
Frontiers in Endocrinology | www.frontiersi

Edited by:
Minxiang Lei,

Central South University, China

Reviewed by:
Jeffery Sivert Tessem,

Brigham Young University,
United States

Andrei I. Tarasov,
Ulster University, United Kingdom

*Correspondence:
Jiaqiang Zhou

zjq8866@zju.edu.cn
Wenjing Zhang

wenjingzhang09@zju.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Cellular Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 22 February 2022
Accepted: 27 May 2022
Published: 13 July 2022

Citation:
Wu N, Jin W, Zhao Y, Wang H, He S,
Zhang W and Zhou J (2022) Sulfated

Fucogalactan From Laminaria
Japonica Ameliorates b-Cell Failure by
Attenuating Mitochondrial Dysfunction

via SIRT1–PGC1-a Signaling
Pathway Activation.

Front. Endocrinol. 13:881256.
doi: 10.3389/fendo.2022.881256

ORIGINAL RESEARCH
published: 13 July 2022

doi: 10.3389/fendo.2022.881256
Sulfated Fucogalactan From
Laminaria Japonica Ameliorates
b-Cell Failure by Attenuating
Mitochondrial Dysfunction via
SIRT1–PGC1-a Signaling
Pathway Activation
Nan Wu1†, Weihua Jin2†, Yuchen Zhao1, Hong Wang1, Sunyue He1, Wenjing Zhang1*
and Jiaqiang Zhou1*

1 Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou,
China, 2 College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China

As mitochondrial metabolism is a major determinant of b-cell insulin secretion,
mitochondrial dysfunction underlies b-cell failure and type 2 diabetes mellitus
progression. An algal polysaccharide of Laminaria japonica, sulfated fucogalactan (SFG)
displays various pharmacological effects in a variety of conditions, including metabolic
disease. We investigated the protective effects of SFG against hydrogen peroxide (H2O2)-
induced b-cell failure in MIN6 cells and islets. SFG significantly promoted the H2O2-
inhibited proliferation in the cells and ameliorated their senescence, and potentiated b-cell
function by regulating b-cell identity and the insulin exocytosis-related genes and proteins
in H2O2-induced b-cells. SFG also attenuated mitochondrial dysfunction, including
alterations in ATP content, mitochondrial respiratory chain genes and proteins
expression, and reactive oxygen species and superoxide dismutase levels.
Furthermore, SFG resulted in SIRT1–PGC1-a pathway activation and upregulated the
downstream Nrf2 and Tfam. Taken together, the results show that SFG attenuates H2O2-
induced b-cell failure by improving mitochondrial function via SIRT1–PGC1-a signaling
pathway activation. Therefore, SFG is implicated as a potential agent for treating
pancreatic b-cell failure.

Keywords: pancreatic b-cell failure, mitochondrial dysfunction, senescence, insulin exocytosis, SIRT1–PGC1-a
INTRODUCTION

Type 2 diabetes mellitus (T2DM) has become epidemic worldwide and is a chronic metabolic
disease characterized by insulin resistance and b-cell failure. Nevertheless, insulin resistance does
not cause T2DM unless there is concomitant b-cell failure (1). In the face of insulin resistance,
euglycemia is maintained by augmenting existing b-cell capacity for the secretory response to
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glucose (2). In time, this compensatory phase eventually
transitions to a decompensatory phase; b-cells lose the
proliferative ability and senescent b-cells accumulate and
undergo dedifferentiation, leading to the gradual deterioration
of b-cell function (3, 4). Numerous studies have demonstrated
that mitochondrial dysfunction is associated with b-cell failure,
as the mitochondria play a crucial role in b-cells by controlling
insulin secretion (5–7). Anello et al. demonstrated that compared
with that from non-diabetic donors, pancreatic b-cells from
T2DM patients exhibited markedly altered mitochondrial
function and morphology (8). Silva et al. reported that b-cell-
specific disruption of mitochondrial transcription factor A
(Tfam), a protein essential for mitochondrial function, leads to
suppressed glucose-stimulated insulin secretion (GSIS), reduced
b-cell mass, and ultimately glucose intolerance in mice (9).
Imeglimin is a new class of oral drugs developed for the
treatment of T2DM. The underlying mechanism of Imeglimin
may involve in attenuation of mitochondrial dysfunction. It
contributes to better glycemic control in patients with T2DM
when given in combination with metformin. This information
led to the hypothesis that medicines or food products aimed at
reversing mitochondrial dysfunction maybe a better potential
strategy for treating b-cell failure.

