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Abstract: Cerebral amyloid angiopathy (CAA) is the deposition of amyloid protein in the cerebral
vasculature, a common feature in both aging and Alzheimer’s disease (AD). However, the effects of
environmental factors, particularly cognitive stimulation, social stimulation, and physical activity, on
CAA pathology are poorly understood. These factors, delivered in the form of the environmental
enrichment (EE) paradigm in rodents, have been shown to have beneficial effects on the brain
and behavior in healthy aging and AD models. However, the relative importance of these
subcomponents on CAA pathology has not been investigated. Therefore, we assessed the effects
of EE, social enrichment (SOC), and cognitive enrichment (COG) compared to a control group that
was single housed without enrichment (SIN) from 4 to 8 months of age in wild-type mice (WT)
and Tg-SwDI mice, a transgenic mouse model of CAA that exhibits cognitive/behavioral deficits.
The results show that individual facets of enrichment can affect an animal model of CAA, though
the SOC and combined EE conditions are generally the most effective at producing physiological,
cognitive/behavioral, and neuropathological changes, adding to a growing literature supporting the
benefits of lifestyle interventions.

Keywords: cerebral amyloid angiopathy; Alzheimer’s disease; enriched environment; exercise;
reserve; resilience

1. Introduction

Cerebral amyloid angiopathy (CAA), the deposition of amyloid protein in the cerebral vasculature,
is common in the aging population and often co-exists with Alzheimer’s disease (AD) [1]. CAA
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is associated with several other small vessel disease pathologies, including cerebral hemorrhages,
white matter lesions, cortical microinfarcts, and perivascular inflammation [2–7]. There is a strong
positive correlation between CAA and AD symptoms and pathology [8]. CAA is specifically linked to
deficits in several cognitive domains, including perceptual slowing and episodic memory [9], and has
been shown to be a better predictor of cognitive decline than parenchymal Aβ deposition in mouse
models [10]. Unfortunately, there is currently no efficacious pharmaceutical intervention for CAA.
Therefore, research to identify modifiable lifestyle factors that may reduce the risk and/or progression
of dementia has come to the forefront. Epidemiological studies have identified a number of factors
associated with a reduced risk of cognitive decline, including being physically active [11–14] and
cognitive and social stimulation [11,15–18]. To help elucidate the causal relationship between these
factors and outcomes, animal models can provide the opportunity to determine the contribution of
these lifestyle factors to differential outcomes in pathology, cognitive performance, and additional
related behaviors.

The complex interaction between physical-, social-, and cognitive-stimulating components can be
modeled in rodents using the enriched environment (EE) paradigm. In the EE, rodents are usually
group housed in a large cage with an exercise wheel, toys, and tunnels of varying shapes, colors, and
sizes. The environment is altered several times per week by switching and moving around toys so
that the rodents are always learning to navigate a novel environment. The effects of living in EE has
been shown to result in enhanced neurogenesis, synaptogenesis, and angiogenesis [19–22], as well as
increased dendritic arborization, growth factor levels [e.g., brain-derived neurotrophic factor (BDNF)],
and cognition-linked gene expression [21,23–26]. These neural changes are accompanied by positive
effects on behavior, including enhanced spatial and working memory [21,27,28], as well as reduced
anxiety- and depression-related behaviors [29–31]. The benefits of EE in healthy animals led to testing
the effects of EE in several mouse models of AD pathology. Generally, studies have found that EE
attenuates cognitive deficits; however, pathological findings have been mixed. Some studies have
found that EE exposure results in cognitive benefits and reduced AD-related pathology [32,33] while
another study showed benefits via amyloid-dependent and -independent mechanisms [34]. Other
studies on EE found improved cognition in the absence of effects on pathology [35]. On the other
hand, some studies have shown that EE improves cognitive performance while actually exacerbating
amyloid pathology [36,37], perhaps by enhancing brain/cognitive reserve [38] or other mechanisms,
such as reduced neuroinflammation.

While the full EE treatment, with its multiple components (novel objects, social stimulation,
and physical activity), is a powerful manipulation, the contributions of each of the individual EE
factors on AD pathology has been the subject of only limited study [39–43]. Further, no studies on
EE have been performed on CAA. The present experiment used the Tg-SwDI mouse model of CAA
to examine the contribution of these EE factors, alone and in combination, to differential outcomes
in physiology, pathology, and behavior associated with this condition. From 4–8 months of age,
mice were single housed in standard conditions, single housed with cognitive enrichment, group
housed (social enrichment), or housed in a standard enriched environment and tested for physiological,
cognitive/behavioral, and neuropathological outcomes. We found that individual facets of enrichment
can affect this model of CAA, though social housing and combined EE conditions are generally the
most effective at producing changes in physiology, cognition/behavior, and neuropathology.

2. Results

Tg-SwDI mice are a transgenic mouse model of cerebral microvascular CAA type-1. Tg-SwDI
mice begin to develop cerebral microvascular amyloid deposition starting at ~3–4 months of age.
By 9 months of age, Tg-SwDI mice exhibit some CAA in the cortex, with more extensive deposition in
the subiculum and thalamic regions (Figure 1).



