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Abstract

Predicting the activity of modified biological parts is difficult due to the typically large size of nucleotide sequences, result-
ing in combinatorial designs that suffer from the “curse of dimensionality” problem. Mechanistic design methods are often
limited by knowledge availability. Empirical methods typically require large data sets, which are difficult and/or costly to ob-
tain. In this study, we explore for the first time the combination of both approaches within a formal hybrid semiparametric
framework in an attempt to overcome the limitations of the current approaches. Protein translation as a function of the
5’ untranslated region sequence in Escherichia coli is taken as case study. Thermodynamic modeling, partial least squares
(PLS) and hybrid parallel combinations thereof are compared for different data sets and data partitioning scenarios.
The results suggest a significant and systematic reduction of both calibration and prediction errors by the hybrid approach
in comparison to standalone thermodynamic or PLS modeling. Although with different magnitudes, improvements are
observed irrespective of sample size and partitioning method. All in all the results suggest an increase of predictive power
by the hybrid method potentially leading to a more efficient design of biological parts.

Key words: quantitative sequence-activity modeling; hybrid semiparametric systems; standard biological parts; ribosome
binding site (RBS); Escherichia coli.

1. Introduction

Mathematical modeling is a fundamental tool in systems and
synthetic biology for better understanding biological systems
and to improve design efficiency (1, 2). A class of problems deals
with the design of nucleotide sequences of standard biological
parts such as promoters, riboswitches, ribosome binding sites
(RBSs) and other DNA/RNA devices. Due to the large space of po-
tential nucleotide sequences, experimental screening of the
whole design space is impractical. As an illustrative example,
the 5’ untranslated region (UTR) in Saccharomyces cerevisiae was
the target design in a previous study by Dvir et al. (3) A large

library of mutants was generated by randomly mutating the
10 Bp that precede the start codon. Even using high-throughput
techniques, only 0.2% out of 106 possible sequences, were exper-
imentally screened. Rational design, aided by mathematical
models, is thus essential to saving time and resources.

Mechanistic modeling is the method of choice for biological
part design (4) with several successful examples published
mainly for Escherichia coli, the model system with more mecha-
nistic insight to date. Brewster et al. (5) developed a thermody-
namic transcription initiation model focused on the �10 and
�35 E. coli promoter regions and its affinity to RNA polymerase.
Synthetic promoters designed with the aid of this model were
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shown to increase protein expression by 3-fold in comparison
to natural promoters. Salis et al. (6) proposed a protein transla-
tion model as a function of the 5’UTR sequence in E. coli assum-
ing translation initiation as the limiting step (RBS calculator
model v1.0). The free Gibbs energy associated with the forma-
tion of the mRNA-ribosome complex (determined from five mo-
lecular interactions) is the key parameter that controls the
amount of protein expressed. Na et al. (7) proposed an alterna-
tive kinetic model focusing on three molecular interactions only
and using the ordinary differential equations formalism to de-
scribe the transitions between ribosome binding states. In an-
other study, Amman et al. (8) included in their translation
initiation model the interactions between small non-coding
RNAs and the reporter protein mRNA. Borujeni et al. (9) detailed
the computation of the free Gibbs energy associated with the
standby sequence, which further improved Salis et al. (6) model
(RBS calculator model v2.0). Later on, Borujeni and Salis (10)
concluded that folded RNA structures may not have enough
time to fold inside the cell, creating a non-equilibrium effect
termed as “Ribosome Drafting” (RBS calculator model v2.1). In
such cases, the thermodynamic modeling framework fails to
deliver accurate predictions (10).

Alternatively to mechanistic modeling, empirical methods
have also been applied with two main objectives: (i) classifica-
tion of nucleotide sequences and (ii) regression analysis of bio-
logical activity as function of the respective nucleotide
sequence. González-Dı́az et al. (11) used Markov molecular
negentropies to describe the secondary structure of putative
RNA molecules and used such predictions to identify mycobac-
terial promoters. Tavares et al. (12) performed a comparative
study on the performance of 31 machine learning methods (hid-
den Markov models and different topologies of neural networks
and decision trees) to classify E. coli promoters. Li et al. (13) used
a mixture of Gaussian models to predict translation initiation
sites in yeasts. An integrated Bayesian model was used to iden-
tify and predict several features of transcription factor binding
sites (like number, position and composition) in several yeasts
promoters (14). Artificial neural networks were used for both
classification and regression problems. In Zuo and Li (15), an
encoding method based on DNA helical parameters was
adopted to predict DNA curvature and transcription rate in
E. coli. Jonsson et al. (16) used partial least squares (PLS) with bi-
nary encoding to design two synthetic E. coli promoters. Liang
et al. (17) compared the performance of support vector machines
and PLS to predict the transcription rate of E. coli promoters. Ran
and Higgs (18) developed a statistical test, based on maximum
likelihood and codon adaptation index, to assess the signifi-
cance and the strength of codon bias on transcription elonga-
tion speed and accuracy.

In previous studies, sequence-activity modeling either fol-
lows a parametric paradigm, where models have a fixed struc-
ture inspired by knowledge, or follow a non-parametric
approach, where model structure is derived exclusively from
data. In this article, we explore the combination of both
approaches in hybrid semiparametric systems for sequence-
activity modeling. The main advantage of the semiparametric
over the parametric or non-parametric frameworks lies in that
it broadens the knowledge base to solve a complex problem. In
a recent review paper, several areas of application of hybrid
modeling have been outlined, ranging from chemical, biological
to mechanical engineering (19). Several semiparametric sys-
tems biology studies have been published following the
constraints-based formalism, namely hybrid metabolic flux
analysis (20, 21) and hybrid metabolic pathway analysis (22, 23).