Seaweed is commonly used as seasoning and foodstuff in many
countries, particularly in Asia. The brown seaweed Laminaria
japonica is the most important economic seaweed cultured in
China and is consumed as a health food. L. japonica exhibits
numerous biological activities, including anti-tumor, anti-microbial,
antioxidative, antiviral, anti-aging, anti-fatigue, and anti-
inflammatory effects (10–15). Recent studies have demonstrated
that polysaccharides are the main bioactive components of L.
japonica, and consist of alginate, laminarin, fucoidan, and different
proportions of xylose, galactose, and glucuronic acid (16). Some
bioactive polysaccharides exert protective effects against b-cell failure.
For example, Li et al. found that i-carrageenan tetrasaccharide (iCT),
a novel marine oligosaccharide prepared with the marine enzyme
Cgi82A, inhibits islet b-cell apoptosis by upregulating GLP-1 (17).
Zhang et al. reported that mulberry leaf polysaccharide significantly
promoted b-cell regeneration and elevated insulin secretion in
streptozotocin-induced diabetic rats (18). Yang et al. found that bee
pollen polysaccharide from Rosa rugosa Thunb. (Rosaceae) regulates
pancreatic b-cell proliferation and function (19). Therefore, based on
the activity of other algae polysaccharides, we hypothesized that L.
japonica polysaccharides might protect b-cell function.

In this study, we prepared sulfated fucogalactan (SFG)
derived from L. japonica and evaluated its effects on b-cell
failure using a hydrogen peroxide (H2O2)-induced MIN6 cell
and islets model. We also investigated the underlying molecular
mechanisms of SFG.
MATERIALS AND METHODS

Reagents and Antibodies
H2O2 was purchased from Sigma-Aldrich (St. Louis, MO, USA).
The insulin content assay kit was purchased from EZAssay
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(Shenzhen, China). The b-galactosidase (b-gal) activity kit was
purchased from GenMed Scientific (Shanghai, China). The ATP
assay kit was purchased from Beyotime (Shanghai, China). The
reactive oxygen species (ROS) and superoxide dismutase (SOD)
assay kits were purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China).

The antibodies against Ki-67, gH2A.X, Kif5b, Snap25, SIRT1,
PGC1-a, Tfam, and Nrf2 were purchased from Abcam
(Cambridge, UK). Stx1, Aqp2, Atp5a, Uqcrc2, Mtco1, Sdhb
and Ndufb8 were purchased from ABclonal (Wuhan, China).
Kir6.2 was purchased from origene (Maryland, USA).

Preparation of SFG
Fucoidan extracted from L. japonica was prepared according
to a previous study (20). Then, 1 g fucoidan was degraded in
0.1 M HCl for 2 h at 80°C. The degradation solution was
neutralized, concentrated, and precipitated by ethanol. Then,
the precipitation was re-dissolved and degraded in 0.5 M
HCl. The degradation solution was again neutralized,
concentrated and precipitated by ethanol. The precipitation
was re-dissolved, purified on a Bio Gel P10 column (2.6 ×
100 cm) (Bio-Rad, CA, USA), and eluted with 0.2 M
NH4HCO3 to obtain SFG. SFG powder was dissolved in
phosphate-buffered saline (PBS) as stock solution with a
concentration of 20 mg/ml. Polysaccharide composition
and molecular weight (MW) were determined according to
previous studies (21–23). In brief, 1-Phenyl-3-methyl-5-
pyrazolone (PMP) is a common sugar derivatization agent
used in high-performance liquid chromatography (HPLC).
Polysaccharide composition was determined by PMP
derivatization HPLC, including the total sugar content,
fucose (Fuc) content, uronic acid (UA) content, sulfate
content. The gel permeation chromatography–high-
performance liquid chromatography (GPC-HPLC) analysis
are used to estimate the MW.

Cell Culture
The MIN6 cells were cultured in high-glucose Dulbecco’s
modified Eagle’s medium containing 0.05% 2-mercaptoethanol,
15% embryonic stem-cell screened fetal bovine serum, 100 U/ml
penicillin, and 100 mg/ml streptomycin at 37°C in a humidified
atmosphere under 5% CO2. Cells were exposed to 125 mM H2O2

for 2 h. Then, the H2O2-containing medium was replaced with
fresh medium containing 0, 25, 50, 100, or 200 mg/ml SFG for an
additional 24 h before harvesting.

Cell Viability Assay
The MIN6 cells were seeded in 96-well plates at a density of 1 ×
104 cells per well. Cells were treated with 125 mM H2O2 for 2 h,
then replaced with fresh medium containing various
concentrations of SFG and incubated for 24 h. After treatment,
the culture supernatant was removed, and the cells were
incubated in culture medium containing 10 ml Cell Counting
Kit-8 (CCK-8, Yeasen Biotech, Shanghai, China) solution for
1.5 h at 37°C in the dark. The absorbance in each well was
July 2022 | Volume 13 | Article 881256
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measured at 450 nm using a Multiskan GO microplate reader
(Thermo Fisher Scientific, Waltham, MA, USA).