Int. J. Mol. Sci. 2020, 21, 843 3 of 19

Figure 1. Cerebral microvascular amyloid accumulation in Tg-SwDI mice. Representative brain
sections from 9-month-old Tg-SwDI mice stained with thioflavin S to identify fibrillar microvascular
amyloid (green) and immunolabeled with an antibody to collagen IV to identify cerebral blood vessels
(red). Microvascular amyloid deposits are observed in the cortex (A), subiculum (B), and thalamus (C).
Scale bars = 50 µm.

A timeline of the experiment is shown in Figure 2. Briefly, wild-type (WT) and Tg-SwDI
female mice were single-housed (SIN), single-housed with cognitive enrichment (COG), socially
housed (SOC), or housed in a combined enriched environment condition consisting of cognitive,
social, and physical (exercise wheel) enrichment (EE). Housing interventions started when mice were
~3–4 months of age (when cerebral microvascular amyloid begins to appear) and lasted for 4 months
(an age when microvascular amyloid is extensive; see Figure 1), after which several physiological,
cognitive/behavioral, and neuropathological measures were assessed.

Figure 2. Overview of housing conditions and timeline of the experiment. At ~3–4 months of age,
C57Bl/6 and Tg-SwDI female mice were randomly assigned to one of four housing conditions: SIN
(single housed), COG (single housed with cognitively stimulating toys switched out twice weekly), SOC
(group housed), and EE (group housed mice with toys and running wheel). Following 4 months in the
respective housing conditions, mice underwent a battery of behavior tests, and tissue was collected (end
age = ~8–9 months). Within housing conditions, access to a running wheel is indicated by the presence
of an orange exercise saucer. Cognitive enrichment is indicated by the presence of multi-colored blocks,
balls, and tunnels.

2.1. Physiological Measures

2.1.1. Food Intake and Body Weight

To assess if the different housing conditions affected the average daily food intake and body
weight, these measurements were performed at the end of the experiment and are shown in Figure 3A,B,
respectively. Tg-SwDI mice weighed less (main effect of genotype, p < 0.001) despite eating slightly,
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but significantly, more compared to WT mice (main effect of genotype, p < 0.001). These trends were
apparent, but not always statistically significant, across housing conditions. There was also a main
effect of housing condition (p < 0.001), such that SIN and COG mice ate similar amounts and more
than SOC and EE groups, while EE mice also ate more than SOC mice (p < 0.01 for all).

Figure 3. Physiological measures. (A) Mean daily food intake over the course of the 4-month
intervention period. Generally, Tg-SwDI mice ate more than WT mice, while SOC and EE housing
attenuated food intake in WT and Tg-SwDI mice. (B) Body weight at the end of the experiment.
Generally, the Tg-SwDI mice weighed less than the WT mice. SOC (both WT and Tg-SwDI), and
EE (WT only) reduced body weight. (C) Soleus mass was increased by EE housing in both WT and
Tg-SwDI mice. (D) Overall, Tg-SwDI mice tended to have a smaller gastrocnemius. There were trends
of SOC and EE mice of both genotypes having a larger gastrocnemius, but this was only significant in
WT mice. (E) Corticosterone levels measured by ELISA. * p < 0.05 vs. SIN of the same genotype, @ p <

0.05 vs. COG of the same genotype, % p < 0.05 vs. SOC of the same genotype, # p < 0.05 vs. EE of the
same genotype, ˆ p < 0.05 vs. WT in the same housing condition.

2.1.2. Muscle Mass

To determine the effect of the housing conditions on muscle mass, the soleus (Figure 3C) and
gastrocnemius (Figure 3D) muscles were dissected out and weighed upon euthanasia. There was no
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difference in the soleus mass between the two genotypes. There was a main effect of housing condition
(p < 0.001), with EE having a larger soleus compared to all other groups (p < 0.001 for all), and this was
consistent across both genotypes (p < 0.05 for all). These trends of EE mice having an increased muscle
mass were also observed when normalized to the body weight (p < 0.01 for all).

There was a main effect of genotype (p = 0.009), such that Tg-SwDI mice had a smaller gastrocnemius
muscle compared to WT mice, though pairwise comparisons within each housing condition did not
reach significance. There was also a main effect of housing (p = 0.009), with EE mice having a larger
gastrocnemius than SIN and COG mice, and SOC mice having a larger gastrocnemius than SIN mice
(p < 0.05 for all). These trends were consistent but not always significant within individual genotypes.
In WT mice, SOC and EE had a larger gastrocnemius than SIN mice (p < 0.05 for both), while in T-SwDI
mice, the difference between EE and SIN mice only approached significance (p = 0.066). When muscle
mass was normalized to body weight, both EE- and SOC-housed mice had a larger gastrocnemius
compared to the SIN and COG groups (p < 0.01 for all except Tg-SwDI SOC vs. COG p = 0.089). These
findings indicate that the EE group had a higher muscle mass, regardless of genotype, likely attributed
to the exposure to the running wheel and increased exercise.