Others have addressed dynamic modeling of biological systems
either following the differential equations formalism (24, 25) or
time series analysis (26, 27). Despite some progress at the sys-
tems biology front, applications to synthetic biology are still
largely absent in the literature. In designing biological parts, it is
unlikely that all relevant processes can be fully described by a
mechanistic (parametric) approach. Purely empirical (non-
parametric) modeling approaches are often limited by the avail-
ability of sufficient experimental data. Opting for the one or the
other framework will invariably promote reductionism. On the
contrary, the “complementary” use of both types of resources
provides more comprehensive descriptions of the biological sys-
tem at hand. To illustrate this concept we use the 5’UTR se-
quence in E. coli as case study. The starting point is the RBS
calculator model v1.0 published by Salis et al. (6) and respective
data set. This version of the model is ideal to showcase hybrid
modeling because the data are very limited (only 132 mRNA
sequences) and the thermodynamic model (TM) still has room
for improvement. Afterwards, the hybrid approach is also ap-
plied to the larger data set of RBS model calculator v2.1 (10).

2. Materials and methods
2.1 RNA sequences and protein expression data

The data set of RBS calculator model v1.0 (6) was adopted for
model development and benchmarking. The data set contains
132 modifications of the 5’UTR sequence and respective green
fluorescence levels obtained in transformed E. coli DH10B
strains. The data were divided into a model identification parti-
tion and a test partition. The former served to identify model
structure and respective parameter values. The latter served to
assess the model predictive power. Three different data parti-
tioning scenarios were studied:

Partition R: Random selection of 67% of sequences for model
identification and 33% of sequences for model testing. The
sequences were randomly selected from the uniform distribu-
tion. The procedure is repeated 100 times yielding 100 different
models to eliminate data sampling bias.

Partition E33: Heuristic selection of 67% of sequences with
lowest protein expression for model identification and 33% of
sequences with highest protein expression for model testing.

Partition E67: Heuristic selection of 33% of sequences with
lowest protein expression for model identification and 67% of
sequences with highest protein expression for model testing.

2.2 Thermodynamic modeling

The equilibrium TM proposed by Salis et al. (6) is the first mod-
ule of the hybrid structure (Figure 1). It assumes initiation as the
limiting step in the protein translation process. The key ther-
modynamic parameter is DGTOT, representing the difference in
Gibbs free energy between the initial mRNA folded state and the
final 30S pre-initiation complex. The DGTOT accounts for five
terms:

DGTOT ¼ DGmRNA:rRIB þ DGSTART þ DGSPACING � DGS TAN DBY � DGmRNA (1)

DGmRNA is the mRNA Gibbs free energy when it is not inter-
acting with any other molecule. It may be viewed as the energy
required to unfold it, so that it becomes accessible to the rRNA.
It is calculated using a portion of the mRNA sequence surround-
ing the start codon. After unfolding, mRNA hybridizes with
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rRNA (DGmRNA:rRIB). To calculate DGmRNA:rRIB, all possible interac-
tions between the mRNA and rRNA were first computed. The in-
teraction that minimizes the sum of DGmRNA:rRIB with DGSPACING

was chosen. The DGSPACING can be seen as an empirical penalty
(relationship estimated experimentally (6)) to be applied when
the distance between the mRNA-rRNA interaction and start co-
don is not optimal (too far away or too close). DGSTART accounts
for the interaction between the mRNA sequence at the start co-
don and the respective tRNA (calculated using these two
sequences with three nucleotides each). DGSTANDBY is the Gibbs
free energy needed to unfold any mRNA secondary structure
generated after the rRNA hybridization that blocks the protein
synthesis initiation (this term is calculated by subtracting the
energies of two states: one allowing the positions surrounding
the selected mRNA-rRNA interaction to have a secondary struc-
ture and another preventing it).

The calculation of the Gibbs free energies (DGSTART,
DGmRNA:rRIB, DGSTANDBY and DGmRNA) is direct (neither additional
fitting nor parameters are needed). To this end, we used the
same tool as in the original study (6): NUPACK with Mfold3.0
RNA energy parameters (28–30).

Finally, the expressed protein level (PTM) is a function of the
respective mRNA secondary structures, represented by DGTOT,
as follows:

PTM ¼ a t e�bDGTOT (2)

with a an empirical calibration parameter, t the cultivation time
and b the Boltzmann factor that accounts for translation-
independent parameters, such as the DNA copy number, the
promoter’s transcription rate and the mRNA stability.

The identification of this model was performed by linear re-
gression of the natural logarithm of the measured protein

expression (ln(PMES)) against DGTOT over the model identifica-
tion data, with PMES the measured reporter protein (RFP1)
fluorescence. The MATLAB function “fit” was adopted imple-
menting a linear least squares algorithm. The slope corresponds
to the Boltzmann constant, b, while the intercept corresponds
to ln(a t).

