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A B S T R A C T   

Optical coating damage detection is a part of both industrial production and scientific research. 
Traditional methods require sophisticated expert systems or experienced front-line producers, and 
the cost of these methods rises dramatically when film types or inspection environments change. 
In practice, it has been found that customized expert systems imply a significant investment of 
time and money, and we expect to find a method that can perform this task automatically and 
quickly, while at the same time the method should be adaptable to the later addition of coating 
types and the ability to identify damage kinds. In this paper, we propose a deep neural network- 
based detection tool that splits the task into two parts: damage classification and damage degree 
regression. Introduces attention mechanisms and Embedding operations to enhance the perfor-
mance of the model. It was found that the damage type detection accuracy of our model reached 
93.65%, and the regression loss was kept within 10% on different data sets. We believe that deep 
neural networks have great potential to tackle industrial defect detection by significantly 
reducing the design cost and time of traditional expert systems, while gaining the ability to detect 
entirely new damage types at a fraction of the cost.   

1. Introduction 

Optical Coating can effectively improve their optical performance and service of life [1–3]. Various materials are stacked on the 
surface of an original in a sequence, and the different combinations will give the original different optical properties [4–6], such as high 
transmittance [7–9], high reflectance [10] and polarization. Whether in industrial production or scientific research, many different 
types of coatings are often required to work together to accomplish a task, such as the production of polarized light sheets, which are 
made by laminating, stretching and coating polyvinyl alcohol (PVA) stretch film and cellulose acetate film (TAC) several times. The 
ability of magnetron sputtering coating [11] and electron beam evaporation coating technologies [12] to attach organics to the 
original surface at very low cost and variance has opened up the possibility of rapid iterative mass production and research, further 
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increasing the application scenarios for coating. Therefore, checking the quality of the coating is the first step before putting it into 
production and research. 

Film defects include but are not limited to cracks, scratches, impurities, dehumidification, and optical damage. There are many 
causes of film damage, such as annealing [13], material quality [14], coating, and accidental damage. The main methods to detect 
damage are stylus profilometry [15], atomic force microscopy [16], and computer vision. The last one is the lowest cost and can obtain 
damage distribution without secondary damage. Standard expert systems are also designed based on image algorithms. However, 
these methods’ performance depends on the algorithm’s sophistication and the purity of the image capture environment [17], any 
slightest perturbation can cause different drastic results. 

On the other hand, the coating can also be used to assess the performance of the destructor and to restore the process of damage 
development [18,19], such as fine particle impact and high-energy laser bombardment. Different damage sources and environmental 
factors can cause widely varying damage patterns on coated surfaces. For example, using 0.5 mm and 1 mm diameter metal solid 
particles impacting the coating, variables such as the density of the metal particles, the angle of impact, the velocity of the particles, the 
concentration of particles per cubic meter in the fluid carrier, and even the Reynolds number of the carrier fluid (a dimensionless 
number describing the flow state of the fluid) all cause statistically significant differences in damage phenotypes during the process. 
The study of small particle impacts can be applied to artificial satellites, where fine floating objects in cosmic space move at high 
relative velocities, which is a great threat to artificial satellites. Scholars can simulate the impact of the bombardment angle of 
high-speed moving particles on critical devices in a vacuum environment on the ground, and thus develop more durable and reliable 
satellites, extending their lifespan. Lasers can also easily damage coatings, and scholars can also analyze laser parameters such as 
dispersion, energy and power by studying the morphology of the damage spot. There are also statistically significant differences in the 
damage spots of different wavelengths of laser light on the same type of coating. Using damage spots to infer laser performance is an 
inexpensive and intuitive way to do so, and is less expensive and easier to perform than, for example, using laser hedging. 

