-
tinct expression pattern of immunostimulatory chemokines 
(CXCL9, CXCL10, CXCL11, CCL4, and CCL5) and immu-
nosuppressive chemokines (CXCL8, CXCL5, CXCL12, 
CCL2, and CCL22) between groups with low and high Hh 
activity. The fold change of transcriptional expression in 
these genes was calculated using the software R package 
limma.40 Fold change > 1.5 and FDR < 0.05 were set as the 
cut-off values. Red or blue in the heatmaps represent up-
or down-regulation of gene expression in the group with 
high Hh activity, comparing to those with low Hh activity, 
respectively. In addition, the profile of tumor-infiltrating 
immune cells fractions in 14 TCGA cancer types was down-
loaded from The Cancer Immunome Atlas database (TCIA) 
(https://tcia.at/). The immune cell types included CD8+ T 
cells, CD4+ T cells, regulatory T cells, macrophage M1 and 
M2, estimated by the quanTIseq deconvolution algorithm.41 
CIBERSORT was a deconvolution algorithm to estimate the 
cell proportion of 22 immune cell types with an immune 
geneset by support vector regression.42 It has been widely 
employed in previous studies to evaluate tumor immune 
infiltrating cells in tumor samples based on transcriptome 
data.43,44 We also performed the CIBERSORT algorithm 
to characterize the detailed types of immune cells infiltrat-
ing the tumors. Then we comprehensively compared the 
relative fractions of these immune cells between the groups 
with low and high Hh activity. Furthermore, transforming 
growth factor-beta (TGF-β) and Wnt signaling played key 
roles in resistance to ICI therapy as previously reported.45,46 
In this study, we performed ssGSEA to estimate the path-
way activity of TGF-β and Wnt signaling in each sample, 
then compared them with low and high Hh activity. The 
predictive biomarkers including cytolytic activity (CYT),38 T 
cell–inflamed GEP,47 IFN-γ signature (IFN-γ),48 and MHC 
class I antigen-presenting machinery expression (APM)49 
were estimated based on the transcriptional data and the 
corresponding geneset provided in the original articles.

2.6  |  Survival analysis and ROC analysis

The prognostic value of Hh signaling in 14 TCGA cancer 
types was evaluated using univariate Cox regression and 
visualized using the R package “forestplot.” Patients in the 
Nathanson cohort, Liu cohort, and Riaz cohort were grouped 
by the median cutoff of a specific variable (Hh activity, PD-L1 
expression, and TMB), then compared using Kaplan–Meier 
analysis to evaluate the difference in survival outcomes (OS 

and PFS). Meta-analysis was performed to estimate the sum-
mary prognostic effect and the heterogeneity among the in-
dependent cohorts using the R package “meta”.50 Subgroup 
analysis was conducted to preliminarily explore the feasi-
bility and significance of biomarker-combination strategy 
between Hh signaling, PD-L1, and TMB for predicting re-
sponse to ICI therapy. The median value of PD-L1 expression 
or TMB was adopted as the cutoff in the subgroup analysis. 
Receiver operating characteristic (ROC) analysis was con-
ducted using the R package “pROC”51 to evaluate the pre-
dictive value of Hh signaling for resistance to ICI therapy.

2.7  |  Total RNA isolation and real-time 
polymerase chain reaction

A total of 10 tumor samples of patients with gastric can-
cer (GC) were obtained from the First Affiliated Hospital 
of Zhejiang University. Eight samples were collected from 
GC patients receiving neoadjuvant immunotherapy, while 
two samples were collected from GC patients receiving ad-
juvant immunotherapy. Total RNA of tumor samples was 
extracted using RNeasy Mini Kit (Cat. no. 74106; Qiagen) 
and quantified using NanoDrop One (Cat. ND-ONE-W; 
ThermoFisher Scientific). Real-time PCR was performed 
using PrimeScript™ RT Master Mix (Perfect Real Time) (Cat. 
#RR036A; TaKaRa) and TBGreen®Premix Ex Taq™II (Tli 
RNase H Plus) (Cat. #RR820A; TaKaRa) according to the 
manufacturer's instruction. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was used as an endogenous control.

2.8  |  Statistical analysis

Statistical analyses were performed using SPSS software (ver-
sion 21.0; IBM Corp.) and GraphPad Prism (version 6.01). 
Spearman's correlation was used to examine the correlation 
between Hh activity and expression level of the Hh-related 
genes, as well as the predictive biomarkers for immunother-
apy (PD-L1 expression, CYT, GEP, IFN-γ, APM, and TMB). 
The prognostic value of Hh activity in 14 TCGA cancer types 
was evaluated using the hazard ratio (HR) and correspond-
ing 95% confidence interval (CI) from univariate Cox regres-
sion analysis. The fold change of gene expression between 
the group with high Hh activity versus low Hh activity was 
calculated using the R package “limma”.40 Fold change > 1.5 
and FDR  <  0.05 were set as the cut-off values. The com-
parisons of immune cell fractions and WNT/TGF-β signal-
ing between the group with low and high Hh activity were 
conducted using the Mann–Whitney test. The differences in 
Hh activity and Hh-related gene expression level between re-
sponse and non-response groups were also determined using 
the Mann–Whitney test. The predictive power of Hh activity 

https://tcia.at/
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for resistance to immunotherapy was evaluated using the 
area under the curve (AUC) from ROC analysis. Kaplan–
Meier analysis with log-rank test was performed to evaluate 
the association between Hh activity and survival outcomes 
of patients receiving ICI therapy. In the meta-analysis, the 
value of I2 represented the heterogeneity level as follows: low 
(I2 < 25%), moderate (I2 = 25%–75%), or high (I2 > 75%). A 
random-effects model was applied for meta-analysis. The 
publication bias was estimated using Begg's test and Egger's 
test. The response rate difference between the group with 
low and high PD-L1 expression/TMB was compared by the 
χ2 test or Fisher's exact test. All reported P values were two-
tailed, and p < 0.05 was considered statistically significant.