2.3 N-PLS modeling

N-way partial least squares (N-PLS) is a well-known multivari-
ate regression method with data factorization, in that a target
matrix, Y, is linearly regressed against an input (regressor) ma-
trix X of many possibly collinear variables (31). The most used
method is the two-way PLS. N-PLS is an extension of the two-
way PLS by taking X with N>2 dimensions, with N the number
of dimensions of X. The X and Y matrices are decomposed in
Fac latent variables. In each decomposition step, a scores matrix
(t) and N�1 weight matrices are calculated. In the case of 3-way
PLS, the decomposition of a 3 D X (I� J � K) gives a scores vector
t, two weight vectors wJ (for dimension 2) and wK (for dimension
3) and a residuals matrix, E:

Xijk ¼ ti wJ
Jw

K
K þ E (3)

The indexes i, j and k denote the position in dimensions 1, 2
and 3, respectively. The decomposition is performed in the
sense of maximizing the covariance between X and Y, as
follows:

max
w Jw K

ð
XI

i¼1
tiyijt ¼

XJ

j¼1

XI

k¼1
xijkwJ

jw
K
k Þ (4)

Figure 1. Parallel hybrid model structure describing protein expression (Y) as function of mRNA sequence. The first module is the TM that predicts protein expression

as function of DGTOT. The second module (NPLS1) is an N-PLS model that runs in tandem with the TM and extracts information from the TM residuals as function of

mRNA primary structure. The third module (NPLS2) is an N-PLS model that runs in tandem with TMþNPLS1 and extracts information from the TMþNPLS1 residuals as

function of the possible mRNA:rRNA interactions.
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Modeling multi-dimensional data sets by bilinear PLS
implies that multi-dimension input matrix X is unfolded into a
2D representation. When comparing both approaches, N-PLS
presents clear advantages in terms of input decomposition sta-
bilization, since fewer parameters are needed, resulting in a
more robust, parsimonious and interpretable final model.
Bilinear PLS is more flexible, usually performing better in the
calibration partition, but being prone to overfitting when
the number of input variables is too large (31), which is clearly
the case of DNA sequences. For this reason, we opted in this
work for the N-PLS MATLAB implementation described in (32).
Two N-PLS models were developed as described below.

Nucleotide sequences encoding
N-PLS requires the input/output data to be numeric rather than
symbolic. Six different encoding methods to translate the sym-
bolic nucleotide sequences into a numerical representation
were compared. A numerical representation, consisting of a
vector of numerical states, was assigned to each nucleotide as
follows:

Encoding 1: Adenine (0, �1), Cytosine (�1, 0), Guanine (1, 0),
Uracil (0, 1) and blank space (0, 0);

Encoding 2: Adenine (�1, 0), Cytosine (0, 1), Guanine (1, 0),
Uracil (0, �1) and blank space (0, 0);

Encoding 3: Adenine (1, 0), Cytosine (�1, 0), Guanine (0, �1),
Uracil (0, 1) and blank space (0, 0);

Encoding 4: Adenine (sin(p/6), �sin(p/3)), Cytosine (sin(p/6),
sin(p/3)), Guanine (sin(p/3), �sin(p/6)), Uracil (sin(p/3), sin(p/6))
and blank space (0, 0);

Encoding 5: Adenine (1, 0, 0, 0), Cytosine (0, 0, 0, 1), Guanine
(0, 1, 0, 0), Uracil (0, 0, 1, 0) and blank space (0, 0, 0, 0);

Encoding 6: Adenine (�3.9505, 4.0764, �1.1507, 1.24226),
Cytosine (4.3677, 1.0541, 1.5173, 3.2084), Guanine (�2.7552,
�4.8467, 1.1540, 1.4321), Uracil (1.9163, �1.1601, �4.9190,
�1.7917) and blank space (0, 0, 0, 0);

A detailed description and examples of applications can be
found elsewhere: Encoding 1 to 4 (33), Encoding 5 (16) and Encoding
6 (17).

NPLS1: primary structure N-PLS model
NPLS1 is a 3-way N-PLS describing protein titer as function of
primary mRNA sequence. The mRNA sequences were trimmed
to 70 Bp (35 Bp upstream and downstream of the start codon, i.e.
the same sequences used to calculate DGmRNA). Since some of
the mRNA molecules are shorter, they were first aligned by their
start codon and then filled with blank spaces up to 75 Bp.
Afterwards, one of the previously described encoding methods
was applied. The encoding resulted into a 3D X matrix (np � nb
� ne), with np¼ 132 the number of mRNA sequences, nb¼ 70 the
maximum sequence length (in base pairs) and ne¼ 4 or ne¼ 2
(depending on the encoding method) the number of values rep-
resenting a single nucleotide. X was then autoscaled (subtract-
ing the mean and dividing by the standard deviation) column
wise. The target vector Y was the protein expression data (mea-
sured reporter protein fluorescence). Y was transformed by ap-
plying the natural logarithm to obtain more normal distributed
values in Y. This transformation is in agreement with eq. (2),
where the N-PLS is predicting a free energy-like quantity. The Y
matrix was then autoscaled. The normalized X and Y were sub-
ject to N-PLS regression using the MATLAB implementation de-
scribed in (32). The optimal number of latent variables was
determined by the leave-one-out method (34). The number of
NPLS1 parameters, npar, is equal to the optimal number of la-
tent variables, FacNPLS1.

