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Purpose: To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and
compare them with those observed in the albino rat.
Methods: BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to
180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed
by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-
mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and
protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™
tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population,
respectively.
Results: Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the
dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was
observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered
gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at
first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein
kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis.
Conclusions: In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together
with compensatory morphological/molecular changes, allow an important restoration of the retinal function.

The rodent retina is widely used to investigate retinal
diseases, as well as the response of central nervous system
neurons to injury. Light-induced retinal damage
(phototoxicity) selectively brings about photoreceptor cell
death. Thus, this model is useful for studying the potential
mechanisms underlying photoreceptor death and the
subsequent retinal degeneration processes [1,2], since it
mimics the photoreceptor degeneration that forms the main
characteristic of human diseases such as retinitis pigmentosa
or age-related macular degeneration [3,4].

In albino and pigmented rats, our group has shown that
phototoxicity initially causes vascular leakage in an “arciform
area” located in the mid-dorsal retina. Photoreceptor death
that is at least in part apoptotic commences in this area first,
before spreading with time to the rest of the retina. Secondary
to photoreceptor degeneration, the inner retina undergoes
degenerative changes that end in the death of retinal ganglion
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cells (RGCs) [5,6]. In addition, the electroretinographic
(ERG) response is abolished permanently in albino rats [5].

The ERG test analyzes the functionality of the different
neuronal populations of the retina. The a-wave is due mainly
to photoreceptor activity, while the b-wave is due to the
activity of second- and third-order retinal neurons [7,8].
Recent studies have documented that in different animals,
including rodents, the scotopic threshold response (STR, a
third ERG wave with a positive and negative component)
reflects the activity of the innermost retinal cells, mainly
RGCs and amacrine cells [9-15]. In rodent models of light-
induced damage to the retina, ERG is used mainly to study the
functionality of photoreceptors or bipolar cells [16]. However,
there is a report describing an impairment of the STR wave in
the rat retina after phototoxic insult [17] that provides
electrophysiological corroboration of our previous work
documenting morphological alterations and neuronal death in
the inner rat retina after phototoxicity [5,6].

Our group has also shown that axonal alterations and
RGC death occur in mice and rats suffering inherited
photoreceptor degeneration [6,18-22]. These animals have
been widely used as models for human photoreceptor diseases
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[2,23-25]. Because we noticed in our earlier work that there
were obvious differences in RGC degeneration between rats
and mice with inherited retinal degeneration, and because we
already know the degenerative events taking place in the RGC
layer of the albino/pigmented rat retina after light exposure
(ALE) [5,6], we have now investigated the effects of
phototoxicity on the inner retina of the albino BALB/c mouse
to compare it with the rat model.

In particular, in this study we have analyzed: i) the
temporal and spatial loss of photoreceptors; ii) whether their
death is apoptotic; iii) the effect of phototoxicity on vascular
leakage; iv) whether phototoxicity induces loss of RGCs; v)
the function of the inner and outer retina (by analyzing the
STR and a- and b-waves, respectively); and finally; vi) the
expression pattern and levels of two proteins associated with
the mechanisms that generate ERG responses. This latter
experiment allowed us to assess the possible compensatory
changes that have taken place in the retina after phototoxicity.

METHODS
Animal handling: Two-month-old female BALB/cAnNHsd
albino mice from Harlan (Barcelona, Spain) were used. All
animals were treated according to our institutional guidelines,
the European Union regulations, and the Association for
Research in Vision and Ophthalmology Guidelines for the use
of animals in research.

Before light exposure, the animals were reared in cages
containing four animals, fed ad libitum, and kept in a 12h:12h
light-dark cycle under controlled temperature (22–24 °C) and
humidity in the viverium of the University of Murcia. Light
intensity within the cages oscillated between 5 and 50 lx.

Animals were studied at 1 (n=8), 3 (n=8), 7 (n=16), 14
(n=12), 30 (n=13), 90 (n=10), or 180 (n=10) days ALE. The
ERG responses obtained from groups processed 30 days or
earlier ALE were compared to their baseline responses
recorded before light exposure. The ERG responses from
groups processed 90 or 180 days ALE were compared to those
obtained from age-matched control animals to take into
account the effect of age on retinal function.