3   |   RESULTS

3.1  |  The estimation, correlation, and 
survival analysis of Hh activity in diverse 
cancers

Initially, upon acquiring 36 Hh-related genes from 
MsigDB database, we performed ssGSEA to estimate the 

Hh activity across 14 TCGA cancer types, including BRCA, 
CESC, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, 
OV, PAAD, SKCM, STAD, and UCEC (Table  1). There 
was a broad variation of Hh activity in diverse cancers 
(Figure 2A). The median Hh activity was relatively high 
in GBM, KIRC, and PAAD, while low in UCEC, CESC, 
and LIHC. We then performed correlation analysis be-
tween Hh activity and the transcriptional expression of 36 
Hh-related genes; 91.7% (33/36) Hh-related genes showed 
positive correlation with Hh activity in 14 TCGA cancer 
types (Figure 2B; Table S3). Subsequently, we performed 
univariate Cox regression to examine the prognostic im-
pact of Hh activity in 14 TCGA cancer types (Figure 2C), 
which revealed that high Hh activity had a significantly in-
creased risk of death in CESC (HR = 2.07, 95% CI = 1.31–
3.29, p = 0.002), KIRC (HR = 1.98, 95% CI = 1.39–2.83, 
p < 0.001) and SKCM (HR =  1.36, 95% CI =  1.01–1.85, 
p = 0.046). Besides, patients with high Hh activity tended 
to have a poor survival outcome in KIRP (HR  =  2.02, 
95% CI = 0.90–4.54, p = 0.087), STAD (HR = 1.32, 95% 
CI = 0.94–1.86, p = 0.107), OV (HR = 1.32, 95% CI = 0.96–
1.81, p = 0.089) and LUSC (HR = 1.32, 95% CI = 0.96–1.80, 
p  =  0.084), although it was not significant (Figure  2C). 

F I G U R E  2   Estimation of Hedgehog activity and survival analysis in diverse cancers. (A) Boxplots of Hh activity showing variation 
across 14 cancer types. The Hh activity of each sample is estimated by ssGSEA analysis. A higher ssGSEA score represents the higher activity 
of Hh signaling. (B) Heatmap showing the Spearman's correlation between Hh activity (ssGSEA score) and the transcriptional expression 
level of 36 Hedgehog-related genes across 14 cancer types. The Hedgehog-related genes contained in the HALLMARK HEDGEHOG 
SIGNALING geneset were obtained from the MsigDB database. Red and blue represent the positive and negative correlation, respectively. 
(C) Forest plot of univariate Cox regression analysis showing the association between Hedgehog activity and overall survival across 14 
cancer types. The median value of Hh activity was adopted as the threshold for the groups with low and high Hh activity. The hazard ratios 
are presented and the horizontal lines indicate the 95% confidence intervals. Hh, Hedgehog; HR, hazard ratio; CI, confidence interval; 
ssGSEA, single sample Gene Set Enrichment Analysis
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In addition, prognostic value of Hh activity was absent 
in other cancer types with low median Hh activity, such 
as LUAD (HR  =  0.95, 95% CI  =  0.70–1.31, p  =  0.771), 
BRCA (HR = 0.80, 95% CI = 0.58–1.10, p = 0.173), UCEC 
(HR  =  0.79, 95% CI  =  0.39–1.61, p  =  0.513), and LIHC 
(HR  =  0.77, 95% CI  =  0.55–1.10, p  =  0.154). When ad-
justed by age, the association between Hh activity and OS 
in CESC (HR = 2.05, 95% CI = 1.29–3.26, p = 0.002) and 
KIRC (HR = 2.00, 95% CI = 1.37–2.91, p < 0.001) were still 
significant, whereas not significant in other cancer types 
(Figure S1).

