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The role of p16-cyclin D/CDK-pRb pathway in the
tumorigenesis of endometrioid-type endometrial
carcinoma

H Tsuda 1, K Yamamoto 1, T Inoue 2, I Uchiyama 2 and N Umesaki 3

Departments of 1Obstetrics & Gynaecology and 2Pathology, Osaka City General Hospital, 2-13-22 Miyakojimahondori, Miyakojima, Osaka 5340021, Japan;
3Department of Obstetrics & Gynaecology, Osaka City University Medical School, Miyakojima, Osaka, Japan

Summary We analysed p16 gene alteration and p16, cyclin-dependent kinase 4 (CDK4), CDK6, cyclin D1, cyclin D2, cyclin D3 and
retinoblastoma protein (pRb) expression in ten normal endometriums (PE), 18 endometrial hyperplasias (EH) and 35 endometrial cancers
(EC). Two of ten PE (20%), nine of 18 EH (50.0%) and 29 of 35 EC (82.9%) exhibited p16 nuclear staining. p16 expression was significantly
higher in EC than EH (P = 0.0119). In the six p16 (–) EC, one was considered to have reduced gene dosage consistent with possible
homozygous deletion of the CDKN2 gene and three had methylation in 5′CpG island in the promoter region of the p16 gene, whereas none
showed such reduced gene dosage and four had methylation in the nine p16 (–) EH. Strong CDK4 staining was observed in 12 of 35 EC
(34.3%) and one of 18 EH (5.6%). The strong expression of CDK4 was higher in EC than in EH (P = 0.0399). The expression of CDK4 was
higher in EH than PE (P = 0.0054). The abnormalities of p16-cyclin D/CDK-pRb pathway were detected in 18 of 35 EC (51.4%). In conclusion,
the expression of p16 and CDK4 may be an early event in the neoplastic transformation of endometrial cancer. © 2000 Cancer Research
Campaign
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Recent genetic and biochemical investigations of the molec
mechanisms governing the G1 to S progression in mamm
cells have demonstrated a central role for D-type cyclins and 
partner kinases cyclin dependent kinase (CDK4) and CD
(Kamb et al, 1995; Sherr et al, 1995; Strauss et al, 1995; Wein
et al, 1995; Hall et al, 1996). When activated by cyclin D, CDK
able to phosphorylate retinoblastoma protein (pRb) leading to
release of associated proteins like E2F that have the capabil
activate genes necessary for cell progression through the G1 
(Weinberg et al, 1995). p16 controls cell cycle proliferation dur
G1 by inhibiting the ability of cyclin D/CDK4 and cyclin D/CDK
complexes to phosphorylate pRb (Serrano et al, 1993). 
components of the p16-cyclin D/CDK-pRb pathway are freque
found to be altered in various types of cancer (Cirns et al, 1
Nakagawa et al, 1995; Kinoshita et al, 1996; Barbieri et al, 1
Zhang et al, 1997).

In solid tumours, there is a reciprocal correlation betw
genetic alterations of single members of the p16-cyclin D/CD
pRb pathway (He et al, 1994; Schauer et al, 1994; Bartkova 
1996). It has been reported that hypophosphorylated active
can repress p16 expression, whereas inactivation of pRb by 
phorylation leads to p16 expression (Li et al, 1994). Consis
with these findings, CDKN2 gene deletion and Rb deficiency a
reported to be inversely correlated in many types of tumo
(Bartkova et al, 1996; Kinoshita et al, 1996). In addition, a str
association between altered cyclin D1 and pRb expression
saka
ens,
PE)
oma.
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been reported in oesophageal tumours (Jiang et al, 1993). M
et al have demonstrated that the cell cycle-dependent express
cyclin D1 in tumour cell lines requires the presence of a functio
pRb (Muller et al, 1994). The expression levels and activitie
these proteins can modulate each other. It is thought to be im
tant to evaluate these four elements simultaneously.