2.1.3. Corticosterone ELISA

To assess the effect of the housing condition on stress levels in the mice, serum was collected at the
time of euthanasia and corticosterone levels were measured by ELISA (Figure 3E). Neither the main
effect of genotype, nor the genotype x housing interaction, were significant for serum corticosterone
levels. The main effect of housing was significant (p = 0.0012), such that enrichment conditions tended
to increase corticosterone levels though this did not always reach significance (COG p = 0.0748, SOC
p < 0.0001, EE p = 0.1146). Within WT mice, COG (p = 0.0575) and SOC (p = 0.0432) housing increased
corticosterone levels compared to SIN mice. Within Tg-SwDI mice, SOC mice had higher corticosterone
levels compared to all other housing conditions (p < 0.05 for all).

2.2. Behavioral Tasks of Motor Function and Temperament

2.2.1. Rotarod

Rotarod was performed to assess motor coordination and balance (Figure 4A). In SIN conditions,
Tg-SwDI mice were impaired on the rotarod compared to WT mice (p = 0.028). However, in all other
housing conditions, both genotypes performed similarly. There was an overall main effect of housing
(p < 0.001), with EE mice performing better than mice in all other housing conditions (p < 0.001 for all);
these trends were significant within both WT and Tg-SwDI mice (p < 0.05 for all). In Tg-SwDI mice,
there were also trends of COG (p = 0.050) and SOC (p = 0.085) conditions improving performance.

2.2.2. Wire Hang

Wire hang was performed to assess forelimb strength (Figure 4B). Tg-SwDI mice did not perform
differently from WT mice under any housing conditions. There was an overall main effect of housing
(p = 0.041), with EE mice performing better than mice housed in SIN conditions (p = 0.005); however,
pairwise comparisons revealed that this was significant in WT mice only (p = 0.012).
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Figure 4. Activity and temperament measures. (A) Rotarod performance measured by time spent on
rod (average of best two of three trials), indicative of balance and motor coordination. Under SIN
conditions, Tg-SwDI mice were impaired in this task, while EE housing improved performance in
both WT and Tg-SwDI mice. (B) Wire hang performance measured by time spent hanging onto a wire,
indicative of forelimb strength. EE housing improved performance, but this was only significant in WT
mice. (C) General activity levels, as measured by the distance traveled in the open field. SOC housing
increased activity in WT mice. Overall, Tg-SwDI mice were hypoactive and this was exacerbated in
EE mice. (D) Anxiety-like behavior, as measured by the percent of distance traveled in the center of
the open field arena. Overall, Tg-SwDI mice exhibited increased anxiety-like behavior (less center
activity), while anxiety was reduced by EE housing in both WT and Tg-SwDI mice. E and F) Exploratory
behavior, as measured by the number of arm entries (E) and speed of travel (F) in the radial arm maze
task. Generally, Tg-SwDI mice exhibited lower levels of exploration, and the number of arm entries was
increased in SOC mice. In WT mice, SOC and EE housing increased the number of arm entries as well.
(G) Time spent digging in a marble-burying task. Generally, Tg-SwDI mice exhibited lower levels of
digging behavior, while EE housing attenuated digging behavior in both WT and Tg-SwDI mice. * p <

0.05 vs. SIN of the same genotype, @ p < 0.05 vs. COG of the same genotype, % p < 0.05 vs. SOC of the
same genotype, # p < 0.05 vs. EE of the same genotype, ˆ p < 0.05 vs. WT in the same housing condition.
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2.2.3. Open Field

Open field was performed to assess general activity levels (distance traveled; Figure 4C) and
anxiety-like behavior (center activity; Figure 4D). There was a main effect of genotype (p < 0.001),
such that Tg-SwDI mice were less active in the open field compared to WT mice. This trend was
consistent in all housing conditions (p < 0.05 for all but SIN p = 0.10). The main effect of housing was
also significant (p = 0.036), though trends were not consistent across genotypes. In WT, SOC mice were
more active than mice in all other housing conditions (SIN p = 0.074, COG p = 0.061, EE p = 0.033). In
Tg-SwDI, enriched housing conditions did not rescue activity deficits; in fact, Tg-SwDI EE mice were
less active than mice housed in the SIN condition (p = 0.023).

There was a main effect of genotype (p < 0.001), such that Tg-SwDI mice exhibited less center
activity compared to WT mice. This trend was consistent in all housing conditions, though did not
always reach statistical significance (SIN p = 0.065, COG p = 0.095, SOC p = 0.086, EE p = 0.042). There
was also a significant main effect of housing (p = 0.005), such that EE mice exhibited greater center
activity compared to all other housing conditions (p < 0.05 for all but SOC p = 0.067). When analyzed
within individual genotypes, in both WT and Tg-SwDI mice, EE housing increased center activity
compared to SIN and COG mice (p < 0.05 for all) but not SOC mice.

2.2.4. Unreinforced Radial Arm Maze

The unreinforced radial arm was performed to assess exploratory behavior in a relatively complex
environment by measuring the number of arm entries (Figure 4E) and speed (Figure 4F). There was
a main effect of genotype for the radial arm maze (RAM) entries (p = 0.0151), with Tg-SwDI mice
making fewer arm entries compared to WT mice. When analyzed within housing conditions, this was
significant for SIN (p = 0.0365) and EE (p < 0.0001) mice. The main effect of housing was also significant
(p = 0.0003), such that SOC and EE mice made a greater number of arm entries compared to SIN and
COG mice (p < 0.05 for all). The genotype x housing interaction was also significant (p = 0.0151). In
WT mice, there was an apparent stepwise effect of enrichment (EE > SOC > COG = SIN; p < 0.05 for all
except SOC vs. COG p = 0.0931). Within Tg-SwDI mice, only the SOC condition significantly increased
arm entries compared to SIN mice (p = 0.0034).