3.2  |  The role of Hh signaling in the 
TME of diverse cancers

To understand the role of Hh signaling in the TME across 
diverse cancers, we performed GSEA analysis based on 
the GEPs of 14 TCGA cancer types and identified the 
KEGG/REACTOME pathways significantly enriched in 
the tumors with low and high Hh activity, respectively. 
Most of the enriched pathways in low Hh activity tumors 
were associated with cell cycle and anti-tumor immune 
response (Figure 3A; Table S4). The immune response 
pathway included TNFR2 non-canonical nuclear factor-
kappaB (NF-κB) pathway, cross-presentation of solu-
ble exogenous antigens endosomes, antigen processing 
cross-presentation, and activation of NF-κB in B cells, 
suggesting the presence of an active immune microen-
vironment in low Hh activity tumors. In contrast, tu-
mors with high Hh activity showed active signaling of 
the receptor tyrosine kinase MET and ECM (Figure 3A; 
Table  S4). The ECM-related pathways included vascu-
lar endothelial growth factor (VEGF) signaling, ECM 
organization, ECM proteoglycans, and TGF-β signal-
ing, indicating that high Hh activity was associated with 
TGF-β-associated ECM remodeling, a potential pro-
moter for tumor immunosuppression.34 Subsequently, 
we investigated the differentially expressed genes in-
volved in immune-related and stroma-related signatures 
by comparing tumors with high to low Hh activity. We 
found that, especially in UCEC, SKCM, OV, and CESC, 
tumors with high Hh activity had a relative lack of im-
mune effectors but showed an abundance in immune 
checkpoints, the former including antigen processing 
genes, CD8+ TIL markers, IFN-γ related genes, NK cell 
markers, and cytolytic effectors, and the latter includ-
ing CD274 (also named PD-L1), PD-L2, and VTCN1 
(Figure  3B). As expected, compared with tumors with 
low Hh activity, tumors with high Hh activity showed 
dramatically active signatures of CAFs and ECM re-
modeling in 14 cancer types, such as the upregulated 
expression of COL11A1, DDR2, COMP, FN1, VCAN, 

and COL1A1, most of which correlated with tumor im-
munosuppression (Figure 3B).

Furthermore, based on the TCIA data, we found sig-
nificantly different fractions of immune cells between 
tumors with low and high Hh activity. Compared with 
tumors with low Hh activity, tumors with high Hh activ-
ity showed significantly lower fractions of CD8+ T cells, 
the major effector for anti-tumor immune response, 
especially in CESC (p  <  0.01), GBM (p  <  0.05), HNSC 
(p  <  0.0001), KIRC (p  <  0.0001), LUAD (p  <  0.0001), 
LUSC (p  <  0.0001), SKCM (p  <  0.0001), and STAD 
(p  <  0.05) (Figure  3C). Interestingly, regulatory T cells 
were significantly enriched in tumors with high Hh activ-
ity, especially in BRCA (p < 0.05), CESC (p < 0.05), KIRC 
(p < 0.01), LIHC (p < 0.001), LUAD (p < 0.0001), PAAD 
(p < 0.05), and SKCM (p < 0.001) (Figure 3C). Also, the 
association between Hh activity and macrophage 2 (M2) 
cells showed an inconsistent trend across 14 cancer types. 
Tumors with high Hh activity harbored more abundance 
of M2 cells in KIRC (p < 0.05), LUAD (p < 0.05), and STAD 
(p < 0.001) but less in GBM (p < 0.05). We further con-
ducted CIBERSORT to validate the different abundance 
of immune cells between the groups with low and high 
Hh activity. As shown in Figure S2, the high Hh activity 
group contained significantly decreased CD8+ T cells and 
increased Treg cells compared with the group with low Hh 
activity in most cancer types. Besides, the memory CD4+ 
T cells also showed an unbalanced distribution; the rest-
ing type was enriched in the group with high Hh activity, 
while the activated type was enriched in the group with 
low Hh activity. Furthermore, the group with low Hh ac-
tivity was more abundant in activated NK cells and mac-
rophage M1 cells in several cancer types, such as LUAD, 
LUSC, and SKCM. Moreover, we investigated the expres-
sion of several chemokines, which serve as key regula-
tors for the chemotaxis of immune cells in the TME. We 
observed that immunostimulatory chemokines such as 
CXCL9, CXCL10, CXCL11, CCL4, and CCL5 were consis-
tently down-regulated for the tumors with high Hh activity 
across the 14 cancer types. However, immunosuppressive 
chemokines such as CXCL8, CXCL5, CXCL12, CCL2, and 
CCL22 were generally upregulated across the 13 cancer 
types (Figure 3D). Besides, we explored the association be-
tween Hh activity and the known pathways contributing 
to immunotherapy resistance, including Wnt signaling46 
and TGF-β signaling.45 Interestingly, the ssGSEA scores of 
Wnt signaling and TGF-β signaling were both significantly 
higher in tumors with high Hh activity than low Hh activ-
ity across at least 13 cancer types (Figure S3).

Together, these findings support that increased Hh 
activity correlated with multiple immunosuppressive 
characteristics across diverse cancers and a decreased like-
lihood for clinical response to ICIs (Figure S4).
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3.3  |  Predicting clinical outcomes of 
patients treated with ICIs by Hh activity, 
PD-L1 expression, or TMB alone

Through literature search and screening, we collected 
four clinical cohorts to explore the prediction of clini-
cal outcomes in patients treated with ICIs using Hh ac-
tivity, PD-L1 expression, or TMB alone. We found that, 
compared to the response group, the non-response group 
showed higher Hh activity in the four independent co-
horts (Nathanson cohort: p = 0.016; Liu cohort: p = 0.089; 
Riaz cohort: p = 0.023; Kim cohort: p = 0.022; Figure 4A). 
As expected, the group with high PD-L1 expression had 
more patients acquiring clinical benefit than the group 
with low PD-L1 expression in four cohorts (Nathanson co-
hort: p = 0.01; Liu cohort: p = 0.41; Riaz cohort: p = 0.04; 
Kim cohort: p = 0.02; Figure S5A). Nevertheless, we did 
not observe a significant difference in clinical benefit be-
tween the subgroups with low and high TMB (Nathanson 
cohort: p  =  0.10; Liu cohort: p  =  0.12; Figure  S6A). 
Furthermore, ROC analysis revealed that Hh activity 
was capable of predicting resistance to ICIs (Nathanson 
cohort: AUC = 0.817; Liu cohort: AUC = 0.590; Riaz co-
hort: AUC = 0.733; Kim cohort: AUC = 0.725; Figure 4B). 
Subsequently, we evaluated the prognostic value of Hh ac-
tivity, PD-L1 expression, and TMB in the patients treated 
with ICIs. The prognostic value of Hh activity was found 
to be not significant (Nathanson cohort: HR = 1.82, 95% 
CI  =  0.59–5.59, p  =  0.290; Liu cohort: HR  =  1.53, 95% 
CI = 0.92–2.53, p = 0.096; Riaz cohort: HR = 1.32, 95% 