GSIS Assay
The MIN6 cells were plated in 12-well plates at a density of 2
× 105 cells per well. Cells were treated with 125 mM H2O2 for
2 h, then replaced with fresh medium containing various
concentrations of SFG and incubated for 24 h. After
treatment, the cells were incubated with glucose-free Krebs-
Ringer bicarbonate buffer (KRBH, containing 0.1% BSA) for
30 min before 1 h incubation in KRBH buffer containing 2
mM or 25 mM glucose. The supernatant was collected, and
the insulin content was measured by enzyme-linked
immunosorbent assay. Results of insulin secretion were
normalized by protein concentration and expressed as fold
change related to control.

The method of isolating islets was referred to the previous
study (O'Dowd et al., 2020). Islets were exposed to 125 mMH2O2

for 6 h and picked up to the fresh medium containing 50 and
100mg/ml SFG for an additional 24 h. Subsequently, islets were
incubated with KRBH containing 0.1% BSA for 30 min and
stimulated at 2.8 mM and 16.7 mM glucose KRBH buffer for 1 h
separately. The supernatant was collected, for detecting insulin
content of islets, the steps were the same as for the detection of
MIN6 cells.

Total Internal Reflection Fluorescence
Microscopy
The MIN6 cells were plated in 35-mm MatTek imaging dishes
(Cellvis, CA, USA) at a density of 4 × 105 cells per well. After
18 h culture for adhesion, the cells were transiently transfected
with VAMP2-pHluorin using Lipofectamine 3000 according
to the manufacturer’s protocol. At 24 h after transfection, the
cells were treated with 125 mM H2O2 for 2 h and the medium
was replaced with fresh medium containing various
concentrations of SFG for 24 h. The cells transfected with
VAMP2-pHluorin were serum-starved in KRBH buffer for 1 h
prior to microscopy. Throughout the imaging experiment, the
cells were kept in an Air-Therm (WPI) temperature-regulated
environmental chamber (Shanghai JingHong Laboratory
Equipment Co., Shanghai, China) at 37°C. Basal insulin
secretion state of cells were imaged for 2 min in KRBH
containing 2 mM glucose. Then glucose stock (50 mM) was
added to the edge of the MatTek dish on the microscope stage
to reach a final concentration of 25mM glucose. The cells were
imaged for 6 min in the glucose-stimulated state. TIRFM was
performed using an Olympus objective-type IX-70 inverted
microscope fitted with a 60×/1.45 NA TIRFM lens (Olympus,
Center Valley, PA, USA) controlled by Andor iQ software
(Andor Technologies, South Windsor, CT, USA) and detected
with a back-illuminated Andor iXon 897 EMCCD (electron
multiplying charge-coupled device) camera (512 × 512, 14 bit;
Andor Technologies) (24).

Senescence-Associated-b-Gal Assay
The MIN6 cells were plated in 12-well plates at a density of 2 ×
105 cells per well. Cells were treated with 125 mM H2O2 for 2 h,
Frontiers in Endocrinology | www.frontiersin.org 3
then replaced with fresh medium containing various
concentrations of SFG and incubated for 24 h. Senescence was
assessed by X-Gal staining for detecting b-gal activity with a
commercially available kit after 24 h incubation in the fixative
solution provided in the kit.

Immunofluorescence Assay
The MIN6 cells were plated in 12-well plates at a density of
2 × 105 cells per well. Cells were treated with 125 mM H2O2

for 2 h, then replaced with fresh medium containing various
concentrations of SFG and incubated for 24 h. The MIN6
cells were fixed in 4% paraformaldehyde for 20 min,
permeabilized with 0.2% Triton X-100/PBS for 15 min,
and blocked with 5% BSA for 1 h. Cells on coverslips were
incubated overnight at 4°C with the detection antibodies.
After several washes in PBS, the fixed cells were incubated
for 1 h with a goat anti-rabbit secondary antibody
(Invitrogen, CA, USA; 1: 200) and counterstained for
5 min with DAPI. After mounting with fluorescence
decay-resistant medium, the cells were observed and
photographed under a confocal microscope (IX83-FV3000,
Olympus, Tokyo, Japan).