Endometrial carcinoma is the most common malign
neoplasm of the female genital tract; however, its molecular pa
genetic events are not fully understood. There are few rep
about the abnormalities of p16-cyclin D/CDK-pRb pathway
endometrial cancer (Peiffer et al, 1995; Niemann et al, 19
Shiozawa et al, 1997). Additionally, to our knowledge, there 
no reports in which p16, cyclin D, CDK and pRb were examin
simultaneously in endometrial cancer. In this study, we h
examined all these key components of this G1 checkpoint me
nism by a combination of genetic and immunohistochem
approaches in normal endometrium (PE), endometrial hyperp
(EH) and endometrial cancer (EC).

MATERIALS AND METHODS

Clinical samples

Paraffin-embedded tissue of 35 endometrioid-type endome
cancers: (EC) (stage 1: 23; stage 2: five; stage 3: six; stage 4: 
recurrence: one) and 18 endometrial hyperplasia: (EH) (sim
hyperplasia: 12, atypical hyperplasia: six) were collected at O
City General Hospital, Osaka, Japan. For control specim
normal endometrial tissue (proliferative phase endometrium, 
was selected from ten patients who had benign uterine leiomy
Histological diagnosis was confirmed by microscopic examina
of the haematoxylin and eosin (H&E)-stained sections accor
675



te
log

o
ui
e
aw
ng
 in
D

g
 

A)
hy

f t
n

 

n
a-
l

P

o
i

tu
ce
 w
SC
n

we
w
,
n
e

yc

C
th

e
ir
a-
et al,
5 bp
was

 of
 and

95).
alized
sed

pan).

gene

% of
ain
ated

n

r’s
A
ied
or

A,
er as

ing

e gel.
tifi-
 the
f an
 an

ed

then
era-

676 H Tsuda et al
to World Health Organization criteria. Clinical stages were de
mined according to the International Federation of Gyneco
and Obstetrics (FIGO) system. Regions of more than 80% tum
density were marked on H&E-stained slides to be used as g
lines for microdissection. Two 5-µm sections were cut from th
paraffin block and the neoplastic tissue was microdissected 
from contaminating normal tissue. The DNA was extracted usi
DEXPAT™ kit (TaKaRa, Japan) and was finally precipitated
cold ethanol with sodium acetate and resuspended in Tris–E
buffer, pH 7.5.

PCR-SSCP analysis

Polymerase chain reaction (PCR) was performed using 100 n
genomic DNA as template in a 50µl reaction volume containing
10 pmol of each rhodamine-labelled oligonucleotide primer, 5µl of
10 × TaqDNA polymerase buffer (Perkin-Elmer, Cetus, CT, US
200µM each dNTP (Perkin-Elmer, Cetus), 5% (v/v) dimet
sulphoxide (DMSO) and 1.25 units Taq Gold DNA polymerase
(Perkin-Elmer, Cetus). The primers used to amplify the regions o
CDKN2genes are the following (Hussussian et al, 1994): for exo
5′-GGGAGCAGCATGGAGCCG-3′ (X1.31F)/5′-CTGGATCGG-
CCTCCGACCGT-3′ (MK50) and 5′-AGCAGCATGGATCC GG-
CGGCGG-3′ (MK49)/5′ -AGTCGCCCGCCATCCCCT-3′
(X1.26R); for exon 2, 5′-AGCTTCCTTCCGTCATGC-3′ (X2.62F)/
5′-GCAGCACCACAGCGTG3′ (286R), 5′-AGCCCAACT-GCGC-
CGAC-3′ (200F)/5′-CCAGGTCCACGGGCAGA-3′ (346R) and
5′-TGGACGTGCGCGATGC-3′ (305F)/5′-GGAAGCTCTCAGG-
GGTACAAATTC-3′ (X2.42R). After a 10 min initial denaturatio
step at 94°C, 40 cycles of 30 s at 94°C, 30 s at an annealing temper
ture (55–60°C), and 1 min at 72°C were performed in a therma
cycler (Perkin-Elmer, Cetus).