CI  =  0.64–2.75, p  =  0.452; Figure  4C,D). On the other 
hand, meta-analysis identified Hh activity as a significant 
risk factor for OS in patients treated with ICIs (HR = 1.50; 
95% CI  =  1.02–2.21; Figure  4D). In the bias analysis, 
both Begg's test (p  =  0.60) and Egger's test (p  =  0.79) 
suggested that the publication bias was not significant. 
Nevertheless, in the sensitivity analysis, omitting one of 
the included cohorts led to the insignificant association 
between Hh activity and OS of patients receiving ICI 
therapy (Figure S7). To validate the association between 
Hh activity and clinical outcomes in patients treated with 
ICIs, we firstly collected a total of 10 patient samples who 
received neoadjuvant/adjuvant immunotherapy from our 
institution, then detected gene transcriptional expression 
levels of GLI1 and SHH (two key genes in Hh signaling 
pathway52,53) using real-time polymerase chain reaction 
(RT-PCR), and explored the clinical correlation and prog-
nostic value of GLI1 and SHH. As shown in Figure S8A, 
the response group (PR/CR) tended to harbor lower ex-
pression of GLI1 and SHH than the non-response group 
(PD/SD), although it was not statistically significant 
(p = 0.071). Survival analysis revealed that patients with 
low expression of GLI1 achieve a better OS than those 
with high expression of GLI1 (Median OS: 29.0 vs. 20.0, 
p = 0.042; Figure S8B). A similar trend was also observed 
in SHH (p = 0.133; Figure S8B). Therefore, these findings 
preliminarily validated that low Hh activity correlated 
with a high response rate and better survival outcomes in 
patients receiving ICI therapy. Besides, patients with high 
PD-L1 expression were more likely to achieve a better OS 