RNA Isolation and Quantitative
Real-Time PCR
The MIN6 cells were plated in 6-well plates at a density of 4 ×
105 cells per well. Cells were treated with 125 mM H2O2 for 2 h,
then replaced with fresh medium containing various
concentrations of SFG and incubated for 24 h. RNA was
isolated using AG RNAex Pro reagent and reversed-
transcribed using an Evo M-MLV RT Premix kit (Accurate
Biotechnology, Hunan, China) according to the manufacturers’
protocols. Real-time PCR was performed using the LightCycler
480 II system (Roche, Basel, Switzerland) and a SYBR Green
Premix Pro Taq HS qPCR kit (Accurate Biotechnology, Hunan,
China). After normalization to actin, the relative gene
expression was determined using the comparative threshold
cycle (2−DDCT) method. The primer sequences are shown in the
Supplementary Data.

Western Blot
The MIN6 cells were plated in 6-well plates at a density of 4 × 105

cells per well. Cells were treated with 125 mM H2O2 for 2 h, then
replaced with fresh medium containing various concentrations
of SFG and incubated for 24 h. The MIN6 cells were lysed with
cell lysis buffer containing a protease inhibitor cocktail. Protein
concentrations were determined by a bicinchoninic acid protein
assay kit (FdBio Science, Hangzhou, China). Total protein
extracts were denatured and separated by 10% or 12.5%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The
membranes were incubated with primary antibodies for
detection at 4°C overnight. Subsequently, the membranes were
incubated with horseradish peroxidase-conjugated anti-rabbit or
anti-mouse secondary antibody. The proteins were visualized
using an enhanced chemiluminescence kit (FdBio Science,
Hangzhou, China).
July 2022 | Volume 13 | Article 881256
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ATP Assay
The MIN6 cells were plated in 6-well plates at a density of 4 × 105

cells per well. Cells were treated with 125 mM H2O2 for 2 h, then
replaced with fresh medium containing various concentrations
of SFG and incubated for 24 h. The ATP levels were measured
using an ATP assay kit. The method is based on a luciferase-
luciferin reaction assay. The results were normalized by
protein concentration.

ROS Assay
The MIN6 cells were plated in 6-well plates at a density of 4 × 105

cells per well. Cells were treated with 125 mM H2O2 for 2 h, then
replaced with fresh medium containing various concentrations
of SFG and incubated for 24 h. ROS production was identified
using an ROS assay kit. The treated MIN6 cells were washed with
PBS and incubated with DCFH-DA without light for 1 h at 37°C.
The cells were washed in PBS three times and the fluorescence
intensity was detected using a fluorescence microscope (Nikon
Corporation, Tokyo, Japan).

SOD Assay
The SOD activity in the cell medium was analyzed with SOD
assay kit according to the manufacturer’s protocol. The
absorbance at 450 nm was recorded using a microplate reader
(Synergy H4, BioTek Instruments, Winooski, VT, USA). The
results were normalized by protein concentration.

Statistical Analysis
All experiments were repeated in triplicate. The results are
expressed as the mean ± SEM. One-way analysis of variance
(GraphPad Prism 7) was used for data comparisons within
multiple groups. P < 0.05 was set as the threshold for
statistical significance.
RESULTS

Chemical Composition of SFG
The chemical composition analysis indicated that SFG contained
59.9% total sugar, 25.8% Fuc, 10.4% UA, and 13.1% sulfate. The
molar ratio of monosaccharides of SFG was 1.25: 1 (galactose:
Fuc), demonstrating that SFG it is mainly a sulfated fucogalactan
(Figure 1). The GPC-HPLC analysis indicated that the average
MW of SFG was approximately 3.9 kDa (Figure 1).

SFG Increased b-Cell Viability and
Improved Insulin Secretion Under
H2O2 Exposure
The cytotoxicity of SFG was evaluated in vitro. After SFG (25–
200 mg/ml) treatment, MIN6 cell viability was measured using
the CCK-8 assay. There were no significant changes in cell
viability after SFG treatment at any of the concentrations
tested, showing that SFG had no obvious cytotoxic effects on
the cells (Figure 2A). Compared with the untreated control cells,
exposure to H2O2 inhibited MIN6 cell viability while treatment
with 50–200 mg/ml SFG significantly alleviated this effect (P <
Frontiers in Endocrinology | www.frontiersin.org 4
0.05) (Figure 2B). The effect of 50 and 100 mg/ml SFG was
studied in the follow-up experiments.