Therefore, detection of coating damage morphology is a very common need in production and research [20–23]. The currently 
available detection means are divided into two main types, one is to use an expert detection system customized based on computer 
vision to determine the damage pattern through a combination of complex algorithms and a large amount of a priori knowledge [24, 
25]. The other relies on front-line engineers and technicians with extensive practical experience to sample samples and then manually 
discriminate them. Although both methods have been widely used for decades, they have long demonstrated bottlenecks in both 
industrial production and scientific research. The former requires high development costs, is the classic solution for computer vision 
applications in industrial scenarios, and places high demands on the image acquisition process, where slight variations, such as 
shooting angles and ambient light intensity, can lead to unstable performance of the expert system. The latter requires considerable 
human resources and cannot check all samples, while the proportion of missed and false positives is much higher than that of the expert 
system. 

Deep neural networks have been widely demonstrated to deal with lots of complex tasks, such as long texts translation [26,27], vast 
scale image recognition [28,29], long-period prediction [30,31], and even the simulation of large scale eddy currents has been solved 
by researchers [32], in the past, it was a poser to computational fluid dynamics (CFD). On the other hand, convolutional neural 
networks (CNN) for image processing have shown robustness and scalability in many competitions, both of which are attractive 
properties for thin-film analysis [33]. CNN has proven its reliability through previous studies, such as metal surface crack detection 
[34], electrochemical corrosion [35], and coating thickness calculations [36]. The most significant advantage of neural networks is 
that it weakens the reliance on image process algorithms in software development [37]. Data-driven allows the model to learn essential 
features of the target. However, building a model which can solve both classification and regressions is problematic [38]. Deep neural 
networks are a discipline that has gained an all-round explosion in computer science in recent years, although at present it still has 
some insurmountable defects, such as mathematical interpretability, solution space dimensionality, and solution completeness. 
However, in practical applications, deep neural networks have been extended to many fields, such as image processing, text processing, 
semantic analysis, network security, cryptography, etc. [39–41], and there are even teams working in fluid mechanics and extrater-
restrial life exploration. Deep neural networks are still most richly developed in image processing, which allows the image processing 
capability of models to be no longer limited by complex and obscure expert systems and topology, reducing the impact of PNP 
problems in mathematics on image processing. Deep neural networks can be used as input by clever structures and large amounts of 
data, and the models can quickly converge to locally or globally optimal solutions on suitable optimizers. This property of it allows 
research teams from different disciplines to obtain models that can be put into production at a lower cost (time and money). Another 
advantageous feature of deep neural networks is their scalability [42,43], especially when faced with completely new data, the models 
can still perform no less than the base line. This is difficult to accomplish with traditional expert systems and manual labor. 

Benefit to the above two features of deep neural networks, our team constructs an ingenious model structure in this paper, which 
splits a complete coating damage detection into two parts: the first part is to identify the damage type, determine the cause of the 
coating damage, and extract the feature vector obtained after multiple convolution operations; the second part is to perform a 
regression analysis of the damage level, using the feature vector obtained in the previous step The second part is the regression analysis 
of the damage level, using the feature vectors obtained in the previous step to calculate the regression value of the damage using the 
attention mechanism. The biggest advantage of this scheme is that it converts the previous chaotic and potentially unsolvable pattern 
recognition problem into a relatively simple two-step operation, and uses intermediate products as a bridge to ensure the correlation 
between the two operations. 

To test the model’s ability to detect damage in the face of a brand new coating, we prepared several different data sources con-
taining high-quality damage image data that we prepared ourselves. It turns out that our model needs only a small training batch to 
reach convergence in the face of this problem. At the same time, our model is small enough to maintain a computational rate of 50 fps 
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even in embedded devices. This is very important because there are strict requirements for inspection speed and capacity on industrial 
assembly lines, which directly affect the output efficiency of the plant. 