For all manipulations and experimental procedures
(except light exposure), the animals were anesthetized with
an intraperitoneal injection of a mixture of ketamine (70 mg/
kg Ketolar®, Pfizer, Alcobendas, Madrid, Spain) and
xylazine (10 mg/kg Rompun®, Bayer, Kiel, Germany) in
0.1 ml of saline.
Light exposure: Before light exposure, left pupil mydriasis
was induced by topical application of a drop of 1% atropine
(Colirio de atropina 1%®; Alcon S.A., Barcelona, Spain). The
right eye was not dilated to be used for comparison.

Because the severity of retinal phototoxicity in rodents
depends on the time of the day when exposure starts (circadian
rhythm) and on the previous light exposure (rearing
conditions and dark adaptation period) [3,26-28], the

exposure always began between 10 and 12 AM and after 12
h of dark adaptation.

Animals were individually exposed to 24 h of continuous
fluorescent cold white light. Fluorescent bulbs were situated
in the ceiling right above the animal cages, which were
transparent. Light intensity within the cages was
3,000±100 lx. Mydriasis was inspected 12 h after the initiation
of light exposure, and when necessary, a second drop of
atropine was instilled in the left eye at this time.
Electroretinography: ERG recordings were performed as
previously described [10]. Briefly, animals were dark adapted
overnight before ERG recordings, and their manipulation was
performed under dim red light (λ>600 nm). Mice were
anesthetized and bilateral pupil mydriasis was induced by
topical application of a drop of 1% tropicamide (Colirio  de
tropicamida 1%®; Alcon, S.A., El Masnou, Barcelona, Spain)
in both eyes; the animals’ body temperature was kept at 37 °C
by placing them on top of a water heat pad (TP500 T/Pump;
Gaymar Industries, Orchard Park, NY). For light stimulation,
a Ganzfeld dome and multiple reflections of light generated
by light-emitting diodes were used. For high-intensity
illuminations, a single light-emitting diode placed close
(1 mm) to the eye was used. Light intensity was calibrated by
a dual-biosignal generator device specifically adapted for
ERG responses. ERG recordings were made using Burian-
Allen bipolar electrodes shaped as a corneal contact lens
(Hansen Labs, Coralville, IA). The electrical signals
generated in the retina were amplified (×1,000) and filtered
(band pass from 1 Hz to 1,000 Hz) with a commercial
amplifier (Digitimer Ltd., Letchworth Garden City, UK). The
recorded signals were digitized (Power Lab; ADInstruments
Pty. Ltd., Chalgrove, UK) and displayed on a personal
computer. ERG recordings were taken simultaneously from
both eyes. Light stimuli were calibrated before each
experiment to assure identical recording parameters for both
eyes. The retina was stimulated using light intensities ranging
between 10−5 and 10−4 cd·s·m−2 for the STR, 10−4 and 10−2

cd·s·m−2 for the response mediated by rods, and between
10−2 and 102 cd·s·m−2 for the mixed response (response
mediated by rods and cones). The animals were then light
adapted for 5 min and a maximum intensity stimulus (102