There was a main effect of genotype for speed in the radial arm maze (p < 0.0001), with Tg-SwDI
mice moving more slowly than WT mice, and this trend was consistent across housing conditions. The
main effect of housing and the genotype x housing interactions were not significant.

2.2.5. Digging

A marble-burying task was used to assess digging, a species-typical behavior (Figure 4G). There
was a main effect of genotype (p = 0.008), such that Tg-SwDI mice exhibited less digging compared to
WT mice; however, within the individual housing conditions, this only reached significance for EE
mice (p = 0.027). There was also a significant main effect of housing (p < 0.001), with SOC and EE mice
digging less than SIN and COG mice (p < 0.05 for all except SIN vs. SOC p = 0.072). Additionally, EE
mice dug less than SOC mice (p = 0.006). These trends were consistent across genotypes, though not
all were statistically significant. In both WT and Tg-SwDI mice, EE mice dug less than SIN and COG
mice (p < 0.05 for all). Only in Tg-SwDI mice did EE dig significantly less than SOC mice (p = 0.005).

2.3. Cognitive Behavioral Performance

2.3.1. Novel Object Recognition

A novel object recognition test was performed to assess non-spatial memory. The total time
exploring both objects (Figure 5A) and the discrimination index for exploration of the novel object
(Figure 5B) were measured. The main effect of housing condition (p = 0.013) and the genotype x
housing interaction (p = 0.020) were significant. In the SIN condition, Tg-SwDI mice explored objects
less than WT mice, though this only approached significance (p = 0.086), while this was reversed in the
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SOC condition (Tg-SwDI > WT, p = 0.009). In WT mice, pairwise comparisons revealed no significant
differences between groups; however, in Tg-SwDI mice, SOC and EE mice explored objects more than
SIN and COG mice (p < 0.05 for all).

Figure 5. Cognitive testing. In Tg-SwDI mice, SOC and EE housing increased the amount of time spent
with objects (A), and the discrimination index (B) in the novel object recognition (NOR) task. (C) Barnes
maze performance, as measured by the latency to find the escape hole over time. (D) Barnes maze
performance, as measured by the average latency to find the escape hole on days 2–5. Tg-SwDI mice
took longer to find the escape hole compared to WT mice in all housing conditions. In Tg-SwDI mice,
SOC housing was associated with improved performance (shorter latency to find the escape hole). * p <

0.05 vs. SIN of the same genotype, @ p < 0.05 vs. COG of the same genotype, % p < 0.05 vs. SOC of the
same genotype, # p < 0.05 vs. EE of the same genotype, ˆ p < 0.05 vs. WT in the same housing condition.

The main effect of genotype was significant for the discrimination index in the novel object
recognition (NOR) test, with Tg-SwDI mice outperforming WT mice (p = 0.009). Although pairwise
comparisons revealed this was not statistically significant within any of the individual housing
conditions, this genotype effect seemed to be driven more by enriched conditions and less so by the
SIN condition in which discrimination indices were more comparable. Additionally, the main effect
of housing was significant (p = 0.019), with EE and SOC groups displaying increased performance.
In WT mice, pairwise comparisons revealed no statistically significant differences between groups;
however, in Tg-SwDI mice, both SOC and EE groups outperformed SIN mice (p < 0.05 for both).

2.3.2. Barnes Maze

The Barnes maze task was run over a period of five days, with two trials per day. Spatial learning
and memory were assessed by the measure of latency to find the escape hole over the course of the five
days (Figure 5C) and the average latency to find on days 2–5 (Figure 5D). Negative slopes of latency to
find over the course of the five days indicated that all groups were able to learn the task over time.
There was a striking main effect of genotype (p < 0.001), with Tg-SwDI mice finding the escape box more
slowly than WT mice, regardless of the housing condition. Within WT mice, enriched groups generally
outperformed SIN mice, but these comparisons were not significant. Within Tg-SwDI mice, SOC mice
found the escape hole more quickly than mice in all other housing conditions (p < 0.05 for all).
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2.4. Pathology

2.4.1. ELISAs for Aβ Species

ELISAs were performed on whole forebrain homogenates to assess the effect of the housing
condition on the levels of Aβ species (Figure 6A). There were no effects of the housing condition
on soluble Aβ species (40 or 42); however, thee housing condition did affect the forebrain levels of
insoluble Aβ40 (p = 0.010) and Aβ42 (p = 0.064). Surprisingly, pairwise comparisons revealed that all
enrichment conditions increased insoluble Aβ40 levels compared to SIN mice (p < 0.05 for all but SOC
p = 0.053). Similar trends were seen for insoluble Aβ42; however, only EE housing led to a statistically
significant increase (p = 0.009). Since WT mice do not accumulate microvascular amyloid, they were
not included in these measures.