2. Related work 

We mentioned above that in the field of thin film damage detection, deeply customized expert systems are commonly used. The vast 
majority of such expert systems are based on computer vision, either optical imaging or electron microscope images. In these systems, 
there are three steps at the core of analyzing a coated photo containing damage: 1) data enhancement (pre-processing) of the image. 
This step uses the region of interest (ROI) operation to segment out meaningful regions of the image, followed by a series of 
morphological changes, including expansion, erosion, open operations, closed operations, etc. The morphological transformations 
reduce the noise introduced in the original image due to the camera hardware or the digital-to-analog conversion process.2) The pre- 
processed image is subjected to convex packet computation, a step that involves complex geometric theory and aims to describe the 
contours of the damage in terms of mathematical equations. The performance differences exhibited between different expert systems 
are reflected here. The merit of the detection system depends heavily on the engineering experience of the system designer in the field 
and requires a high level of mathematical foundation from the algorithm engineer. This means that most system will be hindered 
here.3) Select a classification or regression algorithm based on the results of the convex packet calculation. This step will classify the 
abstract features obtained in the previous step. Common means of classification are support vector machines, random forests, etc. 

In recent years, there have been many researches on damage detection using expert systems.In 2006,Y Zhang established math-
ematical models for the defects [44].Combining expert system with fuzzy set theory, the defect inspection system for defect inspection 
of TFT-LCD. 

In 2015,Y Shi and his team proposed an expert system to realize optical detection for automatic detection of surface defects of LCD 
backlight module, which can intelligently identify the image defects, defect appearance and abnormal defects of the backlight tem-
plate.They used illumination and non illumination methods to realize real-time detection of LCD backlight modules [45]. 

In 2019,JP Yun proposed a vision inspection system for the edge cracks of cold-rolled steel strips [46]. He realized a visual in-
spection expert system for edge cracks of cold-rolled steel sheets by designing an optical system to distinguish defective areas from non 
defective areas and a detection algorithm to automatically extract defect location and shape features. 

In 2022,we proposed a deep residual generative and adversarial network, After being trained by spatial 2D damaged photos of film, 
The damage adversarial neural network can infer the depth matrix of the damaged film from the CCD image, And then the 3D damage 
morphology can be reconstructed. 

Our team initially used a deep neural network to discriminate whether an unstable laser generator can cause effective damage. 
Laser generators can produce uncertain results due to variations in service life, operating environment, power supply conditions, etc. 
This manifests itself mainly in the wavelength and power of the laser that fluctuates within a certain range. Especially in a non-vacuum 
operating environment. In this experiment, we found that the deep neural network was able to calculate these fluctuation intervals 
very accurately, within a confidence interval of 2 theta, and the deviation calculated by the neural network model was within 15% of 
the data obtained using the high-precision sensor. It is worth noting that the ease of use and accuracy shown by the neural network 
model in this process is amazing. Hence, there is this study. 

3. Methods 

3.1. Anti-reflection film preparation 

Three different substrates are used for coating, Fused silica (purity >99%, refractive index is 1.52, thickness is 2500 ± 400 μm), k9 
glass (refractive index is 1.50, thickness is 2500± 500 μm), and monocrystalline silicon (refractive index is 3.40, thickness is 600± 100 
μm). Those bases were purchased from Xi’an Weihe Optical Instrument Factory. 

Magnetron sputtering equipment is Veeco SPECTOR-HT. Plating equipment argon pressure is 10–2–10-1 Pa, and the target voltage 
is 700 V. Attach the target to the substrate in the order of HfO2, SiO2, HfO2, and MgF2. The thickness of all three coatings is between 
150 and 200 nm, and the total thickness of the four coatings is 600–800 nm. 

3.2. Laser generator 

A metal neodymium solid-state laser is used to excite a laser with a wavelength of 1064 nm and a pulse width of 10 ns, which is 
bombarded at an angle perpendicular to the coating surface of the component with maximum bombardment energy of 400 mJ and a 
calibrated spot diameter of 800 ± 45 μm for the laser equipment. 

Wyko NT9100 interference microscopy and matching software were used to scan the damage surface. 

3.3. Data augmentation 

Standard data augmentation includes mirroring, cropping, affine changes, color gamut adjustment, center crops, etc. However, 
data enhancement in regression tasks needs to be carefully chosen because there has a regression part. When the image is distorted, the 
corresponding image label is likely to change, e.g., the damage pattern in the distorted image may change from circular to elliptical, 
and the true value of the damage diameter may change from 500 μm to The long axis is 800 μm, and the short axis is 300 μm. This again 
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turns the problem into a situation where the labels need to be calculated manually, and such damage spots will most likely not appear 
in the real world. Therefore, in this study, the data augmentation of the image only includes two operations, horizontal and vertical 
mirroring, and other methods do not use in this work. 