cd·s·m−2) was used to obtain the photopic response (mediated
by cones). For each light stimulus, a series of ERG responses
was averaged and the interval between light flashes was
adjusted to allow response recovery between stimuli. After
each session, tobramycin ointment (Tobrex®; Alcon, S.A., El
Masnou, Barcelona, Spain) was applied on both corneas to
prevent corneal desiccation during recovery from anesthesia.
Recording analysis was performed using the normalization
criteria established by the International Society for Clinical
Electrophysiology of Vision.
Horseradish peroxidase injection: vascular leakage: Four
control animals and various experimental animals that were
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processed 1 (n=4), 3 (n=4), 7 (n=4), 14 (n=4), and 30 (n=4)
days ALE received, 10 min before processing, an injection in
the inferior cava vein of 0.1 ml of horseradish peroxidase
(100 μg/μl diluted in saline; HRP; type I, MW 44 kDa, Sigma
P 8125, Steimheim, Germany).
Fluoro-Gold application: retinal ganglion cell tracing: In
four control animals and various experimental animals that
were processed 3 (n=8) and 6 months (n=4) ALE, Fluoro-Gold
(FG) was applied to both superior colliculi 7 days before
processing, following the techniques already described [29,
30]. Briefly, animals were anesthetized, the mid-brain was
exposed and, after removing the pia mater overlying the
superior colliculi, a piece of sponge (Spongostan Film,
Ferronsan, Denmark) soaked in 3% FG diluted in 10%
dimethyl sulfoxide-saline (Sigma Aldrich, Madrid, Spain)
was applied over the surface of both superior colliculi. FG is
incorporated to the axon terminals and retrogradely
transported to the retina where it accumulates in the RGC
somas.
Tissue processing: Animals were sacrificed with an
intraperitoneal lethal dose (0.4–0.5 ml) of 20% sodium
pentobarbital (Dolethal®; Vetoquinol S.A., Lure, France).
The eyes were enucleated and processed to obtain either
retinal whole mounts or cross sections.
Whole mounts: Horseradish peroxidase–injected animals.
Eyes were enucleated and immersed for 1 h in 4%
paraformaldehyde in 0.1M PBS (pH 7.2–7.4). Later, the
retinas were dissected as whole mounts by making four radial
cuts in the superior, inferior, temporal, and nasal retina. To
maintain their orientation, the deepest cut was made in the
superior retina. The retinas were then postfixed for 1 h in the
same fixative solution, rinsed in PBS, reacted for HRP
demonstration using a modified Hanker-Yates reaction [31]
to visualize the retinal vasculature [5,6,18,20,32], rinsed, and
mounted on gelatin-coated slides, vitreal side up, with a small
quantity of a solution of 50% glycerol in PBS.

Fluoro-Gold-traced animals. Animals were first perfused
through the left ventricle with saline and subsequently with
4% paraformaldehyde at 4 °C. The eyes were enucleated and
processed in the same manner as the eyes of the HRP-injected
animals. The whole mounts were immediately mounted as
before, and observed and photographed with a fluorescence
microscope (Axioscop 2 Plus; Zeiss, Jena, Germany).
Cross sections: Retinal cross sections were obtained from
control (n=5) and experimental animals processed 1 (n=5), 3
(n=8), 7 (n=5), 14 (n=4), 30 (n=7), 90 (n=6), or 180 (n=5) days
ALE. After perfusion, as above, the eyes were enucleated and
the superior portion of the sclera and the superior rectus
muscle marked with china ink to maintain their orientation.
The cornea and lens were removed and the eyecups were
postfixed for 48 h in the same fixative, dehydrated through
alcohols and 1-butanol, and embedded in paraffin. Three-
micron-thick cross sections were obtained in a rotational