Figure 6. Effects of the housing condition on the accumulation of Aβ in Tg-SwDI mice. (A) Tg-SwDI
mice housed in EE conditions had increased insoluble Aβ40 and Aβ42) levels, as measured by ELISA
of whole forebrain homogenates. (B) Tg-SwDI mice in all enrichment conditions had less vascular
amyloid in the thalamus compared to single-housed mice. (C) The housing condition did not affect the
cerebral vascular density in any of the three brain regions measured. * p < 0.05 vs. SIN of the same
genotype, @ p < 0.05 vs. COG of the same genotype, # p < 0.05 vs. EE of the same genotype.

2.4.2. Microvascular Amyloid Deposition

Since there were effects of the housing condition on the accumulation of insoluble Aβ, particularly
insoluble Aβ40, we measured the extent of microvascular amyloid deposition in different brain regions
(Figure 6B). One-way ANOVAs found no effect of housing on microvascular amyloid deposition in
the cortex or subiculum; however, there was a significant effect in the thalamus (p < 0.001), with
all enrichment groups having reduced vascular amyloid compared to SIN mice (p < 0.05 for all).
Additionally, SOC mice had less vascular amyloid compared to EE mice (p = 0.045).
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2.4.3. Vascular Density

Since the accumulation of insoluble Aβ tended to increase, whereas the microvascular CAA
load was either unchanged or in the case of the thalamus was reduced, we next determined if the
EE conditions impacted the cerebral vascular density in Tg-SwDI mice. Cerebral vascular density,
however, was not affected by housing condition in any of the regions measured (cortex, subiculum,
and thalamus) (Figure 6C).

3. Discussion

Lifestyle factors, such as exercise and participating in cognitively and socially stimulating activities,
promote healthy aging and prevent the risk of dementia in elderly populations [11–18]. These findings
are supported by studies in healthy mice [19–31] and rodent models of AD [32–37], often combining
these three factors in the enriched environment (EE) paradigm. Few studies have aimed to directly
compare and tease apart the contribution of individual and combined EE factors in AD mouse models,
and those that did utilized models that primarily develop parenchymal amyloid [39,40]. This study,
for the first time, determined the protective effects of environmental enrichment (EE) in the Tg-SwDI
mouse model of CAA, a condition characterized by the accumulation of cerebral vascular amyloid
found to be common in aging and seen in the vast majority of AD cases [1]. We also disassembled the EE
paradigm to determine the unique contributions of its cognitively and socially stimulating components.

Mice housed in the cognitively enriched condition (COG; single housed with toys and tunnels
switched out 2×/week to provide novelty) exhibited few cognitive/behavioral benefits compared to
single-housed mice without such added enrichment. Tg-SwDI mice housed in the COG condition did
display improved performance on some tasks of motor function (rotarod) and exploratory behavior
(radial arm maze), in addition to reduced cerebral microvascular amyloid pathology in the thalamus.
Mood- and cognition-related behavior was unaffected by cognitive stimulation, in line with our
previous findings in Tg-SwDI and 5xFAD mice. In these strains, we provided cognitive enrichment
using a progressive cognitive stimulation paradigm meant to model commercialized brain training
games in humans, which included 4 months of progressively difficult domain-specific operant tasks [44].
Results from this previous study supported clinical findings that while brain training games enhance
performance on the specific task being trained, improvements do not generalize to other cognitive
domains to improve global function, promote brain health, or prevent cognitive decline [45–48].

On the other hand, the current study provides evidence that socially housed mice, and those
housed in a completely enriched environment, displayed the greatest changes in physiological and
cognitive/behavioral outcomes. These mice, in general, exhibited a similarly reduced body weight
and food intake, and improved performance on the novel object recognition task. As expected, the
EE condition produced greater changes for some outcomes, such as muscle mass, tests of motor
function and activity levels, and anxiety-like behavior, likely due to the addition of access to a running
wheel to engage in voluntary aerobic exercise. Similarly, we previously reported the dose-dependent
effects of aerobic exercise (voluntary wheel running) in WT mice and the Tg-SwDI model, with even
relatively small amounts of exercise exerting notable benefits to physiology, motor function, anxiety,
and cognition [49,50]. It should be noted that social and EE housing also reduced food intake and body
weight in both WT and Tg-SwDI mice. Caloric restriction has been shown to improve memory and
reduce dementia risk in humans, and increase cognitive function in animal models of healthy aging and
AD [51–56]. These cognitive behavioral benefits are associated with decreased inflammation, oxidative
stress, and AD pathology, and increased insulin sensitivity, autophagy, and neurogenesis [54,57–59]. In
the current study, the reduced caloric intake displayed by SOC and EE mice of both genotypes fall
approximately within the range of 20–40% typically used in rodent studies (WT SOC: −29%, WT EE:
−23%, Tg-SwDI SOC: 25%, Tg-SwDI EE: 18%). Additionally, caloric deficits were likely exacerbated by
increased energy output, particularly in EE mice with access to a running wheel. The likelihood of
increased physical activity and therefore caloric expenditure by these groups is supported by their
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increased muscle mass. Therefore, one possibility is that enriched housing conditions exert behavioral
benefits indirectly by affecting caloric intake and/or metabolic outcomes.