3.4. Development of hyper-parameters 

For neural networks, more model layers (or more functional layers) tend to perform better [34], leading to the excessive pursuit of 
the count of parameters. However, massive parameters can potentially improve performance while significantly increasing the training 
difficulty [35]. 

1% performance improved may cause hundreds of additional hours of training time. On the other hand, although most problems 
cannot determine the hyperparameters for each layer at the start, they can be modified by pruning and shrinking. We have taken the 
same approach. 

For the discriminator, we initially set 3 times of parameters of the final model and 2 times of fully connected layers in the tail. The 
regression model is also set to 4 times that of the final model, and the number of fully-connected layers in the tail is also 3 times 
compared to the final model. The shrinkage of the redundant model is as follows: 20% of the total number of parameters is reduced 
each time, one fully connected layer is removed if the model performance decreases less than 0.5%, and 90% is set as the lower limit of 
the classifier accuracy on the validation set. By this way, we determined the hyper parameters for our model. 

4. Results 

In this section, we detail the details of the study, including how the coated samples used in the study were prepared, how the open- 
source samples were obtained, the rationale and justification for sample set segmentation, the deep neural network structure, the 
model optimizer, the performance of the model on the training set, and the performance of the model in terms of light weighting and 
scalability. Finally, we also quantify the performance differences between our model and mainstream models, and discuss the per-
formance of our model on images with different damage types from the confusion matrix. 

For the in-house coating, we have used small coating equipment from a research perspective, and the laser generator is also a small 
device, compared to the scale of equipment used in industrial production. For future research, we will consider finding suitable 
material suppliers and try to communicate with manufacturers who are already in mass production in order to obtain samples that are 
more relevant in a real manufacturing context. 

Due to the small number of publicly available coated damage datasets, our team tried to balance the core conditions of dataset size 
(number of images) and quality (annotation completeness and diversity of species) as much as possible when searching for open source 
material. Admittedly, this may result in a loss of open source sample richness in our study, which is a choice of last resort. In the process 
we found many high-value datasets, although not applicable to the model presented in this paper at this stage, which is quite a pity 
considering the amount of time and effort invested by the contributors of these datasets in their production. We will optimize our 
model in future work and let it try to test it on other datasets. 

4.1. Composition of the dataset 

The public optical thin-film defect dataset is relatively sparse. One reason is that labeling those images is labor-intensive, tedious, 
and repetitive work, whether ascertaining defect levels or calculating damage diameters. Fortunately, Project Ada is one of them, 
pursued by Nina et al. [47] and collaborated with the Shanghai Institute of Ceramics, Chinese Academy of Sciences. Over twenty 
thousand thin-film defect images have been taken in this dataset, including multiple annealing methods and two different shooting 
light environments (Brightfield conditions for cracks, dewetting, parts, and scratches; Darkfield conditions for cracks, dewetting, no 
cracks, and no dewetting). Several experts labeled each image with a positive integer from 0 to 10, with 0 meaning no damage and 10 
indicating severe damage. We used the above eight types of damage images and labels from this dataset in the present study. 

The core target of this study is to build a neural network model with scalable capabilities, and we expect the model can work in the 
case of significant label differences. Therefore, we prepared some optical films with different damage types by ourself. 

The anti-reflective film is a common treatment for optics, effectively increasing the light refractive index and reducing reflectivity. 
We use magnetron sputtering for multilayer combination coating. The film’s structure is shown in Fig. 1, and the details of the coating 
will be described in detail in the Methods section. 

Then we use the laser to bombard the vertical surface of the anti-reflective film to create artificial damage. In this way, a completely 
different type of defect (damage) is created than in the process of preparing thin films, the distribution of damage images obtained by 

Fig. 1. Self-made anti-reflective film structure.  
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interference microscopy. Detailed about the laser will be presented in the Method section. Fig. 2 shows a part of Project Ada and part of 
self-made. 