For single-strand conformational polymorphism (SSC
analysis, 1µl of each PCR product was mixed with 9µl of SSCP
loading buffer [98% (v/v) formamide, 10 mM EDTA] and incu-
bated at 80°C for 5 min, followed by rapid cooling on ice. Tw
microlitres of the sample solution were loaded on a 6% acrylam
gel containing 1 × TBE (86 mM Tris–borate, 2 mM EDTA) and 5%
glycerol. Following electrophoresis at 30 W at room tempera
for 2–3 h, the gel was analysed using an FMBIO 100 fluores
image analyser (TaKaRa, Japan). The presence of bands
variant migration pattern was confirmed by repeating PCR-S
at least once prior to extraction of the band for DNA seque
analysis.

DNA sequencing

PCR products that revealed mobility shifts on SSCP analysis 
cut from the gels and recovered. Re-amplification by PCR 
followed by subcloning into pAMP1 vector (Gibco-BRL, MD
USA) and sequencing using M13/pUC primer. The seque
analysis for each product was performed with an ABI 310 gen
analyser (Perkin-Elmer, Cetus) and the Dye Terminator C
Sequencing FS Ready Reaction Kit (Perkin-Elmer, Cetus).

Multiplex PCR of CDKN2 gene

The CDKN2gene homozygous deletion was investigated by P
for the ability to amplify a region of the gene compared with 
ability to amplify, as an internal control, the human β-globin gene.
British Journal of Cancer (2000) 82(3), 675–682
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The sequence of the primers used for multiplex PCR were CDKN2
exon 2 (Marchini et al, 1997), sense 5′-TCTGACCATTCT-
GTTCTCTC and antisense 5′-AGCACCACCAGCGTGTC; β-
globin, sense 5′-CAACTTCATCCACGTTCACC and antisens
5′-GGTTGGCCAATCTACTCCCAGG. This p16 primer pa
amplifies on the 5′ half of exon 2, where the majority of p16 mut
tions in human cancer cells have been described (Maestro 
1995). These primers amplify fragments of 166 bp and 20
respectively. One hundred nanograms of genomic DNA 
amplified in a final volume of 50µl containing 10 pmol of each
oligonucleotide primer, 5µl of 10 × TaqDNA polymerase buffer
(Perkin-Elmer, Cetus), 200µM each dNTP and 3.75 units Taq
Gold DNA polymerase (Perkin-Elmer, Cetus). The cycles
amplification were as described previously (Kamb et al, 1994)
reduced to 30 cycles in the β-globin co-amplification to maintain
the amplification in the exponential phase (Campbell et al, 19
Samples were loaded on 4% MetaPhor agarose gel and visu
by ethidium bromide staining. The signal intensity was analy
using an FMBIO 100 fluorescent image analyser (TaKaRa, Ja
The CDKN2signal intensity was normalized against the β-globin
signal intensity. We considered a tumour to have reduced 
dosage consistent with possible homozygous deletion of CDKN2
gene in the tumour cells when the normalized CDKN2 signal
intensity in the tumour sample was reduced to less than 80
that in the normal uterine control. In order to ascert
CDKN2/p16homozygous deletion, each experiment was repe
two times.

Analysis of methylation in 5 ′CpG island in the promoter
region of the p16 gene

The methylation status of the 5′CpG island in the promoter regio
of the p16 gene was determined with the CpGWiz™ p16
Methylation Kit (Oncor, Inc.). Briefly, 0.5–1.0µg of DNA was
denatured with 3M sodium hydroxide at 50°C for 10 min and
treated with sodium bisulphite following the manufacture
protocol. After completion of the DNA modification, the DN
was purified by precipitation. The dissolved DNA was amplif
by PCR, utilizing primers specific for the methylated (M) 
unmethylated (U) sequences. A 5-µl aliquot of template (corre-
sponding to treated DNA, positive control for methylated DN
positive control for unmethylated sequences, and distilled wat
negative control) was amplified in the presence of 10 × Universal
PCR buffer, 2.5 mM dNTP mix, U or M primers, and AmpliTaq
Gold™ (Perkin-Elmer), under the following conditions: preheat
(95°C, 12 min), followed by 35 cycles (95°C, 45 s; 65°C, 45 s;
72°C, 1 min). The PCR product was analysed on a 2% agaros
The presence of DNA methylation was determined by the iden
cation of one 145 bp fragment in those samples amplified with
M primers. All the cases were evaluated for the presence o
unmethylated specific fragment (154 bp), which served as
internal control for the quality of the treated DNA.