microtome (Microm HM-340-E; Microm Laborgerate
GmbH, Walldorf, Germany) and mounted on slides coated
with 0.01% poly-L-lysine (Sigma-Aldrich, St. Louis, MO).
Only the sections containing the optic nerve head were kept
and stained with hematoxylin and eosin, or processed for TdT-
mediated dUTP nick-end labeling (TUNEL) or
immunohistofluorescence.
Hematoxylin and eosin staining: A series of sections (4–6 per
animal) were deparaffinized, rehydrated, stained with
Hansen’s hematoxylin and eosin, and mounted with DePex
(BDH Laboratory Supplies, Poole, UK).
TdT-mediated dUTP nick-end labeling: Some sections (4–6
per animal) were used to detect apoptotic nuclei using the
TUNEL method. TUNEL assay was performed according to
the manufacturer’s protocol (FragEL™ DNA Fragmentation
Detection Kit, Qiagen, Merck Bio, Nottingham, UK) with
slight modifications as follows: Biotin-labeled DNA was
detected by 2 h incubation at room temperature with avidin-
tetra-methyl-rhodamine isothiocyanate (TRITC; Sigma-
Aldrich, Madrid, Spain) diluted 1:500 in PBS containing 0.1%
Triton. After washing, slides were mounted with antifading
medium containing 4',6-diamidino-2-phenylindole (DAPI;
VectaShield Mounting Medium with DAPI, Vector, Atom,
Alicante, Spain) to counterstain all retinal nuclei.
Immunohistofluorescence: Additional sections (4–6 per
animal) were washed in PBS, immersed in citrate buffer (pH
6.0), and heated for 10 min in a microwave for antigen
retrieval. They were then cooled at room temperature for 20
min, washed in PBS, and processed for
immunohistofluorescence. In brief, the sections were
incubated overnight at 4 °C with either mouse anti–protein
kinase Cα (PKCα; 1:250; Santa Cruz Biotechnology,
Heidelberg, Germany) or mouse anti-synaptophysin  (1:250;
Sigma-Aldrich, Madrid, Spain) diluted in blocking buffer
(0.5% TritonX-100 and 10% normal goat serum in PBS).
Secondary detection was performed using Alexa Fluor-488
goat anti-mouse   or    Alexa    Fluor-568    goat    anti--mouse
(Molecular Probes, Invitrogen, Barcelona, Spain), each
diluted 1:500 in PBS–0.5% Triton. Finally, all sections were
thoroughly washed in PBS and mounted with a small amount
of antifading medium (Vectashield® Mounting Medium;
Vector; Atom, Alicante, Spain). Negative controls were
obtained by the suppression of primary antibodies.
Image analysis: Retinas were observed and photographed
with a light/fluorescence microscope (Axioscop 2 Plus; Zeiss)
equipped with different fluorescence filters, a digital high-
resolution camera (ProgResTM c10; Jenoptic, Jena, Germany),
and a motorized stage (ProScanTM H128; Prior Scientific
Instruments Ltd., Cambridge, UK) connected to an image
analysis system (Image-Pro Plus 5.1 for Windows®; Media
Cybernetics, Silver Spring, MD) with an automatic frame-
grabber device (Scope-Pro 5.0 for Windows®; Media
Cybernetics). Individual frames were taken from areas of
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interest in some cross sections. Photomontages of whole
mounted retinas or ocular cross sections were also obtained.
These images were used for qualitative or quantitative
analysis, and in some cases (see below) were automatically
analyzed.

Hematoxylin and eosin–stained cross sections were
qualitatively analyzed. In addition, the thickness of the outer
nuclear layer (ONL) was quantified in these sections by
counting the number of nuclei rows at eight equidistant retinal
locations (four dorsal and four ventral), taking the optic nerve
as reference (location 0). This analysis was performed in the
right and left retinas of three control and three experimental
animals processed at different times ALE. Three retinal cross
sections were quantified per retina.

Using two different fluorescence filters, TUNEL and
DAPI signals were acquired from the same representative
regions of the peripapillary retina. Gross numbers of TUNEL-
labeled nuclei were qualitatively analyzed in these
photographs. To obtain composites of these photographs,
TUNEL images were coupled using the “dissolve” option of
the Adobe® Photoshop® (Adobe Systems Inc., San Jose, CA)
CS3 software. This option gives an artificial signal, and thus
the TUNEL red fluorescence is enhanced.
Automated quantification of Fluoro-Gold-traced retinal
ganglion cells in whole mounts: Photomontages of FG-traced
retinal whole mounts were generally composed of 140
individual rectangular images (0.627 mm2 each). In each
frame, RGCs were automatically counted to obtain a total
number of RGCs per retina using previously published
methods [33]. Briefly, we used Image-Pro® Plus (version 5.1
for Windows™; Media Cybernetics Inc., Bethesda, MD)
macro language to apply a sequence of filters and
transformations to each image to clarify cell limits and to
separate individual cells for automatic cell counting. Each
frame was also divided into 64 rectangular areas in which the
density of FG-traced RGCs was calculated, color-coded, and
graphically represented to obtain an isodensity map for each
retina, using methods that have been previously described
[33]. Briefly, we developed a specific subroutine using Image-
Pro® Plus macro language in which every retinal frame was
divided into 64 equally-sized rectangular areas of interest
(AOI). In each AOI, the RGC number was obtained and the
cell density was calculated. RGC densities per AOI were
exported to a spreadsheet (Microsoft Office Excel 2003;
Microsoft Corporation, Redmond, WA) and finally, data were
represented as filled contour plots using a graphic software
(Sigmaplot® 9.0; Systat Software Inc., Richmond, CA).
Automatic measurement of fluorescence in cross sections:
Measurement of fluorescence was performed in the retinal
cross sections processed for immunohistofluorescence. All
images were acquired using a fluorescence microscope (20×;
ProgRes™ c10; Jenoptic) with a motorized stage (ProScan™
H128; Prior Scientific Instruments Ltd.) connected to an