F I G U R E  3   Association between Hedgehog activity and the tumor microenvironment in diverse cancers. (A) Representative pathways 
enriched in the group with low Hh activity (left panel) and high Hh activity (right panel) across 14 cancer types. All tumor samples 
in each cancer type were divided into two groups according to the median value of Hh activity. Based on the KEGG and REACTOME 
pathway datasets, GSEA analysis was performed to identify the significant pathways enriched in the group with low and high Hh activity. 
FDR < 0.05 was considered statistically significant. The horizontal axis shows the normalized enrichment score and the vertical axis shows 
the representative pathways enriched in the group with low and high Hh activity. Different cancer types are labeled with different colors. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, normalized enrichment score; FDR, false discovery rate. (B) Heatmaps showing 
fold changes of immune-related (upper panel) or stroma-related (lower panel) gene expression in the groups with high Hh activity versus 
low Hh activity. Rows show gene symbols and columns show cancer types. Annotation bar indicates the fold change of gene expression in 
the groups with high Hh activity versus low Hh activity. Immune-related genes include antigen-processing related genes, CD8+ TIL markers, 
IFN-γ downstream genes, NK cell markers, cytolytic effectors, and immune checkpoints. Stroma-related genes include CAF-signature genes 
and ECM remodeling-related genes. Red and blue represent up-regulation and down-regulation of the gene expression in the groups with 
high Hh activity comparing to those with low Hh activity, respectively. Fold change > 1.5 and FDR < 0.05 were set as the cut-off values. 
CAF, cancer-associated fibroblast; ECM, extracellular matrix; NK, natural killer cells; CYT, cytolytic activity. (C) Comparisons of the 
relative fractions of CD8+ T/TIL, Treg /TIL, and M2/(M1+M2) between the groups with low and high Hh activity across 14 TCGA cancer 
types. The horizontal axis shows the groups with low and high Hh activity. The vertical axis shows the median value of average immune 
cell fractions in each cancer type. Different cancer types are labeled with different colors. The table shows the statistical differences of 
relative immune cell fractions between the groups with low and high Hh activity. TIL, tumor-infiltrating lymphocytes; Treg, regulatory T 
cells; M1, classical M1 macrophage; M2, alternative M2 macrophage. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant. 
(D) Heatmap showing the fold changes of the chemokine expression at the transcriptional level in the groups with high Hh activity versus 
low Hh activity. Rows show gene symbols, including immunostimulatory chemokines (CXCL9, CXCL10, CXCL11, CCL4, and CCL5) and 
immunosuppressive chemokines (CXCL8, CXCL5, CXCL12, CCL2, and CCL22). Columns show cancer types. Annotation bar indicates the 
fold change of gene expression in the groups with high Hh activity versus low Hh activity
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F I G U R E  4   Predicting clinical outcomes of patients treated with ICIs by Hedgehog activity alone. (A) Histograms showing the 
comparison of Hh activity between the groups with NDB and DCB (in the Nathanson cohort and the Liu cohort) or PD/SD and PR/CR 
(in the Riaz cohort and the Kim cohort). (B) ROC curves for predicting resistance to ICI therapy by Hh activity in the Nathanson cohort 
(orange), Liu cohort (green), Riaz cohort (blue), and Kim cohort (purple). The status of NDB (in the Nathanson cohort and the Liu cohort) 
or PD/SD (in the Riaz cohort and the Kim cohort) was defined as resistance to ICI therapy for ROC analysis. The values of AUC with 
corresponding 95% CI are presented in each cohort. AUC, area under the curve; ROC, receiver operating characteristic. (C) Kaplan–Meier 
curves showing the association between Hh activity and OS in the Nathanson cohort (left panel), Liu cohort (middle panel), and Riaz cohort 
(right panel). The median value of Hh activity is adopted as the threshold for grouping patients in each cohort. The statistical significance is 
determined using a log-rank test. (D) Forest plot showing the meta-analysis for the prognostic value of Hh activity in the Nathanson cohort, 
Liu cohort, and Riaz cohort. The value of I2 represented the heterogeneity level as follows: low (I2 < 25%), moderate (I2 = 25–75%), or high 
(I2 > 75%). A random-effects model was applied for this meta-analysis. The hazard ratios in each cohort are presented and the horizontal 
lines indicate the 95% confidence intervals. Melanoma patients in the Nathanson cohort received anti-CTLA4 therapy, whereas melanoma 
patients in the Liu cohort and Riaz cohort received anti-PD-1 therapy. Patients with gastric cancer in the Kim cohort received anti-PD-1 
therapy. CR, complete response; DCB, durable clinical benefit; NDB, no durable clinical benefit; PD, progressive disease; PR, partial 
response; ROC, receiver operating characteristic; SD, stable disease
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in the Nathanson cohort (HR = 0.25, 95% CI = 0.08–0.83, 
p = 0.015; Figure S5B,C) and Riaz cohort (HR = 0.50, 95% 
CI = 0.24–1.05, p = 0.060; Figure S5B,C), as well as in the 
meta cohort (HR = 0.56, 95% CI = 0.30–1.03; Figure S5C), 
although there was low heterogeneity between these 
cohorts (I2  =  49%, p  =  0.14; Figure  S5C). However, the 
association between PD-L1 expression and OS was not 
significant in the Liu cohort (HR = 0.84, 95% CI = 0.51–
1.39, p = 0.502; Figure S5B,C). In addition, TMB served 
as a significantly protective factor of OS in the Liu cohort 
(HR = 0.44, p = 0.002; Figure S6B) in the contrast to the 
Nathanson cohort (HR  =  0.39, p  =  0.090; Figure  S6B). 
Moreover, we also evaluated PFS prediction with Hh ac-
tivity, PD-L1 expression, and TMB in the Liu cohort. As 
a result, Hh activity was identified as a significant risk 
factor for PFS in the Liu cohort (HR  =  1.75, p  =  0.011; 
Figure  S9A). However, the association of PD-L1 expres-
sion with PFS was not significant (HR = 0.93, p = 0.728; 
Figure S9B). Besides, compared to the patients with low 
TMB, the patients with high TMB tended to achieve 
a better PFS in the Liu cohort (HR  =  0.67, p  =  0.060; 
Figure S9C). Taken together, these findings indicate that 
Hh activity, PD-L1 expression, and TMB were potential 
biomarkers for predicting clinical outcomes of patients 
treated with ICIs; however, the single-biomarker strategy 
showed unstable prediction efficiency in different popu-
lations and undeniable heterogeneity between the inde-
pendent cohorts.

3.4  |  Predicting clinical 
outcomes of patients treated with ICIs 
by the combination of Hh activity with PD-
L1 expression or TMB

We explored the joint prediction power for clinical out-
comes of patients treated with ICIs by combining Hh ac-
tivity with PD-L1 expression or TMB. Firstly, we divided 
the population of clinical cohorts into two subgroups 
with low and high PD-L1 expression or TMB. Then we 
explored the association of Hh activity with clinical out-
comes of patients treated with ICIs in these subgroups. 
Strikingly, we found that, for the subgroup with high PD-
L1 expression, the response group harbored consistently 
lower Hh activity than the no response group in four co-
horts (Nathanson cohort: p = 0.024; Liu cohort: p = 0.002; 
Riaz cohort: p = 0.086; Kim cohort: p = 0.030; Figure 5A). 
However, there was no significance in the subgroup 
with low PD-L1 expression (Nathanson cohort: NA; Liu 
cohort: p  =  0.263.; Riaz cohort: p  =  0.725; Kim cohort: 
p = 0.217; Figure 5A). ROC analysis identified that Hh ac-
tivity was a reliable biomarker for predicting resistance to 
ICIs in the high PD-L1 expression subgroup (Nathanson 