NPLS2: mRNA:rRNA interactions N-PLS model
NPLS2 describes protein expression as function of the mRNA
standby sequence. The mRNA standby sequences (used before
to calculate the DGSTANDBY), comprising all base pairs upstream
of the mRNA-rRNA interaction locus, are taken as indirect mea-
sure of the mRNA-rRNA interaction formed. All possible mRNA-
rRNA interactions were computed using the subopt function of
NUPACK (28–30), in order to determine the standby sequences
for a given mRNA molecule. These sequences were organized in
a 3D X matrix (np � nb � (ns � ne)) with np¼ 132 the number of
mRNA molecules, nb¼ 20 the maximum standby sequence
length (in base pairs), and ns � ne (third dimension) the number
of standby sequences (ns) multiplied by the encoding length
(ne¼ 2 or ne¼ 4 depending on the method). It should be noted
that the different mRNA molecules generate a different number
of possible mRNA-rRNA interactions and respective standby
sequences, e.g. an mRNA molecule with a consensus Shine–
Dalgarno sequence will bind strongly to the rRNA and generate
fewer interactions. On the other hand, a degenerated binding
sequence allows many different mRNA-rRNA interactions. The
X matrix was autoscaled column wise. The protein expression
data Y was as before transformed by applying the natural loga-
rithm and then autoscaled. The normalized X and Y were sub-
ject to N-PLS regression using MATLAB implementation
described in (32). The optimal number of latent variables was
determined by the leave-one-out method (34). The number of
NPLS2 parameters, npar, is equal to the optimal number of la-
tent variables, FacNPLS2.

2.4 Hybrid semiparametric modeling

The structure of the hybrid model is represented in Figure 1,
consisting of three parallel modules. The first module is the TM
that predicts protein expression as function of DGTOT. The sec-
ond module is an N-PLS model (NPLS1) that runs in tandem
with the TM and extracts information from the TM residuals as
function of mRNA primary structure. The third module is an N-
PLS model (NPLS2) that runs in tandem with TMþNPLS1 and
extracts information from the TMþNPLS1 residuals as function
of mRNA-rRNA interactions. Therefore, the hybrid model
decomposes the target (measured) protein vector Y in four
terms:

Y¼PTM þ PNPLS1 þ PNPLS2 þ E (5)

The first three terms represent the contribution of the three
modules (TM, NPLS1 and NPLS2, respectively) to the prediction
of Y. The vector E is the final hybrid model residuals. All terms
in eq. 5 are normalized in the same way, i.e. by applying natural
logarithm and then by autoscaling. The hybrid model identifica-
tion was performed in three consecutive steps:

Step 1: Identification of the TM module. The TM module has pri-
ority to describe observations and is thus the first to be fitted to
the data. The method to identify the TM module is exactly the
same as the standalone TM (see Section 2.1). In the end of this
step, PTM is identified as function of DGTOT.

Step 2: Identification of the TMþNPLS1 structure. Firstly, the TM
module residuals, ETM, are calculated:

ETM ¼ Y � PTM: (6)

Then, NPLS1 is set to identify patterns from the TM resid-
uals. The method is the same as described above for standalone
NPLS1 except that the target output is ETM rather than Y. Also,
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the optimal number of latent variables was not determined by
leave-one-out. Rather, the model identification data set was di-
vided into a calibration subset (67% of data points) and a valida-
tion subset (33% of points). The validation subset comprised the
data points with highest TM residuals (i.e. highest values in
ETM). This ensures the selection of the optimal number of latent
variables that maximizes predictive power of the TM residuals.
At the end of this step, NPLS1 calculates PNPLS1 as function of
mRNA primary structure. The hybrid TMþNPLS1 output is given
by PTM þ PNPLS1.

Step 3: Identification of the TMþNPLS1þNPLS2 structure. Firstly,
the TMþNPLS1 residuals are calculated:

ETMþNPLS1 ¼Y� PTM � PNPLS1 (7)

Then NPLS2 is identified following the same method previ-
ously described for standalone NPLS2 except that the target out-
put is ETMþNPLS1 instead of Y. The optimal number of latent
variables was determined as in Step 2. At the end of this step,
NPLS2 calculates PNPLS2 as function of mRNA secondary struc-
ture. The hybrid TMþNPLS1þNPLS2 output is given by PTM þ
PNPLS1 þ PNPLS2.

2.5 Model performance criteria

Three different metrics were employed for model performance
assessment, namely the mean squared error (MSE) (Eq. 8),
explained variance (Var., %), (Eq. 9) and the Akaike Information
Criterion with second order bias correction (AICc), (Eq. 10):

MSE ¼ 1
n

ETE (8)

Varð%Þ ¼ 100 1� ETE

YTY

 !
(9)

AICc ¼ n ln ðMSEÞ þ 2kþ 2kðkþ 1Þ
n� k� 1

(10)

with n the number of data points, E a vector of model residuals,
k the number of model parameters given by:

k ¼ 2þ FacNPLS1 þ FacNPLS2 (11)

AIC accounts for an overparameterization penalty and is
commonly used to discriminate between empirical model can-
didates and to select a parsimonious model (34).

3 Results and discussion
3.1 Standalone TM

Determination of Gibbs free energy and model fitting
Figure 2 represents the calculated free Gibbs energy parameters
for each of the 132 mRNA sequences, sorted from low to high re-
porter protein fluorescence values. As previously shown
by Salis et al. (6), measured reporter protein fluorescence is
correlated with DGTOT (r2 ¼ 0.70). DGTOT is the Gibbs free energy
variation between the folded mRNA and the assembled 30S pre-
initiation complex, accounting for five terms: DGmRNA:rRIB,
DGSTART, DGSPACING, DGSTANDBY and DGmRNA. The correlation with
individual DG terms is however much lower than with DGTOT.
The three individual DG values with highest correlation are
DGmRNA:rRIB (r2 ¼ 0.20), DGSPACING (r2 ¼ 0.22) and DGmRNA (r2 ¼
0.23).