Immunohistochemistry of p16, CDK4, CDK6, cyclin D1,
cyclin D2, cyclin D3 and pRb proteins

Histological sections (4µm) were affixed to glass slides, dewax
and rehydrated. Autoclave unmasking process (10 min at 121°C in
10 mM citrate buffer, pH 6.0) was used. The sections were 
incubated in 3% hydrogen peroxide for 10 min at room temp
© 2000 Cancer Research Campaign
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M N 1 2 3 4 5 6 7

M N 41N 41T 48N 48T 52N 52T

A

B

β-globin
p16

β-globin
p16

1 2 3 4 5 6 7 8 9 10 11

Figure 1 (A) The comparative multiplex PCR assay using serial mixtures of
normal human DNA and DNA from a central nervous system cell line
(SF295) with homozygous deletion of CDKN2/p16 locus. M: size marker; N:
negative control; lane 1: SF295 DNA:normal DNA = 10:0; lane 2: 9.5:0.5;
lane 3: 9:1; lane 4: 8:2; lane 5: 7:3; lane 6: 6:4; lane 7: 0:10. Reduction of
CDKN2/p16 amplification product was detected when normal DNA
constituted less than 20% of the total DNA. (B) Multiplex PCR of CDKN2/p16
locus in cases 41, 48 and 52. CDKN2/p16 homozygous deletion was
observed in case 48

Figure 2 Analysis of methylation in 5′CpG island in the promoter region of
the p16 gene. Primer sets used for amplification are designed as
unmethylated (U) or methylated (M). Lane 1: size marker; lanes 2, 4, 6 and
8: PCR products with U primer in cases 2, 14, 24 and 37, respectively; lanes
3, 5, 7 and 9: PCR products with M primer in cases 2, 14, 24 and 37,
respectively; lane 10: unmethylated DNA with U primer; lane 11: methylated
DNA with M primer
ture to quench endogeneous peroxidase activity. The sections
reacted with one of the following primary antibodies at 4°C
overnight: (a) rabbit anti-p16 polyclonal antibody (Pharming
San Diego, CA, USA), (b) mouse anti-pRb monoclonal antib
(Pharmingen), (c) rabbit anti-CDK4 polyclonal antibody (Sa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA), (d) rabbit a
CDK6 polyclonal antibody (Santa Cruz Biotechnology, Inc.), 
mouse anti-cyclin D1 monoclonal antibody (Medical a
Biological Laboratories Co., Nagoya, Japan), (f) rabbit anti-cy
D2 polyclonal antibody (Santa Cruz Biotechnology, Inc.), 
rabbit anti-cyclin D3 polyclonal antibody (Santa Cr
Biotechnology, Inc.), or nonimmunized rabbit serum. Af
rinsing, the sections were incubated for 30 min with mous
rabbit EnVision + Peroxidase (Dako, CA, USA). The peroxid
activity for p16, pRb, CDK4, CDK6, cyclin D1, cyclin D2 an
cyclin D3 was visualized by applying diaminobenzidine ch
mogen containing 0.05% hydrogen peroxide for 2–10 min at r
temperature. The sections were then counterstained with ha
toxylin. Positive and negative control experiments were perfor
for each tumour staining.

Interpretation of immunohistochemical staining

Evaluation of p16, pRb, CDK4, CDK6, cyclin D1, cyclin D2 a
cyclin D3 positives was performed with semiquantitative analy
The following scale was used: 0 = no immunoreactive tumour 
detectable or less than 5% of the tumour cells were positive w
weak intensity; 1 = 5–50% of the tumour cells were positive wi
strong intensity; 2 = more than 50% of the tumour cells were p
tive with a strong intensity. Tumours were scored as p16-neg
if less than 5% malignant cells had positive nuclear staining,
surrounding normal stromal cells showed adequate nu
staining as a positive internal control. Tumours were regarde
p16-positive if more than 5% malignant cells had nuclear stain
© 2000 Cancer Research Campaign
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Small lymphocytes, which showed no nuclear staining of p
were used as a negative internal control (Kratzke et al, 19
These criteria were used for evaluation of pRb staining. Nega
nuclei staining (0) was considered as abnormal expression in
and pRb. Strong nuclear staining (2) was considered as abno
expression of CDK4, CDK6, cyclin D1, cyclin D2 and cyclin D
(Michalides et al, 1995).