The effect of SFG on MIN6 cell insulin secretion was
investigated using the GSIS test. Cells that had been exposed to
H2O2 had decreased insulin secretion in the presence of high
glucose levels (25 mM) compared with that of the untreated
control cells and SFG treatment enhanced insulin secretion (P <
0.05). Nevertheless, there was no difference under low-glucose
stimulation (Figure 2C). Meanwhile, consisting with the results
in MIN6 cells, GSIS test on islets isolated from C57BL/6 mice
have also demonstrated that SFG treatment enhanced insulin
secretion in the presence of high glucose levels (16.7 mM) (P <
0.05) (Figure 2D).The regulation of fusion pore dynamics is
important for insulin secretion, as premature fusion pore closure
is a likely mechanism by which insulin release is prevented. A
recent study revealed two exocytosis modes: (1) full fusion, in
which the exocytic vesicle and the plasma membrane fusion
completely; and (2) kiss‐and‐run events, in which insulin
granules release their contents through a transiently opened
fusion pore (25). Here, H2O2-induced MIN6 cells had fewer
glucose-stimulated full fusion events compared with the control
cells, and SFG treatment significantly increased full fusion events
(P < 0.05) (Figure 2E). There was no difference in the proportion
of kiss-and-run fusion events between the treatment and control
groups (Figure 2F). Representative MIN6 cells under glucose-
stimulated state were observed under TIRFM (Figure 2G). Our
findings demonstrate that H2O2 exposure results in significantly
reduced insulin secretion in MIN6 cells, which is alleviated by
SFG treatment.

SFG Promoted the Inhibited Proliferation
of H2O2-Induced MIN6 Cells and
Ameliorated Their Senescence
We studied the effect of SFG on MIN6 cell proliferation via
immunofluorescence staining of Ki-67, a key cell proliferation
marker (26). H2O2 exposure significantly inhibited Ki-67
expression in the cells and SFG eliminated this effect (P < 0.05)
(Figure 3A). We examined the protein expression of the cell cycle
FIGURE 1 | The PMP derivatization HPLC spectrum (top) and GPC-HPLC
spectrum (bottom) of SFG.
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regulators CDK4, RB, pRB, E2F1, and EZH2. Compared with the
untreated control cells, H2O2-treated MIN6 cells had decreased
CDK4, pRB, E2F1, and EZH2 protein expression, which was
increased with the addition of SFG (P < 0.05) (Figure 3B). This
indicates that SFG facilitated cell proliferation through cell cycle
upregulation in H2O2-treated MIN6 cells.

We investigated whether SFG treatment would alleviate
MIN6 cell senescence. The expression of senescence-related
phenotypes was detected, including the senescence marker
Frontiers in Endocrinology | www.frontiersin.org 5
gH2A.X; the cellular senescence-associated proteins such as
p16, p21, and p53; and SA-b-gal activity. Immunofluorescence
staining showed that H2O2 increased gH2A.X accumulation in
the cells as compared with the untreated control cells while SFG
treatment rescued this effect (P < 0.05) (Figure 3C). Western blot
confirmed that p16, p21, and p53 protein levels were greatly
upregulated in the H2O2 group and that SFG treatment
downregulated all three proteins (P < 0.05) (Figure 3D).
Compared with the untreated control cells, H2O2-treated
B

C D

E F

G

A

FIGURE 2 | SFG increased H2O2-treated b-cell viability and improved insulin secretion. (A) Viability of MIN6 cells after SFG treatment in the absence of
H2O2 exposure (n=6). (B) Viability of MIN6 cells exposed to H2O2 before SFG treatment (n=6). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group.
(C) GSIS at 2 mM and 25 mM glucose in MIN6 cells (n=4). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (D) GSIS at 2.8 mM and 16.7 mM
glucose in islets (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (E) SFG regulation of basal and glucose-stimulated insulin full fusion
events. MIN6 cells transfected with VAMP2-pHluorin (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (F) The fraction of kiss-and-run
events relative to total fusion events was quantified under basal and glucose-stimulated conditions. MIN6 cells transfected with VAMP2-pHluorin (n=3).
(G) Representative MIN6 cells under glucose-stimulated state were observed under TIRFM.
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B

C
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A

FIGURE 3 | SFG promoted the inhibited proliferation of H2O2-treated MIN6 cells and ameliorated their senescence. (A) Immunofluorescence staining of Ki-67
expression in MIN6 cells (n=3). Quantitative analysis of Ki-67 expression was shown. *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (B) Western blot
analysis of the expression of the cell cycle regulator proteins RB, pRB, EZH2, E2F1, and CDK4 in MIN6 cells (n=3). GAPDH was used as a loading control for pRB,
EZH2 and E2F1, actin was used as a loading control for CDK4. Densitometric analysis of the Western blot bands were shown. *P < 0.05 versus control; #P < 0.05
versus H2O2-only group. (C) Immunofluorescence staining of gH2A.X in MIN6 cells (n=3). Quantitative analysis of gH2A.X expression was shown. *P < 0.05 versus
control; #P < 0.05 versus H2O2-only group. (D) Western blot analysis of the expression of the senescence-associated proteins p16, p21, and p53 in MIN6 cells
(n=3). GAPDH was used as a loading control. Densitometric analysis of the Western blot bands were shown. *P < 0.05 versus control; #P < 0.05 versus H2O2-only
group. (E) SA-b-gal staining in MIN6 cells (n=3). b-gal staining area analysis was shown. *P < 0.05 versus control; #P < 0.05 versus H2O2-only group.
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MIN6 cells had widespread and intense SA-b-gal-positive
staining, while only sporadic staining was detected in the cells
following SFG treatment (P < 0.05) (Figure 3E). Taken together,
SFG promotes the inhibited proliferation in H2O2-treated MIN6
cells and ameliorates their senescence.