The TM (Eq. 2) was fitted to the calculated DGTOT and mea-
sured fluorescence data, adopting the uniform data partitioning
strategy (partition R), i.e. 67% of data points are randomly se-
lected for fitting (Eq. 2), with the remaining 33% of data points
used to assess predictive power. The procedure is repeated
100 times to eliminate data sampling bias. The results are
shown in Table 1 (first row). The average Boltzmann constant
among the 100 different trials was 0.37 6 0.034 mol/kcal, which
is slightly lower than the value reported by Salis et al. (6) of
0.45 6 0.05 mol/kcal for two different data partitions. The aver-
age MSE was 0.29 for the identification data set and 0.31 for the
test data set, showing that the prediction accuracy is compara-
ble to the calibration accuracy. Nevertheless, the model system-
atically underpredicts the highest protein expression
sequences, e.g. �36.57% for the top 5% of protein expression
sequences and �61.17% for the top 1% of protein expression
sequences (Table 1, first row).

Effect of data sparsity on predictive power
Data sparsity is common in sequence-activity modeling because
the design space is very large and typically only a small number
of sequences are experimentally screened. Here, the length of
the design sequence is 35 Bp (mRNA sequence upstream of start

Figure 2. Heat map representing the free Gibbs energy for each of the 132 RNA sequences sorted from high to low protein fluorescence values. The columns refer two

DGTOT and to the individual DGmRNA:rRIB, DGSTART, DGSPACING, DGSTANDBY and DGmRNA. The correlation coefficient (r2) on the right side refers to the correlation of mea-

sured protein fluorescence in relation to calculated free Gibbs energy. The three steps with highest correlation are DGmRNA:rRIB (r2¼0.20), DGSPACING (r2¼0.22) and

DGmRNA (r2¼0.23).
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codon) with 435 possible combinations, of which only 132
sequences were experimentally screened. To assess the ability
of the TM to extrapolate the high activity mRNA sequences, the
E33 and E67 data partitioning scenarios were studied. The over-
all results are shown in Table 1 (fourth and seventh rows).

In the case of partition E33 (extrapolation of the 33% best
sequences), the MSE of the identification data set is 0.30, but the
MSE of the test data set increased to 0.49. The top 5% sequences
are systematically underpredicted by �62.06%. In the case of
partition E67 (extrapolating the 67% best sequences), the results
degrade much further. The average MSE of the identification
data set decreases to 0.25 while that of the test data increases to
0.98 and the top 5% sequences are systematically underpre-
dicted by �98.32%. The model is clearly overfitting the identifi-
cation data set and failing to predict the test data set.

Figure 3A plots predicted over measured protein expression
for the data partition E33. Figure 3B and C shows the residuals
distribution for the identification and test data sets, respec-
tively. It may be observed, according to the Shapiro–Wilk nor-
mality test, that the residuals are normal for the data
identification partition but this no longer holds for the test data
partition. Moreover, it may be confirmed (Figure 3C) that model
predictions are largely biased in the test partition (�0.62 mean
and 0.32 standard deviation) in the sense of underprediction.
These results suggest that data sparsity has a large negative im-
pact in the ability of the TM to describe high expression sequen-
ces. Given the structural simplicity of the model, this can only
mean that model assumptions do not fully represent the real
system.

3.2 Standalone N-PLS regression

Standalone N-PLS regression was compared to the TM. Firstly,
N-PLS regression of protein fluorescence as function of primary
mRNA sequence (NPLS1 model) was studied. The same three
data partitioning scenarios as for the TM were applied. The
mRNA encoding method is an important factor, with encodings

1, 3 and 5 producing significantly better results than encodings
2, 4 and 6. The overall results are shown in Table 1 for the best
encoding (second, fifth and eighth rows).

The second row of Table 1 summarizes the results for parti-
tion R. N-PLS describes the identification partition with average
MSE of 0.28, very similar to the TM (MSE of 0.29). The description
of the test partition is, however, much worse for the NPLS1
model (The MSENPLS1/MSETM ratio is 2.32� 1). In the case of par-
tition E33 (Table 1, fifth row), NPLS1 shows a slightly worse but
comparable performance to the TM in terms of data fitting flexi-
bility (MSE ratio of 1.13 in the identification partition) and also
predictive power (MSE ratio of 1.12 in the test partition). In the
case of partition E67 (Table 1 eighth row), the NPLS1 model sig-
nificantly improves the fitting power (MSE ratio of 0.68 in the
identification partition) at cost of much higher prediction error
(MSE ratio of 1.45 in the test partition). This result is typical of
non-parametric identification in general (using N-PLS or other
techniques). When non-parametric models are calibrated with
less data there is a tendency for calibration error to decrease.
The lower calibration error often reflects data overfitting result-
ing in a less representative model with lower predictive power.

A similar analysis was performed with NPLS2 model,
whereby protein fluorescence is described as function of the
standby sequence upstream of the mRNA-rRNA interaction lo-
cus. The results are shown in Table 1 (third, sixth and ninth
rows) for the three different data partitioning scenarios. The
previous observations regarding the effect of data partitioning
and encoding methods for NPLS1 are generically valid for the
NPLS2 model. The key result is the much lower explained var-
iances (or much higher MSE) for the NPLS2 model in relation to
the NPLS1 and to the TM. This is not surprising since the input
to the NPLS2 model is restricted to mRNA-rRNA interactions,
thus incomplete.