image analysis system (Image-Pro Plus 5.1 for Windows®;
Media Cybernetics) with an automatic frame-grabber device
(Scope-Pro 5.0 for Windows®; Media Cybernetics). Only one
photomontage of one whole cross section spanning the optic
nerve was automatically analyzed per animal and time point
using a specific subroutine developed for this purpose. In
brief, we used the Image-Pro Plus 5.1 for Windows® macro
language to apply a sequence of actions and filters to obtain
the fluorescent area, maximum and minimum intensity values,
average, and standard deviation.

In the first step, the image was converted to 16-bit
grayscale, where 0 represents black color (no fluorescence)
and 65.535 (2^16) represents white (maximum fluorescence).
Then, the contour of the section was drawn on the whole-
mount image, and a new image containing the selection and a
clear background was created. In the second step, a line was
drawn manually in the border between the inner nuclear layer
(INL) and the outer plexiform layer (OPL) to separate the
external retina (up to the OPL) and internal retina (down to
the INL). The contrast of the external retina was inverted,
maintaining the contrast of the inner retina untouched to
enable a separate layer study. In a third step, 20 equidistant
points were automatically dotted along the retinal section
(reference point 0 in the optic nerve, 10 dorsal, and 10 ventral).
These dots occupied the center of 20 round areas of interest,
in which fluorescence density was measured automatically,
both in the outer and inner retina. Finally, measurements were
exported to a Microsoft Office Excel 2003, (Microsoft
Corporation, Redmond, WA) worksheet.

Statistical analyses: Numeric data were fed into Microsoft®
Office Excel 2003 worksheets and exported and analyzed
using SigmaStat® 3.1 for Windows® (Systat Software, Inc.,
Richmond, CA). Descriptive statistics were calculated for
each group and different tests were used for comparison
between groups. Differences were considered significant
when p≤0.05.

Electroretinographic analysis: To measure the ERG waves
and the implicit times, the International Society for Clinical
Electrophysiology of Vision criteria were used. The scotopic
threshold response (STR) was analyzed for each stimulus; the
positive STR (pSTR) was measured from baseline to the “hill”
of the positive deflection, approximately 110 ms from the
flash onset, and the negative STR (nSTR) was measured from
baseline to first “valley” after the pSTR, approximately
220 ms from the flash onset. The paired t test was used to
compare the ERG responses in the same group of animals
before and after light exposure. The Mann–Whitney and
Kruskal–Wallis tests were used to compare the ERG
parameters between groups of animals.

Analysis of the retinal ganglion cell population: The Mann–
Whitney, Kruskal–Wallis, and Student t test were used to
compare the numbers of RGCs between groups of animals.
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Fluorescence intensity analysis for protein kinase C alpha
and synaptophysin: The Kruskal–Wallis test was used to
compare fluorescence intensity between groups of animals.

RESULTS
Photoreceptor loss after light exposure:

Hematoxylin and eosin–stained sections—In control
animals, the ONL was 9–12 nuclei thick in the peripapillary
central retina and 6–8 nuclei thick in the peripheral retina. The
INL was 4–5 nuclei thick everywhere in the retina (Figure 1
and Figure 2A,B).