SFG Potentiated b-Cell Function by
Regulating b-Cell Identity and the Insulin
Secretion-Related Genes and Proteins in
H2O2-Treated MIN6 Cells
We evaluated several genes and proteins that are essential in b-
cells. NeuroD1, Mafa, and Pdx1 are critical for maintaining
function in mature b-cells. The decreased expression of these
key b-cell markers is associated with cellular dedifferentiation
(27). In our study, Neurod1, Mafa, and Pdx1 gene levels were
dramatically downregulated in the H2O2 group while SFG
treatment upregulated all three genes (P < 0.05) (Figure 4A).
Western blot revealed a similar pattern for the Neurod1, Mafa,
Pdx1 mRNA levels (P < 0.05) (Figure 4B).

We then examined the genes and proteins crucial to insulin
secretion. Glut2 controls glucose entry into cells and is key to
maintaining glucose homeostasis (28). Kif5b is responsible for
the transport of insulin-containing granules (29). Glut2 mRNA
levels was significantly reduced in H2O2-treated MIN6 cells and
was upregulated by the addition of SFG (P < 0.05) (Figure 4C).
Glut2 protein expression revealed a similar pattern for the Glut2
mRNA levels (P < 0.05).While there was no difference in Kif5b
protein expression (Figure 4D). We also evaluated some genes
and proteins essential for vesicle fusion with the plasma
membrane to release insulin. H2O2 resulted in significantly
decreased Snap25, Ip3r1, Aqp2, Stx1, and Kir6.2 mRNA levels,
while SFG increased these mRNA expression (P < 0.05)
(Figure 4C). Western blot revealed a similar pattern for the
Snap25, Aqp2, Stx1, and Kir6.2 mRNA levels (P < 0.05)
(Figure 4D). These data indicate that SFG potentiates b-cell
function in MIN6 cells by regulating b-cell identity and the
insulin secretion-related genes and proteins.

SFG Alleviated Mitochondrial Dysfunction
and Decreased ROS Generation in
H2O2-Treated MIN6 Cells
As the powerhouse of the cell, the mitochondria play a central
role in maintaining b-cell health and function, which is involved
in integrating and generating metabolic signals to control insulin
secretion (5). Here, we explored the effect of SFG on
mitochondrial function by detecting mitochondrial respiratory
chain related proteins and genes and ATP content in MIN6 cells.
H2O2-treated MIN6 cells had decreased levels of mitochondrial
respiratory chain related proteins and mRNA, but SFG
supplementation restored the decrease (P < 0.05) (Figures 5A,
B). Meanwhile, the ATP content is decreased when exposed to
H2O2, and increased when supplied with SFG (P < 0.05)
(Figure 5C). The mitochondria are the primary site of ROS
production and are susceptible to oxidative stress (30). Here, the
H2O2-treated MIN6 cells had higher ROS levels and lower SOD
levels than the untreated control cells. SFG markedly reduced
Frontiers in Endocrinology | www.frontiersin.org 7
ROS levels while significantly increasing SOD activity (P < 0.05)
(Figures 5D, E). Our data indicate that H2O2 promotes
mitochondrial dysfunction and ROS accumulation in MIN6
cells, leading to b-cell failure, and that SFG treatment alleviates
these effects.

SFG Counteracts the H2O2-Induced
Negative Effect in MIN6 Cells via SIRT1–
PGC1-a Signaling Pathway Activation
PGC1-a is a critical regulator of oxidative metabolism and is
involved in maintaining mitochondrial biogenesis and function
(31). SIRT1 acts as an upstream kinase and activates PGC1-a
expression directly (32). In the present study, H2O2-treated MIN6
cells had markedly decreased Sirt1 and Pgc1-a mRNA expression
compared with the untreated control group, and SFG increased
Sirt1 and Pgc1-amRNA expression (P < 0.05) (Figure 6A). PGC1-
a exerts effects through the coactivation of many nuclear receptors
and factors outside the nuclear receptor family. Nrf2 and Tfam are
key targets of PGC1-a in mitochondrial biogenesis (32). Nrf2 and
Tfam mRNA expression was also downregulated in MIN6 cells
following exposure to H2O2, and SFG supplementation upregulated
their expression (P < 0.05) (Figure 6A). Western Blot revealed
a similar pattern in the Sirt1, Pgc1-a, Nrf2, and tfam mRNA levels
(P < 0.05) (Figure 6B).
DISCUSSION