The regression part of this paper is an unbalanced distribution problem, as shown in Fig. 3. Expert systems are difficult to upgrade 
and are the main target to be solved in this study. For the unbalanced problem from the same dataset, the conventional practice is to 
map the regression value domains of different segments onto a continuous space utilizing intermediate functions [48]. However, this 
approach does not apply there because the samples that make up the dataset come from different data sources. 

Inspired by the traditional approach, this paper uses transfer vectors instead of intermediate functions. It lets the output of the 
vectors from the discriminator be computed as part of the regressor input. The specific model structure is shown in the following 
subsection. 

4.2. Design of neural network 

Fig. 4 shows the work flow of out model. It is hard to train a model that can do classification and regression simultaneously, so we 
split this task into two steps. The classifier’s training is first, and then the regressor is trained. 

To train the model easily (reduce parameters), down sampling the input image is a general approach. The Equidistant down sample 
tends to lose details in the image and cause jaggedness [49], which may have little effect on the classification model [50], but the down 
sampling algorithm needs to be discreet; we need details about input images in the regression step. 

The image size provided by Project Ada is generally around (100, 100). The Bilinear Interpolation [51] is used here, as shown in 
Fig. 5. The algorithm considers both the output quality and the computing speed. 

First, the single linear interpolation of pixel P in the x-direction is calculated, Formula 1 and Formula 2. 

f (x, y1) =
x2 − x
x2 − x1

Q11 +
x − x1

x2 − x1
Q21 (1)  

f (x, y2) =
x2 − x
x2 − x1

Q12 +
x − x1

x2 − x1
Q22 (2)  

Then, value of pixel P obtained by single linear interpolation about the y direction, Formula 3. 

f (x, y) =
y2 − y
y2 − y1

f (x, y1) +
y − y1

y2 − y1
f (x, y2) (3) 

In our own self-made dataset, the image size was captured by interferometric microscopy is (1960, 1080), is a massive advantage 
for conventional expert systems because this scale can accurately calculate the number of target region pixel. However, this input size 
appears redundant for neural networks. Common down sample methods, Gaussian pyramids cause information loss in the high- 
frequency detail part during the computation [52], and to be able to preserve that information, we use Laplace pyramids, Formula 
4, which have been shown to exhibit strong performance in super-resolution models [53]. 

Li = Gi − Up(Gi+1)⨂κ (4)  

In the above equation, Gi denotes the Gaussian pyramid output of the ith layer, Up(x) denotes the mapping of the current pixel to the 

Fig. 2. Sample of Project Ada and self-made.  
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pixel location after up sampling, and κ denotes the convolution kernel size, which is used to control the image size after upsampling. 
After down sampling and up sampling, the input size scaled to (224, 224), it is consistent with ImageNet competition [54]. Many 

studies have used images of this size as input. The obtained images are then passed through a convolution and pooling operation to 
obtain a series of feature maps. These feature maps and the corresponding damage type labels are used as input to the classifier, Fig. 6. 
Here, we introduce transfer learning to accelerate the model training. The first three residual blocks of the ResNet-50 model [55], 

Fig. 3. Imbalanced distribution and samples count.  

Fig. 4. Work flow of our model.  

Fig. 5. Bilinear Interpolation algorithm.  
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pre-trained in the ImageNet dataset, are used as the feature map extraction part. 
Admittedly, the struct of the classifier is a bit complex and redundant, but this is done because the intermediate layer’s output of the 

discriminator is to be used to calculate the degree of damage in the regression part. The complexity of regression models is higher than 
the classifier, and the latter is easy to train. Therefore, we hope that by increasing the classifier function and the number of neurons in 
each layer, let it learn in-depth features and use those features as intermediate inputs to the regression part to reduce the training 
difficulty and prevent overfitting. The struct of the regression model show in Fig. 7. 