After light exposure, there was a decrease in the thickness
of the outer segment photoreceptor layer (OSPL) and the ONL
(Figure 1 and Figure 2C-L) at all the survival intervals, with
more severe thinning observed for the longer survival

intervals. Although the thickness of the OPL decreased
proportionally with the thickness of the ONL, the thickness of
the INL did not decrease throughout the period of study. The
dorsal retina was more severely affected than the ventral retina
at all survival intervals and the most peripheral retina did not
seem to be affected (Figure 1, Figure 2, and Figure 3). The
region of the dorsal retina most severely affected was situated
approximately 400 microns from the optic disc (Figure 3). In
many of those eyes processed during the first month ALE, we
observed an accumulation of subretinal photoreceptor debris
in this dorsal region at the time of dissection. There were no
differences between the left dilated eyes and the right
nondilated eyes at any survival interval, which was also
confirmed by the ERG analysis (see below). Therefore, we

Figure 1. Temporal loss of photoreceptors after light exposure in hematoxylin and eosin–stained retinal cross sections. Graph showing the
number of nuclei rows (±standard deviation [SD]) present in the outer nuclear layer (ONL) of six control and six experimental retinas (three
right and three left retinas from three animals) at different times after light exposure (ALE) in eight equidistant retinal locations (four dorsal,
four ventral). The animals analyzed were chosen randomly from the control and the experimental animals that had been processed to obtain
hematoxylin and eosin–stained cross sections. The distance from the optic disc to the retinal location analyzed is shown in the x-axis.
Photoreceptor loss was more severe in the dorsal than in the ventral retina. Photoreceptor loss in the dorsal retina was significant at 1 day ALE
at all retinal locations (Mann–Whitney test, p<0.001), except at 3.6 mm, where this loss was significant only from 3 days ALE (p<0.001).
Photoreceptor loss in the ventral retina was significant at 1 day ALE only at the 0.9 and 1.8 mm locations (p<0.001 and p=0.002, respectively),
and at the 2.7 and 3.6 distances, loss was significant from days 3 and 7 ALE, respectively (p<0.001). Photoreceptor loss did not seem to
progress from 3 months on (there were no significant differences between the numbers of photoreceptors found 3 or 6 months ALE at any
retinal location).
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Figure 2. Time course of retinal degeneration after light exposure (ALE). Haematoxylin/eosin stained retinal cross sections from the dorsal
(left column) and the ventral (right column) central retina. A, B: control animals; C-L: experimental retinas from animals processed at
increasing times ALE. C, D: 1 day ALE; E, F: 7 days ALE; G, H: 30 days ALE; I, J: 90 days ALE and K, L: 180 days ALE. Abbreviations:
RGCL: retinal ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer,
OSPL: outer segment of photoreceptors layer. Asterisks mark the outer nuclear layer and the arrows point to the outer segments of
photoreceptors. Bar=100 μm.
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concluded that pupil dilation did not have an influence on the
adverse effects of light on the BALB/c mouse retina.

Photoreceptor death is apoptotic—TUNEL-positive
nuclei (Figure 4) were observed only in the ONL of the central
but not the peripheral retina. Analyzed qualitatively, the
number of apoptotic nuclei were similar in the right and left
eyes, but varied depending on the region of the retina analyzed
and the survival period. There were more TUNEL-positive
nuclei at early times ALE (1 and 3 days), and these were found
mainly in the dorsal retina in the area of maximal cell death
(Figure 4C,E,G). At 7 days ALE, there still were some
apoptotic nuclei (Figure 4G-H). However, and in spite of the
progressing loss of photoreceptors documented in the
hematoxylin and eosin–stained sections, no positive TUNEL
nuclei were found at longer periods ALE (Figure 4I-J).
Phototoxicity-induced vascular leakage: We have
documented recently that in the rat, light exposure induces
vascular leakage in an arciform area located in the dorsal
retina. Vascular leakage occurs during the first week and first

month ALE in albino and pigmented rats, respectively [5,6].
Importantly, this arciform area of vascular leakage is where
the highest sensitivity to light was observed. To document
whether phototoxicity also caused vascular leakage in mice,
HRP was intravenously injected in control (Figure 5A) and
photoexposed mice (Figure 5B-D) and the retinas processed
for HRP. These data demonstrated that in mice, there does not
appear to be vascular leakage after light exposure, at least with
the experimental conditions and times ALE studied here.