The brown seaweed L. japonica is the most important economic
seaweed and is consumed as a health food in China. It exhibits
numerous biological activities, including that against metabolic
disorders (33, 34). In the present study, we hypothesized that
SFG protects MIN6 cells from H2O2-induced b-cell failure by
attenuating mitochondrial dysfunction via SIRT1–PGC1-a
signaling pathway activation.

One of the most common metabolic disorders worldwide,
T2DM leads to damage to the heart, vasculature, eyes, kidneys,
and nerves over time (35). b-Cell failure is believed to occur in
T2DM development and progression, when the state of b-cell
compensation for insulin resistance fails, resulting in the
deterioration of b-cell function (2). Growing evidence
demonstrates that b-cell senescence is associated with b-cell
failure. b-Cells with senescence induced by aging and stress
exhibit impaired insulin secretion response to glucose challenges
(3, 36). Sone and Kagawa reported that b-cell senescence occurred
in diet-induced T2DM mice and led to insufficient insulin release
(36). Wang et al. demonstrated that Fischer rats, an established
aging animal model, synthesized nearly half the amount of
proinsulin upon high-glucose stimulation (37). Using oral
ABT263 to remove senescent b-cells improved glucose
metabolism and b-cell function in high-fat diet C57BL/6Crl mice
(38). In our study, we verified that H2O2 induced GSIS impairment
and insulin exocytosis dysfunction in b-cells, while SFG treatment
restored the insulin secretion capacity of the cells. The exposure of
MIN6 cells to H2O2 caused significantly decreased cell proliferation
and induced senescence-like phenotypes, including alterations in
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DNA damage marker gH2A.X; the protein expression of related
molecules, i.e., p16, p21, and p53; and SA-b-gal staining, while
treatment with SFG could reverse these alterations. These data
indicate that the addition of SFG restores insulin secretion capacity
and ameliorates MIN6 cell senescence.
Frontiers in Endocrinology | www.frontiersin.org 8
b-Cell dedifferentiation is recognized as a manifestation of
impaired b-cell function (39). The dedifferentiated cells lose b-
cell identity and exhibit defective insulin secretion, no longer
controlling metabolic glucose homeostasis (40). The
characteristics of b-cell dedifferentiation include reduced
B

C

D

A

FIGURE 4 | SFG potentiated b-cell function by regulating b-cell identity and the insulin secretion-related genes and proteins of H2O2-treated MIN6 cells.
(A) Neurod1, Mafa, and Pdx1 gene expression (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (B) Western blot of NeuroD1, Mafa, and
Pdx1 (n=3). GAPDH was used as a loading control for NeuroD1 and Pdx1, Hsp90 was used as a loading control for Mafa. Densitometric analysis of the
Western blot bands were shown. *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (C) Gene expression of Glut2, Snap25, Ip3r1, Aqp2, Stx1,
and Kir6.2 (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (D) Western blot analysis of the expression of Glut2, Kir6.2, Stx1, Aqp2, and
Snap25 in MIN6 cells (n=3). GAPDH was used as a loading control. Densitometric analysis of the Western blot bands were shown. *P < 0.05 versus control;
#P < 0.05 versus H2O2-only group.
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expression of key b-cell transcription factors such as NeuroD1,
Mafa, and Pdx1 (41–43). Here, we verified that NeuroD1, Mafa,
and Pdx1 genes and proteins expression in the MIN6 cells was
downregulated following exposure to H2O2 and was upregulated
Frontiers in Endocrinology | www.frontiersin.org 9
with SFG treatment. Another indication of b-cell dysfunction is
the altered dynamics of insulin release (39). Insulin release
involves a sequence of events in b-cells: glucose enters the b-
cells via Glut2, leading to Ca2+ influx. The rise in intracellular
B