The feature maps extracted from the classifier will be used here as input to the regressor. At the same time, the feature vectors from 
the penultimate layer will also be used on the channel convolution to enhance the critical feature maps in the regression process in 
terms of channels. In this way, we implement interventions with different labeled domains, allowing multiple values to be used as 
inputs to train the model. In previous studies, such multiple-meaning regression problems are split into multiple models due to the 
difficulty of training a single one to match two data distributions. 

4.3. Loss function and optimizer 

The optimizer can help the neural network complete training quickly. At present, the common optimizers in classification problems 
are SDG, AdaSGD, RMSProp, Adam. Although most optimizers can easily cause the model to enter the trap of local optimal solution, 
the role of optimizer is to quickly find the local optimal solution. As the sample size grows, the local optimal solution where the 
problem is located is already quite close to the global optimal solution. For image processing problems, the global optimal solution 
does not necessarily exist, but there will be many equivalent local optimal solutions. Therefore, the optimizer is also an important part 
of model design. 

The discriminator accuracy was first trained to above 93% using Categorical Cross Entropy [56] as the loss function. The optimizer 
is Adam [57] with an initial learning rate of 0.001, after which the learning rate is reduced according to a 5-fold decay every 20 epochs, 
combined with 5-fold cross-validation [58]. The optimizer of the regression model was set up with the same strategy as the classifier, 
but the loss function used quantile loss [59], Formula 5. A quantile parameter of γ = 0.25 was set. 

Lγ(y, yp) =
∑

i=yi<yp
i

(Υ − 1) • |yi − yp
i | +

∑

i=yi≥yp
i

(Υ) • |yi − yp
i | (5)  

MSE =
1
n
∑

i
(yi − ŷi)

2 (6) 

Mean Square Error (MSE), Formula 6, is not chosen here because it will evolve the regression result into a specific value, leading to 
overfitting when the model has large trainable parameters. The researchers in Project Ada do not define decimal label values such as 
5.5, and the output of their paper’s model contains decimals; for example, the model predicted is 3.33, corresponding to the real label is 
3. Similarly, although we used an interferometric electron microscope to measure the laser damage diameter in our self-made samples, 
this operation still has errors due to the expert software requiring manual pulling of straight lines to calculate. Therefore, from both a 
research and an application scene, allowing the output between a float range makes more sense than precisely on a certain point. On 
the other hand, the distribution between the image and the label is not known previously, the least-squares method is based on the 
assumption that the samples are independently and identically distributed (iid.) with constant variance, and if this assumption does not 
hold or is not reliable, the quantile loss function is well adapted to residual samples with variance variation or non-normal distribution 
and gives reasonable intervals. 

4.4. Model training and validation 

An Ubuntu 20.04 server with 128 GB of RAM, four Nvidia Titan V graphics cards with 12 GB of video memory on a single card, and 
an Intel Xeon E5-2680 v3 2.6 GHz CPU, the TensorFlow-GPU version 2.6.0 framework was used to train the model. 

To train the model, we make a total dataset of 18,923 images, including 18,709 images provided in Project Ada and 214 images 

Fig. 6. Struct of classifier (X* indicates the number of neurons in the output of the last layer, which is 12 in the current task, and if the model needs 
to add a new type of damage category, modify this fine-tuned). 
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prepared by ourselves. However, in Project Ada, the sample number of the ’Cracks’ under the Darkfield scene is 726, compared with 
‘No Dewetting’ is 7722, which is a typical sample inhomogeneity problem [60], to avoid the extreme case of sample loss in one 
category, it needs manual intervention in the splitting process. We use stratified sampling; 10% of the samples in each category are 
randomly selected as the validation set, ensuring that the ratio between validation and training set keeps 9:1. 

By the experiment, our classifier can achieve 93.65% on the validation set after 100 epochs of training under current hardware 
conditions, which takes about 115 min. The classifier weights were then frozen, and the training of the regressor was started. Detail 
about hyper-parameters strategy show in Methods section. Table 1 shows the performance of our model on the training set. Since the 
dataset itself is composed of samples from two different label scales, it is not reasonable to discuss the average loss of the regressors, 
which would cause the loss of Project Ada to be amplified and the loss of self-made to be weakened. 