Interestingly, though thalamic vascular amyloid was specifically reduced by all forms of enriched
housing, the levels of insoluble Aβ as detected by ELISA were actually somewhat increased in Tg-SwDI
mice housed in the EE condition. Although the nature of this increase is unclear, this is in agreement
with early studies by Jankowsky et al. [36,37], which found that six months of housing in an enriched
enrichment also increased Aβ levels in APPswe and APPswe/PS1dE9, despite these mice showing
enhanced performance in spatial memory tasks (Morris water maze and radial water maze) [36,37].
While there were trends of COG and SOC mice also having increased insoluble Aβ in our study, these
effects were not significant. Therefore, these types of enrichment stimulation appear to have additive
incremental effects on insoluble Aβ levels. As in previous studies, we found that these increased levels
of insoluble Aβ occurred in the presence of behavioral improvement and were therefore not detrimental
to functioning, in agreement with previous findings that insoluble Aβ exhibits low toxicity [60–62].
Previously, we showed that exercise alone was also capable of dose-dependently increasing insoluble
Aβ levels, despite some behavioral improvements and attenuated neuroinflammation [49]. Taken
together, these findings suggest that enrichment factors increase the production/aggregation or reduce
the degradation/clearance of Aβ, though vascular amyloid was specifically reduced in some brain
regions. One possible explanation for the former is that enriched housing may increase neuronal activity,
which could enhance Aβ production and deposition [63,64]. The effects of environmental enrichment
on Aβ production and clearance in Tg-SwDI mice should be further assessed. Moreover, enrichment
could affect other measures rather than insoluble Aβ to influence behavior and cognition, such as
reducing neuroinflammation and increasing hippocampal growth factors and neurogenesis [65–67].
Investigation of these other possible mechanisms could not only offer an alternative explanation to Aβ

burden in Tg-SwDI animals but also explain enrichment effects within WT mice.
This study represents one of the first to disentangle the contributions of EE factors in a mouse

model of CAA. In a previous study, APP-23 mice were housed in standard or enriched conditions, or
in cages with access to a running wheel. Enriched mice had improved performance on the Morris
water maze despite an unchanged amyloid burden, though they did exhibit increased levels of BDNF
and hippocampal neurogenesis. In contrast, exercise had no effect on cognitive performance or
neurogenesis; however, there was a decrease in growth factors in the cortex and hippocampus [39].
In another study, APPsw/APP + PS1 mice were grouped into environments that layered on these
factors (impoverished, social, social + physical, complete enrichment) from 1.5–9 months of age. Only
the completely enriched environment was capable of protecting against cognitive decline, reducing
Aβ deposition, and increasing synaptic reactivity in the hippocampus, while no differences between
groups in corticosterone or inflammatory cytokines were observed [40]. Recent clinical findings also
provide evidence that adopting multiple healthy lifestyle factors exerts a benefit on the body and brain.
The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)
study was a randomized controlled trial to assess a two-year multidomain intervention (diet, exercise,
cognitive training, vascular risk monitoring), finding it effective at preventing cognitive decline in an
at-risk elderly population [68]. Recently reported at the 2019 Alzheimer’s Association International
Conference (AAIC), a study using the data of over 2000 people from the Chicago Health and Aging
Project and the Rush Memory and Aging Project determined that aging adults that exhibited four
to five healthy lifestyle factors (diet, exercise, and cognitive stimulation, in addition to smoking and
alcohol use) had the greatest reduction in risk for AD (~60%). Additionally, regardless of the number
of current healthy lifestyle factors exhibited, adopting just one more reduced the risk by 22% [69].
Other data presented at the 2019 AAIC suggest that a healthy lifestyle can even counteract genetic
risk for dementia, boasting a 32% reduction [70]. Our findings, for the first time, show that EE can be
beneficial by specifically targeting CAA, and add to a growing literature supporting that the adoption
of a healthy lifestyle is key to healthy aging, and specifically brain health, and for reducing the risk of
cognitive decline and dementia in later life.
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4. Materials and Methods

4.1. Animals

Female C57BL/6 (wild type; WT) and Tg-SwDI mice were used in this experiment. The Tg-SwDI
mouse is a model of CAA, in which fibrillar Aβ accumulates primarily in the cerebral microvasculature,
apparently, in part, due to insufficient clearance of the protein across the blood–brain barrier [71]. These
mice are on a C57BL/6 background and express low levels of the human amyloid precursor protein
(APP) gene, containing the Swedish K670N/M671L, Dutch E693Q and Iowa D694N mutations, under
the control of the mouse Thy1 promoter [72]. CAA pathology is accompanied by vascular degeneration
and marked gliosis [73], as well as impaired Barnes maze performance not attributable to deficits in
mobility, strength, or coordination [74].