C D

E

A

FIGURE 5 | SFG alleviated mitochondrial dysfunction and decreased ROS generation in H2O2-treated MIN6 cells. (A) Gene expression of Sdhb, Mtco1, Uqcrc2,
Atp5a, Ndufv2, and Ndufa2 in MIN6 cells (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (B) Western blot analysis of the expression of Atp5a,
Uqcrc2, Mtco1, SDHB, Ndufb8 in MIN6 cells (n=3). GAPDH was used as a loading control. Densitometric analysis of the Western blot bands were shown. *P < 0.05
versus control; #P < 0.05 versus H2O2-only group. (C) ATP content in MIN6 cells (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (D) SOD levels
in MIN6 cells (n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (E) ROS levels in MIN6 cells (n=3). Quantitative analysis of ROS was shown. *P <
0.05 versus control; #P < 0.05 versus H2O2-only group.
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cytosolic Ca2+ is the primary mediator of insulin exocytosis, as it
participates in integral events that include insulin secretory
granule traffic to the plasma membrane, priming, docking, and
exocytotic regulated release via SNARE complexes (28). In our
study, H2O2 significantly decreased the expression of Glut2 and
the insulin exocytosis-related genes and proteins while SFG
treatment reversed the secretory dysfunction induced by H2O2.
This indicates that SFG potentiates b-cell function by regulating
b-cell identity and the insulin secretion-related genes and
proteins of MIN6 cells against H2O2.

Mitochondrial dysfunction may be the underlying mechanism
of b-cell failure. Ma et al. demonstrated that the overproduction of
mitochondrial free radicals in b-cells was associated with decreased
insulin secretion due to b-cell failure and diabetes (44). Song et al.
reported that the inactivation of YY1, an important regulator of
metabolic homeostasis, induced mitochondrial dysfunction and led
to diabetes in mouse models (45). Therefore, an associative
mechanism links mitochondrial dysfunction and T2DM
development. In accordance with these findings, we show that
SFG greatly alleviated abnormal mitochondrial functions,
evidenced by the increased mitochondrial respiratory chain genes
Frontiers in Endocrinology | www.frontiersin.org 10
and proteins expression and ATP levels compared with the H2O2-
treated MIN6 cells. In addition, the mitochondria are both the
main sites of production and the main targets of ROS (30). As b-
cells have unusually low antioxidant defense gene expression, they
are particularly susceptible to cell damage induced by oxidative
stress (30). By measuring ROS and antioxidant SOD levels, we
show that SFG suppressed ROS production and increased SOD
levels in H2O2-treated MIN6 cells, indicating that SFG reverses
mitochondrial dysfunction by clearing intracellular ROS in H2O2-
induced b-cell failure.

The best-studied Sirtuin protein family member, SIRT1 is a key
molecule in bioenergy metabolism regulation. SIRT1 controls
PGC1-a levels by deacetylating PGC1-a . PGC1-a is
transcriptional co-activators that regulate activity of transcription
factors including Nrf2 and Tfam and is known to play a crucial role
in mitochondrial function (46). An increasing amount of evidence
implicates PGC1-a as an important mediator of b-cell function.
The expression of PGC1-a in b-cells is induced by extracellular
signals including facilitators of GSIS, such as glucagon-like peptide-
1(GLP-1) and cAMP, and stressors that impair b-cell function such
as streptozotocin, glucocorticoids, obesity, cold exposure, and
B

A

FIGURE 6 | SFG counteracts the H2O2-induced negative effect on the PGC1-a signaling pathway in MIN6 cells. (A) Sirt1, Pgc1a, Tfam, and Nrf2 gene expression
(n=3). *P < 0.05 versus control; #P < 0.05 versus H2O2-only group. (B) Western blot of SIRT1, PGC1-a, Tfam, and Nrf2 (n=3). GAPDH was used as a loading
control. Densitometric analysis of the Western blot bands were shown. *P < 0.05 versus control; #P < 0.05 versus H2O2-only group.
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glucolipotoxicity (47–50). The pancreatic islets from T2DMpatients
have reduced PGC1A mRNA expression, which is associated with
decreased insulin secretion (51). Moreover, silencing PGC1A leads
to reduced insulin secretion in diabetic animals (51). Given the
characterization of PGC1-a as critical regulators of mitochondrial
function, we speculate that SFG may regulate the effects of SIRT1–
PGC1-a signaling on b-cell function by alleviating mitochondrial
dysfunction. In our study, H2O2 significantly decreased the gene
and protein expression of SIRT1 and PGC1-a and the downstream
of transcription factors such as Nrf2 and Tfam, while SFG treatment
reversed this effect. These data show that the anti-mitochondrial
dysfunction effect of SFG onMIN6 cells might be mediated through
SIRT1–PGC1-a signaling pathway activation.

In conclusion, our results demonstrate that SFG protects b-cells
against H2O2-induced cell failure possibly by attenuating
mitochondrial dysfunction via SIRT1–PGC1-a signaling pathway
activation. This finding could provide amechanistic basis for SFG as
a potential therapeutic strategy for protecting pancreatic b-cells.
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