In the TM, the information content of the standby sequence is
given by the DGSTANDBY term, which is zero for a large number of
sequences (Figure 2). However, the explained variance of the identi-
fication and testing partitions are comparable. This suggests that

Table 1. Comparison of standalone thermodynamic and N-PLS models for three different data partitioning scenarios

Partition Models Identification Test Relative error

% Var MSE AICc MSE/MSETM % Var MSE MSE/MSETM Top 5% Top 1%

R TMa 70.59 0.29 1 68.47 0.31 1 �36.57 �61.17
NPLS1b 71.20 0.28 �94.74 0.97 29.02 0.72 2.32 �45.00 �21.82
NPLS2c 29.43 0.71 �24.15 2.45 10.58 0.84 2.71 �80.94 �134.60

E33 TMd 68.14 0.30 1 56.59 0.49 1 �62.06 �81.47
NPLS1e 63.30 0.34 �87.85 1.13 51.32 0.55 1.12 �56.62 3.53
NPLS2f 15.5 0.78 �19.29 2.61 30.43 0.78 1.60 �85.66 �129.12

E66 TMg 85.86 0.25 1 <0 0.98 1 �98.32 �112.83
NPLS1h 90.23 0.17 �71.03 0.68 <0 1.48 1.45 �39.61 21.50
NPLS2i 10.50 1.59 22.41 6.36 7.46 0.56 0.57 �97.22 �101.83

Identification refers to performance metrics in the identification data partition. Prediction refers to performance metrics in the test data partition. Relative errors refer

to the relative absolute deviation of model prediction and measurement for the top 5% and 1% protein expression sequences.
ab¼0.37.
bWith encoding 5 and Fac¼3.
cWith encoding 4 and Fac¼3.
db¼ 0.30.
eWith encoding 3 and Fac¼3.
fWith encoding 6 and Fac¼1.
gb¼0.25.
hWith encoding 5 and Fac¼3.
iWith encoding 6 and Fac¼ 1.
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N-PLS is extracting meaningful, though partial, information from
the standby sequence that is relevant for describing reporter pro-
tein fluorescence. Interestingly, this result has parallels to the
study by Borujeni et al. (6, 9). They detailed the computation of the
free Gibbs energy associated with the standby sequence, which fur-
ther improved Salis et al. (6) model predictions.

All in all, these results suggest the N-PLS method to be rather
sensitive to data partitioning in a data sparsity context. The
encoding method is an important factor but no clear rule could
be identified regarding the best approach. Rather it must be

studied case by case. As general trend, N-PLS tends to be more
flexible in data calibration but clearly inferior to the TM in terms
of extrapolation. Thus, for the particular problem at hand we
conclude the TM to be a more powerful methodology than
N-PLS when compared with standalone methods.

3.3 Hybrid thermodynamic-N-PLS models

The design of a hybrid model structure must consider the differ-
ent types of knowledge available (19). For the present problem,

Figure 3. TM results for partition E33. In total, 67% of mRNA sequences with lowest protein fluorescence are used for model calibration (identification data set) while

33% of mRNA sequences with highest protein fluorescence are used for model predictive power assessment (test data set). (A) Predicted over measured protein fluores-

cence. Data are normalized with natural logarithm only. Blue diamonds are calibration points. Orange squares are test points. (B) TM residuals histogram for the identi-

fication data set. (C) TM residuals histogram for the test data set. (B and C) Data points are normalized.
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there are two main sources of knowledge: (i) a priori knowledge
regarding the thermodynamics of the mRNA and ribosome
complex formation and (ii) a sequence-activity data set that
fully reflects all mechanisms involved in protein translation,
many of which still lacking mechanistic interpretation. A key
rule in hybrid modeling is that reliable mechanistic knowledge
has priority over heuristic or empirical knowledge (35). We have
thus adopted a hybrid structure that gives priority to the TM
(Figure 1). Therefore, the hybrid model may be seen as an im-
provement of a core TM. Firstly, we have studied the combina-
tion of the TM and NPLS1 in parallel (hybrid TMþNPLS1
structure). Then, we have studied the inclusion of the NPLS2
module in parallel (hybrid TMþNPLS1þNPLS2 structure).

Hybrid TM1NPLS1 model
In this hybrid structure, NPLS1 runs in tandem with the TM
resorting to the same input information (i.e. mRNA sequence)
and extracting information from the TM residuals. Therefore,
the job of NPLS1 is to improve the TM by considering primary
structure information that might not be adequately represented
by the Gibbs free energy framework.

The procedure to identify the TM module as part of the hy-
brid model is the same as for the standalone TM (Identification
Step 1 described in Section 2.4). Thus the results of this first
identification step were previously discussed and summarized
in Table 1 and Figures 2 and 3.

The results of NPLS1 identification in tandem with the TM
(Identification Step 2 described in Section 2.4) are summarized
in Tables 2 and 3 for partitions E33 and E67, respectively. In the
case of partition E33, NPLS1 was able to explain 70.8% of TM
residuals in the model identification data set and 52.3% in the
test data set (second row of Table 2). These results clearly indi-
cate NPLS1 succeeded to extract a significant amount of infor-
mation from TM residuals. TM residuals are due to
experimental noise and mechanisms not adequately described
by the TM. Given the high variance explained in both the identi-
fication and test data sets, the information extracted by NPLS1
is likely to be related to unknown mechanisms rather than to
random noise. In the case of E67, the improvement is also clear
but less expressive (second row of Table 3). For this reason, in
what follows we focus the analysis on partition E33 results.

The hybrid TMþNPLS1 output is calculated with the contri-
butions of the TM and NPLS1 modules together, obtained by
summing the output of both modules (PTM þ PNPLS1). This proce-
dure improved the description of the model identification data

set, with a significant decrease in the MSE ratio to 0.29. Even
more impressively, the test data set MSE ratio decrease to 0.47,
which means that the prediction error is approximately 50% of
the TM (third row of Table 2).