Statistical analysis

The abnormalities of p16, pRb, CDK4, CDK6, cyclin D1, cyclin D
and cyclin D3 were analysed using Fisher’s exact probability te
compare the different clinicopathologic groups with each other.

RESULTS

PCR-SSCP analysis of the CDKN2 genes

SSCP analyses were performed for two CDKN2 coding exons.
One SSCP variant pattern was detected in assay for exon 1
case 27. DNA sequence analysis of clones of this abnorm
migrating SSCP fragment revealed a point mutation in intro
No mutations of either exons 1 or 2 were found in any sam
(data not shown).

Detection of homozygous deletion of the CDKN2 genes

The comparative multiplex PCR assay was titrated using s
mixtures of normal human DNA and DNA from a CNS cell li
(SF295) with homozygous deletion of CDKN2/p16 locus.
Reduction of CDKN2/p16 amplification product was indicate
when normal DNA constituted less than 20% of the total D
(Figure 1A). In case 48, CDKN2/p16homozygous deletion wa
observed (Figure 1B).

Analysis of methylation in 5 ′CpG island in the promoter
region of the p16 gene

Forty-two samples DNA were available for p16 methylati
analysis. Fifteen of 42 samples (35.7%) had methylation in 5′CpG
island in the promoter region of the p16 gene. Five of 15 EH
(33.3%) and ten of 27 EC (37.0%) had methylation (Figure 2)
British Journal of Cancer (2000) 82(3), 675–682
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Table 1 Endometrial hyperplasia

Case Age Histology SSCP Methylation HD p16 CDK4 CDK6 CCND1 CCND2 CCND3 pRb

1 78 SH N M N 1 0 0 0 0 0 1
2 46 SH N U N 1 1 0 0 0 0 1
3 66 SH N U N 1 1 0 0 0 0 1
4 45 SH N U N 1 1 0 0 0 0 1
5 49 SH N ND N 1 1 1 0 0 0 1
6 46 SH N U N 1 1 0 0 0 0 1
7 48 SH N ND N 1 2 0 0 0 0 1
8 47 SH N M N 0 0 0 0 0 0 1
9 52 SH N M N 0 0 0 0 0 0 1

10 54 SH N U N 0 1 0 0 0 0 1
11 70 SH N ND N 0 1 0 0 0 0 2
12 51 SH N U N 0 1 0 0 0 0 1
13 82 AH N U N 1 1 0 0 0 0 1
14 83 AH N M N 0 1 1 0 0 0 1
15 22 AH N U N 1 1 0 0 0 0 1
16 52 AH N U N 0 1 0 0 0 0 1
17 50 AH N M N 0 1 0 0 0 0 2
18 74 AH N U N 0 0 0 0 0 0 1

AH: atypical hyperplasia; SH: simple hyperplasia; N: normal; ND: not done.