4.5. Performance of embedding device 

We ported the trained model into a Jetson Xavier NX device to more realistically measure our model’s performance in an embedded 
device. Table 2 shows test results under different input image sizes. When the input shape is (224, 224, 3), the average computation 
speed is 53 frames per second. This frame rate means our model has a high throughput capability; it is difficult to achieve with 
traditional expert systems. 

4.6. Performance of newly dataset 

In order to measure our model’s learning ability for completely new types of datasets, examine whether the discriminator can add 
additional content while retaining the previously learned features (Project Ada’s Organic thin-films and Self-made laser damage), 
experiments were been designed. 

In this section, the remaining part of Project Ada (Metal Oxide film part) and another dataset [61] with only defective labels 
without the degree, Fig. 8 were been used. Modify the classifier’s last layer neural number and fine-tune it. Those data have not been 
used in previous work, so it is brand new for the model. 

Table 3 presents the performance of the result. Our model learns the features of the brand-new samples only around 50 epochs, the 
classifier’s accuracy does not significantly drop, and the regressor loss is maintained at the original level. It is very important because it 
signifies that our model can be embedded into the diagnostic system, use a few epochs by fine-tuning to upgrade the software in the 
face of a brand new types sample, without redesigning the whole algorithm can significantly reduce the software update cost. 

4.7. Compare with other popular models 

It is necessary to test classifier generalizability, Table 4. Here, several publicly available datasets as the benchmark to compare the 
performance between our classifier and other popular models. The input shape of those models was designed as (224,224,3). The 
model weights are initialized randomly, and no transfer learning is involved. 

Fig. 9 shows the loss and accuracy cure of the classifier during 100 epochs of training. In Fig. 9(a), the losses of our model decrease 
faster than others, while In Fig. 9(b) the discriminant accuracy can reach more than 90% in a very small epoch. 

4.8. Confusion matrix 

The confusion matrix is one of the crucial metrics to judge the performance of the discriminator. Fig. 10 shows the performance of 

Fig. 7. Struct of regression model.  

Table 1 
Performance of classifier and regressor in training set under 100 epochs.  

number of epochs accuracy of classifier Project Ada losses self-made losses 

20 89.52% 2.41 15.16 
50 91.65% 1.73 10.70 
100 93.13% 0.36 6.59  
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the discriminator at the beginning, trained on only Project Ada Organic part, and 100 samples were randomly selected as the test set. 
Then, a self-made laser damage dataset and another optical thin film damage dataset mentioned above, Fig. 11, were added to the 

discriminant model to train by fine-tune. 
* validation set rate means count of Project Ada, Self-made and other samples is 100, 50, 100. 
In Fig. 11, it can be obtained that the discriminant model guarantees high performance of the confusion matrix despite the increase 

in the number of datasets. It is no confusion between samples from different datasets, although there are manageable errors in samples 
from the same dataset. It means that the model can be extended for entirely new data types during use. In Fig. 11(a),it showed the 
performance of the discriminator by training with two kinds of datasets. and in Fig. 11(b), it showed performance of the discriminator 
by training with three kinds of datasests. 

Here, we present multiple datasets in a confusion matrix. This is to clearly show that we do not train a model for each dataset, but 
rather train a model with multiple datasets. This is one of the main differences between our study and others’ studies, and is an 
indication of our model scaling capabilities. 

5. Conclusion 

We demonstrate in this paper a method for quantitative and qualitative analysis of coating damage using a self-invented structured 

Table 2 
Performance on embedded devices.  

image size output frame rate classifier acc Project Ada losses self-made losses 

(224,224,3) 53 92.85% 0.24 6.60 
(200,200,3) 62 91.70% 0.29 7.85 
(150,150,3) 81 84.53% 0.61 14.19 
(100,100,3) 97 81.74% 0.82 20.04  

Fig. 8. Sample of optical film dataset.  