Mice were housed in a controlled room (22 ± 2 ◦C and 40–60% humidity) with a 12-h reverse
light-dark cycle (lights off 0800 h). Mice were habituated for one week prior to the beginning of the
experiment, and then split into experimental treatment groups at 3–4 months of age. Purina Lab
Diet rat chow was available ad libitum, and body weight and food intake were recorded weekly
throughout the entire experiment. All experiments were conducted in conformity with the National
Academy of Sciences Guide for Care and Use of Laboratory Animals and approved by the Stony Brook
University Institutional Animal Care and Use Committee. (Project identification code: 2013-0788; date:
17 November 2014)

4.2. Housing Conditions

Mice of each genotype were split into experimental housing conditions: WT single-housed (WT
SIN; n = 11), WT cognitively enriched (WT COG; n = 10), WT socially enriched (WT SOC; n = 10), WT
fully enriched (WT EE; n = 8), Tg-SwDI SIN (n = 11), Tg-SwDI COG (n = 9), Tg-SwDI SOC (n = 10),
and Tg-SwDI EE (n = 10). SIN mice were housed one per cage. COG mice were housed one per cage,
with toys (colored blocks, balls, and tunnels) that were changed out twice weekly. SOC mice were
group housed (4–6 mice/cage). EE mice were group housed (4–6 mice/cage) in a cage equipped with an
exercise wheel and toys (colored blocks, balls, and tunnels) that were changed out twice weekly. Mice
remained in these housing conditions for the duration of the experiment. An illustration of housing
conditions and timeline of the experiment can be seen in Figure 1.

4.3. Cognitive/Behavioral Assessments

Following four months of housing in the respective conditions, all mice underwent a battery
of behavioral testing, including the rotarod, wire hang, open field, unreinforced radial arm maze,
marble burying, novel object recognition, and Barnes maze. Mice remained in their housing conditions
throughout the duration of testing. All behavior testing, except for rotarod, was recorded and analyzed
using ANY-maze tracking software.

4.3.1. Rotarod

Rotarod was performed to assess balance, strength, and motor coordination. The apparatus
(model ENV-575M; MED Associates Inc.) is composed of a 30-cm-long rod that is divided into five
equally sized 6-cm sections. The mice were placed on the rotarod, which spun at an increasing speed
of up to 40 revolutions per minute over a five-minute period. The time on the rod until the mouse fell
(maximum time of five minutes) was recorded. The mice were tested three times, with a minimum
five-minute inter-trial interval, and the average of the last two trials was used for the analysis.

4.3.2. Wire Hang

The wire hang consisted of a single trial to assess muscle strength/endurance using an apparatus
consisting of a 43-cm-long wire stretched between two wooden poles, 48 cm high above the base. Foam
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padding was placed on the platform to cushion a fall. At the beginning of the trial, the mouse’s two
front paws were placed on the wire and the mouse was allowed to hang until it fell or for a maximum
of one minute. The latency to fall was recorded (maximum one minute).

4.3.3. Open Field

The mice were placed in a square 60 cm x 60 cm open field arena for 10 min. Behavior was
recorded using ANY-maze software. General locomotor behavior and motor function was assessed
using the measure of the distance traveled in the open field. Since mice are agoraphobic, anxiety-like
behavior was assessed by the time spent in the center of the open field [75]. Measures of general
activity and agoraphobia-related anxiety are also useful in the interpretation of any differences in
performance observed in other cognitive/behavioral tasks.

4.3.4. Unreinforced Radial Arm Maze

The mice were placed in a radial arm maze with eight arms for five minutes. The number of
arm entries was assessed as a measure of exploratory behavior in a novel and relatively complex
environment (compared to the open field).

4.3.5. Marble Burying

The protocol for marble burying was adapted from a well-defined protocol [76]. The mice were
place in a rat-sized tub cage filled with 5 cm of corn cob bedding for five minutes with 20 marbles in a 5
x 4 array, during which time the time spent digging was recorded. Digging was defined as coordinated
movements of the fore or hind limbs that displaced the bedding.

4.3.6. Novel Object Recognition

A novel object recognition task was performed to assess non-spatial learning and memory
(Figure 5). This task consisted of two trials, each lasting 5 min, with an inter-trial interval of 15 min. In
the first trial, two of the same objects were placed in the open field arena. In the second trial, one object
was replaced by a novel object, while the other object remained the same and in the same location.
The time spent exploring both objects was counted, and novel object recognition was assessed by
calculating the discrimination index (DI). DI = (time with novel object—time with familiar object)/(time
with novel object—time with familiar object).

4.3.7. Barnes Circular Maze

The Barnes maze was originally developed to test learning and memory in rats. We used an
adaptation of this maze, a circular wooden platform, 91 cm in diameter, elevated 75 cm off the ground.
The platform has eight equally spaced escape holes along the periphery that are 24.5 cm apart. Under
each hole, a shelf securely held an escape box, measuring 10 cm x 8.5 cm x 4 cm. There were visible
distal cues placed around the room, which remained constant throughout the duration of testing.
Testing were performed on five consecutive days, with two trials per day separated by a 15-min
inter-trial interval. Mice were placed onto the center of the maze at the beginning of each trial, then
allowed to explore until the escape box was found and entered, or a maximum of five minutes. If the
escape box was entered, the mouse remained there for one minute before being transferred back to its
home cage. If the escape box was not entered within five minutes, the mouse was placed in the escape
box and left there for one minute. During each trial, the following measures were recorded: Latency to
find (amount of time taken to find the escape box), latency to enter (amount of time taken to enter the
escape box), and errors (number of nose pokes into a hole that did not contain the escape box before
finding the escape box).
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4.4. Physiological Measures

4.4.1. Blood, Organ, and Muscle Collection

Following the completion of behavioral testing, mice were euthanized under deep anesthesia
with 2.5% avertin. Cardiac puncture was performed to collect blood, which was allowed to clot at
room temperature for 30 min, spun at 2000× g for 10 min, and serum was collected and stored at –80
◦C until use in the assays. Following blood collection, mice were perfused with saline. Muscles were
collected to assess exercise-induced differences in muscle mass. After weighing, brains were bisected
along the midline and prepared for subsequent pathological analyses. One hemisphere was placed in
70% ethanol and subsequently paraffin embedded for immunohistochemistry, while the other was
flash frozen in liquid nitrogen for ELISAs and quantitative polymerase chain reaction.