Table 2 Endometrial cancer

Case Age Stage Grade SSCP Methylation HD p16 CDK4 CDK6 CCND1 CCND2 CCND3 pRb

19 59 1a 1 N U N 1 0 0 0 0 0 2
20 39 1a 1 N U N 1 2 0 0 0 0 1
21 53 1a 2 N M N 1 1 0 0 0 0 1
22 55 1a 2 N ND N 1 2 1 1 0 0 2
23 67 1a 2 N M N 2 1 0 0 0 0 1
24 67 1b 1 N U N 1 1 0 0 0 0 1
25 51 1b 1 N M N 1 0 0 0 0 0 2
26 73 1b 1 N U N 1 1 0 0 0 0 1
27 60 1b 1 A U N 1 0 0 0 0 0 0
28 56 1b 1 N U N 1 2 0 0 0 0 2
29 54 1b 1 N U N 1 1 0 0 0 0 1
30 44 1b 1 N ND N 1 2 0 0 0 0 2
31 59 1b 2 N ND N 2 0 0 0 0 0 1
32 58 1b 2 N M N 0 1 0 1 0 0 1
33 52 1b 2 N U N 1 2 1 0 0 0 1
34 77 1b 2 N U N 1 1 0 1 0 0 1
35 65 1b 2 N U N 1 1 0 0 0 0 1
36 55 1b 2 N U N 1 0 0 0 0 0 2
37 54 1b 3 N M N 0 1 0 0 0 0 1
38 62 1b 3 N ND N 2 2 0 0 0 0 0
39 42 1c 1 N M N 1 1 0 1 0 0 1
40 54 1c 2 N U N 1 0 0 1 0 0 1
41 52 1c 2 N M N 0 0 0 1 0 0 0
42 45 2a 1 N ND N 1 2 0 1 0 0 1
43 48 2a 1 N M N 1 1 0 1 0 0 1
44 52 2a 2 N ND N 1 2 0 1 0 0 1
45 68 2b 1 N M N 1 1 0 0 0 0 2
46 80 2b 3 N ND N 1 2 0 1 0 0 1
47 37 3a 1 N U N 1 2 0 0 0 0 0
48 72 3a 1 – ND HD 0 0 2 0 1 0 1
49 60 3a 3 N U N 1 1 0 1 0 0 1
50 53 3c 1 N U N 1 1 0 0 0 0 1
51 60 3c 1 N U N 0 1 0 0 0 0 1
52 56 3c 3 N U N 0 2 1 0 0 0 1
53 57 RE 2 N M N 1 2 0 0 0 0 1

N: normal; A: abnormal; U: unmethylated; M: methylated; ND: not done; HD: homozygous deletion
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A B
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E

G

D
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H
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Figure 3 Typical images of p16, pRb, CDK4, CDK6, cyclin D1, cyclin
D2 and cyclin D3 staining. (A) Positive p16 immunostaining of case 47.
(B) Negative p16 immunostaining of case 48. The section shows
negative nuclear staining of the tumour cells. (C) Positive pRb
immunostaining of case 48. (D) Negative pRb immunostaining of case
47. Note that stromal cells show distinct nuclear staining (arrow) of p16
and pRb, which provide positive internal controls for both proteins. (E)
Strong positive CDK4 immunostaining in case 53. (F) Strong positive
CDK6 immunostaining in case 48. (G) Strong positive cyclin D1
immunostaining in positive control. (H) Strong positive cyclin D2
immunostaining in positive control. (I) Strong positive cyclin D3
immunostaining in positive control. (A–I, original magnification 200 3)
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Table 3 Correlation of expression of p16, CDK4, CDK6, CCND1, CCND2, CCND3 and pRb and clinicopathologic features

Clinicopathologic CDK4 CDK6 CCND1 CCND2 CCND3
features NO p16 pRb 1+ or 2+ 2+ 1+ or 2+ 1+ 1+ 1+ Pathway

Proliferative 10 2 (20.0%) 10 (100%) 2 (20.0%)** 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) –
Hyperplasia 18 9 (50.0%)* 18 (100%) 14 (77.8%)** 1 (5.6%)*** 2 (11.1%) 0 (0%)**** 0 (0%) 0 (0%) –
Cancer 35 29 (82.9%)* 31 (88.6%) 27 (77.1%) 12 (34.3%)*** 4 (11.4%) 10 (28.6%)**** 1 (2.9%) 0 (0%) 18 (51.4%)

Clinical stage
I 23 20 (87.0%) 20 (87.0%) 16 (69.6%) 6 (26.1%) 2 (8.7%) 5 (21.7%) 0 (0%) 0 (0%) 10 (43.5%)
II III RE 12 9 (75.0%) 11 (91.7%) 11 (91.7%) 6 (50.0%) 2 (16.7%) 5 (41.7%) 1 (8.3%) 0 (0%) 8 (66.7%)