cohort: AUC = 0.929; Liu cohort: AUC = 0.726; Riaz co-
hort: AUC = 0.721; Kim cohort: AUC = 0.768; Figure 5B) 
compared to the low PD-L1 subgroup (Nathanson cohort: 
AUC  =  0.667; Liu cohort: AUC  =  0.474; Riaz cohort: 
AUC  =  0.591; Kim cohort: AUC  =  0.800; Figure  5B). 
Furthermore, Hh activity was identified as a risk predictor 
for OS in the high PD-L1  subgroup (Nathanson cohort: 
HR = NA, 95% CI = NA, p = 0.032; Liu cohort: HR = 2.98, 
95% CI = 1.38–6.43, p = 0.003; Riaz cohort: HR = 2.71, 
95% CI = 0.85–8.61, p = 0.079; Figure 5C,D) in contrast to 
the low PD-L1 subgroup (Nathanson cohort: HR = 0.82, 
95% CI  =  0.22–3.09, p  =  0.767; Liu cohort: HR  =  0.86, 
95% CI = 0.43–1.71, p = 0.660; Riaz cohort: HR = 0.63, 
95% CI = 0.24–1.65, p = 0.344; Figure 5C,D). As expected, 
meta-analysis validated that patients with high Hh activ-
ity had a worse survival in the subgroup with high PD-
L1 expression (HR = 2.89; 95% CI = 1.53–5.49; p = 0.001; 
Figure  5D) in the contrast to the low PD-L1 expression 
subgroup (HR  =  0.78; 95% CI  =  0.46–1.31; p  =  0.343; 
Figure  5D). Besides, Hh activity stratified the patients 
with significantly different PFS in the subgroup with high 
(HR = 3.19, p < 0.001; Figure S10) and low PD-L1 expres-
sion (HR = 1.00, p = 0.994; Figure S10). In addition, we 
investigated the joint prediction by combining Hh activity 
and TMB. We found that the group with low Hh activity 
and high TMB showed the most proportion of DCBs, al-
though it was not significant (Nathanson cohort: p = 0.12; 
Liu cohort: p  =  0.07; Figure  S11A). Survival analysis 
revealed that Hh activity was a risk factor for OS in the 
subgroup with high TMB in the Liu cohort (HR = 3.35, 
p = 0.012; Figure S11B), while it was not significant in the 
Nathanson cohort (HR = 1.23, p = 0.799; Figure S11B). 
However, we did not observe the significant association 
of Hh activity with OS in the subgroup with low TMB 
(Nathanson cohort: HR  =  2.98, p  =  0.122; Liu cohort: 
HR = 1.21, p = 0.543; Figure S11B). Besides, patients with 
high Hh activity had a significantly worse PFS both in the 
subgroup with low (HR = 1.83, p = 0.040; Figure S12A) 
and high TMB (HR = 1.99, p = 0.041; Figure S12B). These 
findings support the combination of Hh activity with PD-
L1 expression to stratify patients receiving ICIs into sub-
groups with distinct clinical benefits, while combining Hh 
activity with TMB showed undeniable heterogeneity in 
different cohorts.

4   |   DISCUSSION

The association of Hh signaling with various aspects of 
tumor immunobiology has not been systematically stud-
ied across multiple cancer types. In addition, the role of 
Hh signaling in clinical response to ICs therapy remains 
poorly studied. Herein, based on integrated bioinformatics 
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analysis, we are first to characterize the multifaceted im-
munosuppressive role of Hh signaling across diverse can-
cers. Moreover, we identified Hh activity as a negative 
biomarker for predicting response to ICI treatment and 
validated the predictive value of Hh activity in multiple 
independent cohorts. Notably, the combination of Hh ac-
tivity with PD-L1 expression showed better predictive effi-
cacy than Hh activity or PD-L1 expression alone. Patients 
with low Hh activity and high PD-L1 expression harbored 
a higher response rate for ICI therapy and achieved more 
favorable survival outcomes.

Hh activity has been linked with immunosuppressive 
TME in several cancers. For instance, Fan et al. found 
that active Hh signaling could recruit immunosuppres-
sive cells by promoting TGF-β secretion in BCC.54 Hanna 
et al. demonstrated that Hh signaling inhibitor could re-
duce immunosuppressive cells, such as M2 macrophages 
and Treg cells, and increase the number of cytotoxic CD8+ 
T cells and M1 macrophages in breast cancer-engrafted 
mice.18 In this study, we also observed that tumors with 
high Hh activity were more inclined to develop an immu-
nosuppressive TME, including decreased CD8+ T cells, in-
creased Treg cells, or active TGF-β signaling, especially in 
KIRC and LUAD (Figure 3C). Thorsson et al. identified the 
TGF-β immune phenotype in a group with mixed tumors 
from 33 TCGA cancer types that displayed high TGF-β sig-
naling and high infiltration of CD4+ and CD8+ T cells.55 
Similar to the TGF-β immune phenotype, active TGF-β 
signaling was also observed in the group with high Hh ac-
tivity. Nevertheless, we further found that high Hh activ-
ity correlated with decreased CD8+ T cells in TME, which 
was absent in the TGF-β immune phenotype. Besides, 
apart from TGF-β signaling, other features such as active 
VEGF signaling and ECM organization were recognized 
as the key promoters for tumor immunosuppression56 and 
were also enriched in the tumors with high Hh activity. 
Therefore, we considered that the immune phenotypes 

based on TGF-β and Hh signaling shared some common 
features such as activated TGF-β signaling, but both har-
bored other distinctive features associated with tumor im-
munosuppression in TME. Furthermore, several studies 
suggested a direct regulation of Hh signaling with PD-L1 
expression in BCC57 and GC.19 These previous findings 
may partly explain our observation of why the predictive 
value of Hh activity correlated with PD-L1 expression.