4.4.2. Enzyme Linked Immunosorbent Assay (ELISA) For Serum Corticosterone

Serum samples were analyzed using a commercially available ELISA for corticosterone according
to the manufacturer’s instructions (Cayman Chemical). Absorbance was recorded using a plate reader
(Spectramax).

4.5. Pathological AβMeasures

4.5.1. Enzyme-Linked Immunosorbent Assay (ELISA) For Aβ Species

ELISAs were performed to quantify whole brain levels of membrane, soluble, and insoluble
forms of Aβ40 and Aβ42. Brain hemispheres that were flash frozen were pulverized and separated
into three aliquots. A soluble fraction was obtained by homogenized tissue with 10 µL/mg TBS
using 0.5 mm glass beads and a bullet blender. Aliquots were centrifuged at 1600× g at 4 ◦C for
20 min. The supernatant was removed, which was the soluble fraction. The remaining pellet was
resuspended in 5 M guanidine-HCl at pH 8.0, and rotated at room temperature for 3 h. Samples were
centrifuged as above, and the supernatant was removed, which was the insoluble fraction. For each
fraction, a sandwich ELISA for Aβ was performed using antibody reagents generously provided by Eli
Lilly (Indianapolis, IN). Well plates were coated with 1 µL/well of Aβ40-specific antibody M2G3 or
Aβ42-specific antibody M21F12. Plates were blocked and shaken overnight at 4 ◦C. Aβ species were
detected using biotinylated-m3DG, followed by streptavidin-HRP (Amdex RPN4401V). Plates were
developed using SureBlue (KPL) and plates were read with a plate reader (Spectramax).

4.5.2. Immunostaining and Analysis

Immunohistochemical analyses were performed as described in Xu et al. (2007) on Tg-SwDI
brain tissue (n = 6–7/group). Brain hemispheres embedded in paraffin were sectioned at a 10-µM
thickness and mounted on glass slides. Paraffin was removed from sections by immersion in xylene
(3 × 5 min) and rehydrated in decreasing concentrations of ethanol (100%, 95%, 70%, 50%, 0% at 5
min each). Slides were dipped in PBS for 5 min, followed by a 5 min incubation with proteinase
K (1:1000 in PBS) for antigen retrieval, then dipped in distilled water 5x 1min. Buffer consisting of
0.3% Triton X-100 was used to block sections for 30 min, which were then incubated with primary
antibody (1:100 collagen type IV for blood vessels) in a 1:10 0.1% Triton X-100 blocking buffer solution
overnight at room temperature. The next day, slides were washed 3 × 5 min with distilled water, then
incubated for 2 h with secondary antibody (1:1000 594 anti-Rabbit) in a 1:10 0.1% Triton X-100 blocking
buffer solution. Slides were rinsed with distilled water. Slides were then stained for Thioflavin-S
(0.0125% Thioflavin-S in 50% EtOH/PBS) by incubating for 15 min at room temperature. Slides were
rinsed 3×with distilled water then 2×with 70% EtOH and then washed for 5 min in distilled water.
Anti-fade reagent in glycerol/PBS was added to each slide and coverslipped, then sealed with mounting
media. Sections were imaged using an Olympus BX60 microscope with an attached Olympus Dp72
camera. Images from the cortex, subiculum, and thalamus were collected from each section at the
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40×magnification. Using NIH ImageJ software, an appropriate threshold was set for each stain and
the percent area occupied with positive stain was quantified. Fibrillar vascular amyloid deposition
were assessed in the cortex, subiculum, and thalamus. These regions were chosen as they have been
previously shown to accumulate cerebral microvascular amyloid and are involved in several of the
behavioral tasks used in the current study. Fibrillar amyloid deposition was calculated by measuring
the percentage of positive staining for thioflavin-S. Vascular amyloid deposition (percentage of blood
vessel coverage with fibrillar amyloid) was calculated by [(ThioflavinS+ stain/Collagen IV+ stain) *
100]. Fibrillar vascular amyloid was only assessed in Tg-SwDI mice, as WT mice do not show any
accumulation in brain. Additionally, the effects of exercise on the vascular density were assessed as the
area of labeling for collagen IV in the cortex, subiculum, and thalamus.

4.6. Statistical Analyses

Two-way ANOVAs (factors: Genotype and housing) were performed to determine differences
between groups for organ and muscle mass, serum corticosterone concentration, and behavioral and
pathological measures. Three-way repeated measures ANOVAs were performed to assess differences
in groups over time for food intake and body weight, as well as group differences in Barnes maze
performance measures over time. Analyses were performed using Statistica and SigmaPlot/Stat, and
significance was set at alpha = 0.05.
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