Histologic grade 
G1 17 15 (88.2%) 15 (88.2%) 13 (76.4%) 5 (29.4%) 1 (5.9%) 3 (17.6%) 1 (5.9%) 0 (0%) 8 (47.1%)
G2 13 11 (84.6%) 12 (92.3%) 9 (69.2%) 4 (30.8%) 2 (15.4%) 5 (38.5%) 0 (0%) 0 (0%) 6 (46.2%)
G3 5 3 (60.0%) 4 (80.0%) 5 (100%) 3 (60.0%) 1 (20.0%) 2 (40.0%) 0 (0%) 0 (0%) 4 (80.0%)

Pathway: p16-cyclin D/CDK-pRb pathway. *P = 0.0119, **P = 0.0054, ***P = 0.039, ****P = 0.0118.
nine p16 (–) EH and six p16 (–) EC, four (44.4%) and th
(50.0%) had methylation respectively. Of five methylated EH, f
(80%) cases had no expression of p16 and of ten methylated
three (30%) cases had no expression of p16.

Immunohistochemistry of p16, pRb, CDK4, CDK6,
cyclin D1, cyclin D2 and cyclin D3 proteins

The results of immunohistochemical analysis are shown in Ta
1 and 2. Two of ten PE (20%), nine of 18 EH (50.0%) and 29 o
EC (82.9%) had p16 nuclear staining. In the six p16 (–) EC, 
was considered to have reduced gene dosage consistent
possible homozygous deletion of the CDKN2 gene and three ha
methylation in 5′CpG island in the promoter region of the p16
gene, wheres none showed such reduced gene dosage and fo
methylation in the nine p16 (–) EH. p16 expression was sig
cantly higher in EC than EH (P = 0.0119). pRb was detectable 
all ten of ten PE, all 18 of 18 EH and 31 of 35 EC; pRb was
detectable in four of 35 EC (11.4%). The EC cases with los
either p16 or pRb expression are 1bG2, 1bG3, 1cG2, 3aG1, 3
3cG3, 1bG1, 1bG3, and 3aG1. Typical images of p16 and 
staining are shown in Figure 3 A–D.

In total, two of ten PE (20%), 14 of 18 EH (77.8%) and 27 of
EC (77.1%) exhibited positive nuclear staining with CDK4 an
body. Strong CDK4 staining was observed in 12 of 35 EC (34.
and one of 18 EH (5.6%). The strong expression of CDK4 
higher in EC than in EH (P = 0.0399). The weak and stron
expression of CDK4 was higher in EH than PE (P = 0.0054). The
strong expression of CDK4 was higher in cases with grad
tumours (60.0%) than with grade 1 tumours (29.4%), but 
difference was not significant. Ten cases of EC exhibited w
positive nuclear staining of cyclin D1 and its expression w
higher in EC than EH (P = 0.0118). In contrast, the expression 
CDK6, cyclin D2 and cyclin D3 was rare in EC. Representa
pictures of CDK4, CDK6, cyclin D1, cyclin D2 and cyclin D
staining are shown in Figure 3 E–I. The abnormalities of p
cyclin D/CDK-pRb pathway were detected in 18 of 35 E
(51.4%). Correlation of expression of p16, pRb, CDK4, CDK
cyclin D1, cyclin D2 and cyclin D3 and clinicopathologic featur
are shown in Table 3.

DISCUSSION

It was reported that the alterations of CDKN2were uncommon and
British Journal of Cancer (2000) 82(3), 675–682
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late events in endometrial cancers (Peiffer et al, 1995; Mi
Langosch et al, 1999). In contrast, Shiozawa et al (1997) repo
that in endometrial cancer, 65.8% of examined cases w
negative for p16 protein. In our study, the rate of absence of
expression in EC was 17.1%. Based on our study, p16 altera
are thought to be rare in endometrial cancer. In our studies c
the rate of absence of pRb expression in EC was low (11.4%
was reported that alterations of pRb were rare events (Niema
al, 1997; Milde-Langosch et al, 1999). In particular, Yaginuma
al (1996) demonstrated that Rb gene abnormality was a rare 
in endometrial cancer. Geradts et al (1996) reported that studi
the expression of Rb in neoplasms will include an unknown,
probably small, number of positive stains despite the lack of fu
tional pRb. The pRb alterations are thought to be rare in e
metrial cancer. Further examination will be required to solve 
problem.