The identification of predictive biomarkers for ICI 
therapy has become the central focus of intense research 
in the era of tumor immunotherapy. PD-L1 expression 
and TMB were recognized as effective biomarkers for pre-
dicting response to immunotherapy. Besides, in previous 
transcriptomic studies, a variety of predictive models were 
also identified as potential immunotherapeutic biomark-
ers, such as CYT,38 GEP,47 IFN-γ,48 and APM.49 Herein, 
we conducted correlation analyses to uncover the asso-
ciation between Hh activity and these immunotherapy 
biomarkers. As shown in Figure  S13A, a strong correla-
tion between TME-related biomarkers was observed in 
all cancer types, indicating a robust accordance to reflect 
the immune activity in TME. As expected, Hh activity was 
negatively correlated with at least one of the TME-related 
biomarkers (CYT, GEP, IFN-γ, and APM) in 71.4%(10/14) 
TCGA cancer types (CESC, GBM, HNSC, KIRC, LIHC, 
LUAD, LUSC, OV, SKCM, and STAD), consistent with 
our previous findings that high Hh activity was associ-
ated with an immunosuppressive TME in diverse cancers 
(Figure  3). On the contrary, Hh activity was positively 
correlated with PD-L1 expression at the transcriptional 
level in 78.6%(11/14) TCGA cancer types (BRCA, CESC, 
GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, 
and UCEC). Interestingly, Petty et al. observed that Hh-
induced PD-L1 on tumor-associated macrophages sup-
pressed the tumor-infiltrating CD8+ T cell function in 
TME.58 Koh et al. found that Hh signaling-mediated PD-
L1 promoted infiltration of immunosuppressive MDSCs, 

F I G U R E  5   Predicting clinical outcomes of patients treated with ICIs by the combination between Hedgehog activity and PD-L1 
expression. (A) Histograms showing the association between Hh activity and response to ICI therapy in the subgroups stratified by PD-
L1 expression in the Nathanson cohort, Liu cohort, Riaz cohort, and Kim cohort. All tumor samples in each cohort were divided into two 
subgroups according to the median value of the PD-L1 expression. The comparison of Hh activity was conducted between the response 
group (DCB or PR/CR group) and the non-response group (NDB or SD/PD group) within the subgroups with low and high PD-L1 
expression. (B) ROC curves for predicting resistance to ICI therapy by Hh activity in the subgroups stratified by PD-L1 expression in the 
Nathanson cohort, Liu cohort, Riaz cohort, and Kim cohort. (C) Kaplan–Meier curves showing the association between Hh activity and 
OS in the subgroups stratified by PD-L1 expression in the Nathanson cohort (left panel), Liu cohort (middle panel), and Riaz cohort (right 
panel). The median value of Hh activity is adopted as the threshold for grouping patients in each cohort. The statistical significance is 
determined using a log-rank test. (D) Forest plot showing meta-analysis for the prognostic value of Hh activity in the subgroups stratified 
by PD-L1 expression in the Nathanson cohort, Liu cohort, and Riaz cohort. The value of I2 represented the heterogeneity level as follows: 
low (I2 < 25%), moderate (I2 = 25%–75%), or high (I2 > 75%). A random-effects model was applied for this meta-analysis. The hazard ratios 
in each cohort are presented and the horizontal lines indicate the 95% confidence intervals. Melanoma patients in the Nathanson cohort 
received anti-CTLA4 therapy, whereas melanoma patients in the Liu cohort and Riaz cohort received anti-PD-1 therapy. Patients with 
gastric cancer in the Kim cohort received anti-PD-1 therapy. CR, complete response; DCB, durable clinical benefit; NA, not available; NDB, 
no durable clinical benefit; PD, progressive disease; PR, partial response; SD, stable disease
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leading to the failure response to nivolumab in patient-
derived organoids.59 In the subgroup with high PD-L1 
expression, we found that patients with high Hh activity 
showed dramatically lower response rates to ICIs and had 
significantly worse clinical outcomes (Figure 5). Taken to-
gether, we speculated that high Hh activity might contrib-
ute to immunotherapy resistance for those patients with 
high PD-L1 expression. As for TMB, we found that the 
association with Hh activity varied widely across diverse 
cancers. It was not significant in 57.1%(8/14) of cancers 
(Figure S13B). However, Hh activity positively correlated 
with TMB in CESC and was negatively associated with 
BRCA, LIHC, LUAD, LUSC, and STAD. This demonstrates 
the different roles of Hh signaling in genomic stability 
and mutation burden across diverse cancers and warrants 
more in-depth exploration in vitro/in vivo.