Figure 4A–C plots predicted over measured protein fluorescence
data for the hybrid TMþNPLS1 and respective residuals distribu-
tion. Comparing with the standalone TM (Figure 3A–C), it may be
seen that the dispersion of model identification residuals decreases
1.7-fold for the hybrid model (Figure 3B, r ¼ 0.32) when compared
with the TM (Figure 3B, r ¼ 0.55). In the case of the test partition, it
strikes the almost 3-fold reduction in model bias (m ¼ �0.62 for the
TM, Figure 3C, m ¼ 0.23 for the hybrid, Figure 4C). Moreover, accord-
ing to the Shapiro–Wilk normality test, the residuals of the test par-
tition are normal for the hybrid model while they are not for the
TM. This means a more consistent model representation of obser-
vations across the full measured space. It means in particular for
the present problem that the prediction bias of high performing
sequences is practically eliminated by the hybrid approach.

Hybrid TM1NPLS11NPLS2 model
In this structure, NPLS2 runs in tandem with the TMþNPLS1
having as input information the standby sequence upstream
the mRNA-rRNA interactions loci, on the basis of which it
extracts information from the TMþNPLS1 residuals. The job of
NPLS2 is thus to improve the TMþNPLS1 model by considering
mRNA-rRNA interactions, which are not accounted for neither
by the TM nor by the NPLS1 model.

The results of this identification step (Identification Step 3 previ-
ously described in Section 2.4) are summarized in Tables 2 and 3
(fourth and fifth rows). The inclusion of the NPLS2 module does not
significantly improve the hybrid model performance. In the case of
partition E33 (Table 2), the MSE ratio is 0.26 in the identification par-
tition and 0.44 in the test partition. In the case of partition E67
(Table 3), the MSE ratio is 0.60 in the identification partition and 0.94
in the test partition. Again focusing on partition E33, we calculated
the AICc values to discriminate the more parsimonious model
among the two hybrid model candidates. The AICc values are
�197.35 (TMþNPLS1) and �201.20 (TMþNPLS1þNPLS2) for the iden-
tification data set. According to this criterion, the hybrid
TMþNPLS1þNPLS2 model is more parsimonious than the
TMþNPLS1 model, but the difference is marginal thus inconclusive.

Effect of sample size and partitioning method
This article is focused on maximizing predictive power. The key
idea is to show that a model developed from a small number of

Table 2. Comparison of TM, hybrid TMþNPLS1 and hybrid TMþNPLS1þNPLS2 models for data partition scenario E33

Models Identification Test Relative error

% Var MSE AICc MSE/MSETM % Var MSE MSE/MSETM Top 5% Top 1%

TMa 68.14 0.30 1 56.59 0.49 1 �62.06 �81.47
Hybrid TMþNPLS1b

NPLS1 moduleb 70.83 52.27
TMþNPLS1b 90.71 0.09 �197.35 0.29 79.28 0.23 0.47 �27.73 �33.76

Hybrid TMþNPLS1þNPLS2c

NPLS2 modulec 6.52 4.27
TMþNPLS1þNPLS2c 91.31 0.08 �201.20 0.26 80.16 0.22 0.44 �26.97 �37.39

Identification refers to performance metrics in the identification data partition. Prediction refers to performance metrics in the test data partition. Relative errors refer

to the relative absolute deviation of model prediction and measurement for the top 5% and 1% protein expression sequences.
ab¼0.30.
bWith encoding 4 and Fac¼6.
cWith encoding 5 and Fac¼1.
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experimentally validated sequences is able to predict better per-
forming sequences. For this purpose, the sparse data set of RBS
calculator model 1.0 (with just 132 sequences) together with the
data partitioning E33 and E67 are ideal test cases. To eliminate
the possibility of the good results being obtained by chance, the
partition R scenario (100 runs with 33% sequences randomly
sampled for testing) was also studied. The obtained MSE for the
TM (RBS calculator model 1.0) was 0.29 6 0.03 (identification
partition) and 0.30 6 0.07 (testing partition). The results for the
hybrid TMþNPLS1 model were 0.23 6 0.03 (identification parti-
tion) and 0.26 6 0.06 (testing partition). Thus an average MSE re-
duction is observed of 22% and 15% for identification and
testing, respectively.

We have also applied the same random partitioning ap-
proach for the larger data set with 485 sequences of RBS calcula-
tor model 2.1 (10). In this case, the identification method of the
hybrid model is the same as previously described except that
the DG data published by (10) was directly used for the TM fit-
ting (Identification Step 1 described in Section 2.4). As before,
the procedure is repeated 100 times with random sampling of
33% sequences for testing giving rise to 100 different models.
The obtained MSE for the TM (RBS calculator model 2.1) was
0.35 6 0.01 (identification partition) and 0.35 6 0.03 (testing par-
tition). The results for the hybrid TMþNPLS1 model were 0.18 6

0.01 (identification partition) and 0.24 6 0.03 (testing partition).
Thus an average MSE reduction is observed of 49% and 32% for
identification and testing, respectively. These results suggest a
significant and systematic reduction of modeling errors by the
hybrid approach in relation to the standalone TM indepen-
dently of the sample size and data partitioning. Moreover,
improvements are more substantial for the RBS model calcula-
tor model 2.1. For this data set, Borujeni and Salis (10) hypothe-
sized that folded RNA structures may not have enough time to
fold inside the cell, creating a non-equilibrium effect termed as
“Ribosome Drafting”. In such cases, thermodynamic modeling
fails to deliver accurate predictions. In the hybrid model, how-
ever, the NPLS1 module seems to effectively correct the TM
residuals associated to the Ribosome Drafting effect. This exam-
ple illustrates well the advantages of the hybrid approach.
Mechanistic models are given priority to describe the process
but key mechanisms might be missing (in this case a kinetic ef-
fect). Empirical models are set to “learn” from the mechanistic
model errors, thereby compensating for the missing
mechanisms.