There were no cases exhibiting overexpression of cyclin D
this study. Cyclin D1 was reported to be overexpressed in 30–
of invasive primary breast cancers and to play a key role in m
ating mitogenic response to steroids and growth factor in br
cancer cells in vitro (Buckley et al, 1993; Dutta et al, 19
McIntosh et al, 1995). In addition, it was reported that 
abnormal expression of tumour suppressor genes such as p
pRb was present in 40% of breast cancer (Cairns et al, 1
Herman et al, 1995; Pietilainen et al, 1995). Both breast cance
endometrial cancer are sex steroid-dependent tumours. Stud
mice have demonstrated that cyclin D1 plays a pivotal role
normal mammary gland development. Cyclin D1 knockout m
fail to undergo the lobular proliferative changes normally see
the breast epithelial compartment under the influence of ste
hormones in pregnancy (Sicinski et al, 1995), whereas overex
sion of cyclin D1 in the mammary gland of transgenic anim
results in premature lobulo-alveolar development, abnor
epithelial proliferation in pregnancy, and the late developmen
adenocarcinoma (Wang et al, 1994). It was demonstrated 
cyclin D1 and oestrogen receptor (ER) gene expression are 
tively correlated in primary breast cancer (Zuberberg et al, 19
Hui et al, 1996) and that oestrogen stimulation increases cyclin
gene expression in an ER-positive cultured breast cancer cel
(Prall et al, 1997). The mechanism of development and carc
genesis of endometrium may differ from that of mammary gla
tissue.

In this study, expression of CDK4 significantly increased fro
PE to EC. However, it did not significantly increase with t
© 2000 Cancer Research Campaign
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p16-cyclin D/CDK-pRb pathway in endometrial cancer 681
progression from stage 1 to 3. These data suggest that the ov
pression of CDK4 protein is important in the early stages
endometrial oncogenesis.

The meaning of loss of p16 expression in EH remains unc
The loss of p16 protein in EH may be precursors to tumorigen
Four of nine p16 (–) EH (44.4%) had methylation in 5′CpG island
in the promoter region of the p16 gene. The methylation of th
5′CpG island of p16/CDKN2is thought to be associated with ina
tivation of this tumour suppressor gene. However, the fact tha
loss of p16 protein was significantly higher in EH than EC
contradictory. It is possible that in EH, the loss of p16 protein w
methylation may differ from that without methylation. Anoth
speculation is that the loss of p16 protein may be involved
normal cell function. The loss of p16 protein was significan
higher in EH than in EC and one of the six p16 (–) EC was con
ered to have reduced gene dosage consistent with pos
homozygous deletion of the CDKN2 gene, whereas none of th
nine p16 (–) EH showed such reduced gene dosage. The fac
five of 15 EH (33.3%) had methylation in 5′CpG island in the
promoter region of the p16 gene may be contradictory; howeve
Gonzalez reported that p16/CDKN2 was methylated and no
expressed in the 50% of normal colon tissue (Gonzalez e
1995). It has been reported that overexpression of p16 might 
important early event in neoplastic transformation (Bartkova e
1996; Shiozawa et al, 1997; Shigemasa et al, 1997). Yao 
(1998) reported that primary soft tissue sarcoma overexpres
CDK4 also had high levels of pRb and/or p16, which may ref
the onset of feedback to counteract the overexpression of CDK
may be that the loss of p16 in EH is a reversible change o
feedback system between CDK4 and p16. Further examina
will be required to determine if the transcriptional silencing
p16/CDKN2observed in EH is involved in normal cell function 
is a precursor to tumorigenesis.

In conclusion, the expression of p16 and CDK4 may be an e
event in the neoplastic transformation of endometrial cancer.
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