In clinical practice, using a single biomarker such as 
PD-L1 expression could be limited and might incorrectly 
predict effective response to ICI therapy.60,61 Similarly, 
not all high TMB tumors harbor active immune activity 
because of the considerable variation across diverse can-
cers.38 This study also evaluated the predictive value of 
PD-L1 and TMB in three immunotherapy cohorts. We ob-
served that the single-biomarker strategy by using PD-L1 
or TMB alone showed unstable prediction efficiency in dif-
ferent populations and undeniable heterogeneity between 
the independent cohorts (Figures S5 and S6). Interestingly, 
a combined strategy by integrating Hh activity and PD-
L1 expression, which achieved better predictive power 
than Hh activity or PD-L1 expression alone (Figure  5). 
It could be explained that a composite biomarker might 
capture the immune status of the TME more effectively 
than a single biomarker.62 In addition to those routine bio-
markers used in clinical practice, numerous models have 
also been established to predict response to ICI therapy 
in previous studies. For instance, Jiang et al. developed a 
model named Tumor Immune Dysfunction and Exclusion 
(TIDE) to predict cancer immunotherapy response.63 In 
this study, we further compared the difference in predic-
tive power between Hh activity and TIDE. We found that 
Hh activity showed more effective predictive power for 
resistance to ICI response than TIDE in four independent 
cohorts (AUC: 0.817 vs. 0.558 in the Nathanson cohort; 
0.590 vs. 0.554 in the Liu cohort; 0.733 vs. 0.642 in the 
Riaz cohort; 0.725 vs. 0.604 in the Kim cohort; Figure S14; 
Figure 4B). In summary, compared with those biomark-
ers, Hh activity harbored several advantages as follows: 
(1) Under the background that identification of positive 
predictive biomarkers has become a hot spot of intense 
research, Hh activity serves as a negative predictive bio-
marker, which can exclude a considerable proportion of 
non-responders. Therefore, Hh activity might be consid-
ered as a supplementary index for its negative predictive 

value in tumor immunotherapy. (2) This study developed 
a combined strategy by integrating Hh activity and PD-L1 
expression, which offered a more comprehensive immune 
status of the TME and provided more predictive efficiency 
than a single biomarker alone. (3) Hh activity reflects the 
activation status of the Hh signaling pathway, which has 
been recognized as a hallmark signaling in various can-
cers.64 Encouragingly, a series of Hh signaling inhibitors 
have been developed in preclinical studies or clinical tri-
als,65 which provide substantial hope for targeting Hh 
signaling in diverse cancers to overcome tumor immuno-
therapy resistance in the future.

In recent years, resistance to mono ICI therapy remains 
a great challenge for a non-negligible number of patients 
with metastatic cancers.66 Schadendorf et al. reported that 
nearly 20% of melanoma patients treated with ipilimumab 
show DCBs and long-term survival.67 Ribas et al. reported 
that the 3-year response rate was only 33% for melanoma 
patients treated with pembrolizumab.68 Those patients 
who had limited or no response to mono ICI therapy 
may become suitable candidates for the combination of 
ICI therapy with other therapeutic interventions, such as 
chemoradiotherapy69 and target therapy.70 These therapies 
may convert tumors from immune deserted/excluded type 
to immune inflamed type, leading to the enhanced anti-
tumor response after the administration of ICI therapy.71 
However, the shallow understanding of potential targets 
involved in the immunotype transformation from “cold” 
to “hot” has limited the development of precise combina-
tion treatment. The predictive biomarker identified in this 
study was based on the Hh signaling, recognized as a ca-
nonical oncogenic signaling and a therapeutic target.72,73 
Otsuka et al. reported that tumor regression induced by 
Hh signaling inhibitor was accompanied by recruitment 
of cytotoxic T cells into the TME in BCC,21 indicating the 
great potential of Hh signaling as a critical target in com-
bination treatments. Encouragingly, three clinical trials 
comparing the treatment efficiency between the mono ICI 
group or the combined group (ICI plus Hh inhibitors) in 
metastatic BCC patients will provide evidence of whether 
combination treatments serve as a better strategy than 
mono ICI strategy in BCC (NCT03521830; NCT03132636; 
NCT02690948). Our study found that metastatic mela-
noma and GC patients with high Hh activity developed a 
limited response rate to ICI therapy, whereas patients with 
low Hh activity exhibited better therapeutic outcomes. 
Therefore, we speculate that the combination treatments 
targeting Hh signaling and immune checkpoints may syn-
ergistically increase the efficacy and durability of the ther-
apeutic outcomes across diverse cancers.

It is worth noting that this study has several limitations. 
First, our study investigated the relationship between 
Hh signaling and TME using bioinformatic analysis; 
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therefore, further in vitro/in vivo experiments need to be 
conducted for substantiation. Second, the inconsistent 
prognostic value of Hh activity alone was observed be-
tween the individual cohorts and meta-cohorts. The small 
sample size and a limited number of studies might con-
tribute to the negative results in the sensitivity analysis. 
The patient samples in the cohorts were treated differently 
and at different time points, which might cause unavoid-
able bias in this study. Therefore, the prognostic value of 
Hh activity in patients receiving ICI therapy requires more 
validation in large-scale clinical cohorts and prospective 
clinical trials. Third, a total of 14 cancer types were en-
rolled in this pan-cancer analysis, but the predictive value 
of Hh activity for response to ICI therapy was explored 
in the clinical cohorts with metastatic melanoma and GC. 
Therefore, the role of Hh activity in tumor immunosup-
pression and ICI therapy could be explored and validated 
in more cancer types. In addition, we did not distinguish 
the tumor samples from primary and metastatic lesions in 
the TCGA-SKCM, which might bring potential bias into 
this study. Besides, considering the expensive cost and in-
tense time from RNA-seq, the method of estimating Hh 
activity needs to be simplified in clinical practice.

In conclusion, our study highlights that increased Hh 
activity correlated with multiple immunosuppressive 
characteristics in the TME of diverse cancers. Moreover, 
Hh activity was a predictive biomarker for resistance to ICI 
therapy in patients with metastatic cancer. Furthermore, 
combination with PD-L1 expression was able to better 
predict clinical outcomes than a single biomarker. These 
findings deserve experimental validation and prospective 
investigation in the future to assist oncologists in precise 
treatment recommendations for cancer patients.
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