Table 3 
Performance on other’s dataset with fine-tune.  

number of epochs Project Ada’s Metal Oxide film part Optical film dataset 

classifier acc losses of regressor classifier acc 

10 42.70% 9.53 12.65% 
20 76.91% 2.02 37.81% 
50 82.85% 1.49 72.94% 
100 85.07% 0.58 88.13% 
150 92.07% 0.27 91.58%  

Table 4 
Comparison between our classifier and popular models.  

Models MNIST CIFAR-100 ImageNet film dataset Paramsa 

Top 1 Acc Top 5 Acc Top 1 Acc training time/100 epoch 

Designed for ImageNet, input shape is (224,224,3), batch size is 128 
VGG-16 94.88% 79.95% 71.31% 90.16% 91.28% 291 min 138.35 M 
ResNet-50 99.03% 86.90% 74.94% 92.11% 91.06% 123 min 25.63 M 
DenseNet-121 99.33% 82.62% 75.05% 92.34% 90.89% 126 min 8.06 M 
Xception 98.71% 88.45% 79.01% 94.59% 90.37% 128 min 22.91 M 
Inception V3 99.52% 84.19% 77.90% 93.52% 92.54% 133 min 23.85 M 
EfficientNet B0 99.04% 85.70% 77.15% 93.37% 92.08% 124 min 5.33 M 
our discriminator 99.26% 86.14% 76.42% 93.28% 93.65% 104 min 17.24 M  

a M means one million. 
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Fig. 9. Loss and accuracy cure in training.  

Fig. 10. Confusion Matrix under Project Ada Dataset (Organic part) only.  

Fig. 11. Confusion Matrix under three datasets (validation set rate is 2:1:2*).  
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deep neural network. Our model is able to perform this task with relative ease compared to expensive expert systems. Unlike ordinary 
image processing neural networks, we split the task, which not only makes it easier to train a good model, but also provides some ideas 
about the interpretability of the model (deep neural networks take on different tasks at different depths of the functional layer, while 
each layer can be used as an independent individual as input to other models). Thanks to the powerful solution space capacity of deep 
neural networks, we believe that the model has not yet reached its performance bottleneck and is currently limited mainly due to 
sample scarcity. 

In this paper, we use deep neural networks to solve the problem of identifying and quantifying different types of thin-film defects 
and damage, whether it is generated during the preparation or due to laser bombardment. Our model can integrate the classification 
and regression work through feature maps and label features between classifier and regressor. We also demonstrate the performance of 
our model on new types of film defect images. Fine-tune is efficient. 

We tested the high throughput capability of the model on an embedded device, comparing the frame rate with various input shapes 
and the accuracy. Finally, we compare the performance of the discriminator part and other general-purpose models. Although our 
model is not the best on several public datasets, it is the best in dealing with the thin-film dataset, as our model is explicitly designed to 
solve such problems. 

6. Discussion 

We do not believe that deep neural networks should become a general-purpose model, although many teams have tried to make 
their models more powerful and general. This would cause the model size to explode, while being difficult to train. We believe that 
deep neural networks can be an alternative to expert systems in general niche areas because they are economical and efficient enough. 
Likewise, deep neural networks should be designed from a cost-of-use perspective. Models with tens of billions of parameters are 
powerful and reliable, but they are a huge burden for users, and this can be a reason for industry to wait and see. We believe that any 
practical model, whether it is a deep neural network or an expert system, should be as realistic as possible, and the cost of use should be 
calculated from the user’s perspective. 

Of course, there is still space for improvement in our research, especially regarding the model’s capacity for other datasets. Future 
research will increase the samples of thin-film defect types, including metal cutting, thermal strain, tensile compression, etc. At the 
same time, we will try to integrate the model into the preparation system to monitor the coating quality and automatically adjust the 
hardware parameters during the process. 

Finally, we would love to see more research teams join the field. Frankly, industrial defect detection research is too scarce 
compared to the fields of target detection and face recognition, but this is a direction that can truly reduce production costs. In the 
future, we will still continue to research deeply in this area. 
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