4. Concluding remarks

Mechanistic modeling based on well-established thermody-
namic/kinetic principles is recognized as the most insightful ap-
proach to design biological parts, but many times sufficient
knowledge for developing a coherent mechanistic model is lack-
ing. On the other hand, sequence-activity data sparsity, which
is very common in these problems, hinders the development of
empirical models with sufficient predictive power for design. In
this study, it is shown that combining both approaches in the
form of hybrid semiparametric models may result in improved
interpolation and extrapolation properties when compared to
the “standalone” methodologies, thus paving the way for more
efficient designs.

It is shown in particular how previously published E. coli RBS
thermodynamic models (6, 10) can be improved by adopting a
parallel hybrid construct where a N-way PLS model extracts in-
formation from the TM residuals. The patterns captured by the
N-way PLS model represent the knowledge lacking in the TM.
“Learning” form the TM errors is key to improve the predictive
power of the full construct. The results suggest a systematic im-
provement by the hybrid method in relation to the standalone
modeling methods irrespective of the sample size and partition-
ing method.

In this study, N-way PLS was adopted in the hybrid struc-
tures but several other empirical techniques could have been
used. Besides (N)PLS, different forms of artificial neural net-
works, support vector machines, fuzzy systems, splines and
many other techniques have been employed embedded in hy-
brid structures (see review by von Stosch et al. (19)). The compar-
ison of approaches is not always concordant in the literature
and seems to be problem dependent. For sequence-activity
modeling problems, given the data sparsity difficulty, it is im-
portant to choose a method that performs data factorization
and regression simultaneously. We have investigated multilin-
ear regression, principle components regression, support vector
machines, one-way PLS and multi-way PLS and found that the
multi-way PLS provided the best results for the case study
addressed here. Moreover, the choice of the method also
depends if the final objective is maximizing predictive power or
a better understanding of the underlying mechanisms. Neural
networks and PLS are typically adopted when the goals is maxi-
mizing predictive power. PLS is frequently used for process in-
terpretation, namely to identify the most influential input

Table 3. Comparison of TM, hybrid TMþNPLS1 and hybrid TMþNPLS1þNPLS2 models for data partition scenario E67

Models Identification Test Relative error

% Var MSE AICc MSE/MSETM % Var MSE MSE/MSETM Top 5% Top 1%

TMa 85.86 0.25 1 <0 0.98 1 �98.32 �112.83
Hybrid TMþNPLS1b

NPLS1 moduleb 28.63 4.88
TMþNPLS1b 89.91 0.18 �69.61 0.71 <0 0.93 0.94 �67.00 �70.38

Hybrid TMþNPLS1þNPLS2c

NPLS2 modulec 18.97 1.34
TMþNPLS1þNPLS2c 91.82 0.15 �74.87 0.60 <0 0.92 0.94 �56.49 �69.75

Identification refers to performance metrics in the identification data partition. Prediction refers to performance metrics in the test data partition. Relative errors refer

to the relative absolute deviation of model prediction and measurement for the top 5% and 1% protein expression sequences.
ab¼0.25.
bWith encoding 4 and Fac 1.
cWith encoding 5 and Fac 2.
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variables for the target output. There is, however, some contro-
versy regarding the efficiency of such analysis (36) particularly
for sparse data sets. For the present study, it would be interest-
ing to identify the sequence positions associated with higher
TM residuals. We have applied the variable importance in pro-
jection (VIP) analysis and observed high variability of results
depending on data sampling (results not shown). Such high var-
iability precludes a reliable interpretation.

Different ways of combining mechanistic/empirical methods
into hybrid models have been reported for a wide range of engi-
neering problems (19). Similar design principles could be applied to

a wide range of synthetic biology problems for which a sufficiently
predictive model is still lacking. Parallel hybrid structures, such as
the ones in the present study, are applicable to problems where a
full mechanistic model is available but lacking predictive power.
Serial hybrid structures are applicable to problems where only
some parts are understood mechanistically with the remaining
parts being modeled by empirical methods. Differential equations
models of biological parts (21) with unrealistic kinetics and/or equi-
librium assumptions can be tackled by simultaneously serial and
parallel hybrid structures (33). In general, eukaryotic organisms are
less understood than prokaryotic organisms from a mechanistic

Figure 4. Hybrid model TMþNPLS1 modeling results for partition E33. In total, 67% of mRNA sequences with lowest protein fluorescence are used for model calibration

(identification data set) while 33% of mRNA sequences with highest protein fluorescence are used for model predictive power assessment (test data set). (A) Predicted

over measured protein fluorescence. Data are normalized with natural logarithm only. Blue diamonds are calibration points. Orange squares are test points. (B) Hybrid

model residuals histogram for the identification data set. (C) Hybrid model residuals histogram for the test data set. (B and C) Data points are normalized.
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point of view. For instance, the nucleosome occupancy has been
one of the key features to be included in a model for transcription
initiation in S. cerevisiae (37). Hybrid semiparametric modeling
becomes a natural candidate to improve sequence-activity models
for such complex eukaryotic organisms. All in all, this study repre-
sents a first step toward the demonstration of the potential of hy-
brid modeling in synthetic biology, which could in principle be
replicated to many different problems in the future.
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