Retinal function: electroretinographic responses: The
baseline ERG responses obtained before light exposure were
normal and similar in both eyes in all the animals studied. The
same animals were recorded prior and ALE in the groups of
animals processed for up to 30 days ALE, while age-matched
animals were used as control animals in the groups processed
90 and 180 days ALE to account for any possible aging effects.
The scotopic ERG responses of the photoexposed animals
varied depending on the survival interval, the wave, and the
stimuli, but were similar in both right and left (dilated) eyes

Figure 3. Light damage is more severe in the dorsal retina. Hematoxylin and eosin–stained sagittal cross section of a left eye processed 14
days ALE. The superior rectus muscle (black arrow) and the optic nerve (gray arrow) are observed. The ellipse shows the region most affected
by phototoxicity, situated in the dorsal retina at approximately 400 microns from the optic disc. The insert shows a higher magnification of
this region, in which the thickness of the outer segments of the photoreceptor layer (white arrow) and the outer nuclear layer (ONL; asterisk)
are very much reduced. D: dorsal, V: ventral.
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Figure 4. Phototoxicity induces apoptotic photoreceptor death. Merged images (Adobe® Photoshop® CS3, “dissolve” option) showing the
TdT-mediated dUTP nick-end labeling (TUNEL)-positive (red) and 4',6-diamidino-2-phenylindole (DAPI)-counterstained (blue) nuclei in
retinal cross sections from the dorsal (left column) and ventral (right column) central retinas. A, B: control animals; C-J: experimental animals
processed at increasing times ALE. C, D: 1 day; E, F: 3 days; G, H: 7 days and I, J: 14 days. TUNEL positive nuclei are observed in the ONL
(mainly in the dorsal retina) of the experimental animals processed 1, 3 and 7 days ALE, but not thereafter. Abbreviations: RGCL: retinal
ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, OSPL: outer
segment of photoreceptors layer. Bar=100 μm.
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(Figure 6 and Figure 7). On the other hand, the photopic
responses were diminished but varied greatly between
animals and thus were not conclusive (data not shown).

The STR is the ERG wave that reflects the functionality
of the inner retina (Figure 6, three first rows; Figure 7A,C).

One day ALE, the pSTR and nSTR were reduced to
approximately 35% of the values obtained before light
exposure (baseline), and this reduction was statistically
significant (paired t test, p<0.05; Figure 7C). Three days ALE,
the pSTR and nSTR had recovered compared to 1 day ALE,

Figure 5. In mice, phototoxicity does not induce vascular leakage. Retinal whole mounts of the left retinas showing the retinal vessels. These
animals had received an intravenous horseradish peroxidase (HRP) injection before processing and their retinas were processed for HRP
demonstration (Hanker-Yates method). A: control mouse, B-D: photoexposed mice processed at increasing times ALE. B: 1 day, C: 7 days,
D: 30 days ALE. Although in some cases a few areas of discrete HRP leakage around the vessels due to retinal damage during dissection are
observed, a diffuse HRP staining, indicative of vascular leakage, was never detected. Abbreviations: S: superior, I: inferior, N: nasal, T:
temporal.
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but only to approximately 65% and 78% of their baseline
values,     respectively      (Figure      7A , C).      The     absolute
values of pSTR were significantly smaller than the baseline
records (paired t test, p<0.05; Figure 6C), while the values of
the nSTR were significantly smaller for only one of the three
stimuli studied (the −4.02 log light unit stimulus; Figure 7A).
Seven days ALE, the recovery of the pSTR and nSTR
continued, reaching approximately 80% and 90% of the
baseline values, respectively (Figure 7C). This reduction was
still significant (paired t test, p<0.05) for the pSTR for all the
stimuli studied, but for the nSTR this was only significant for
the −4.12 log light unit stimulus (Figure 7A). From 14 until
180 days ALE, the STR waves were not significantly different
from control recordings (baseline or age-matched controls;
Student’s t test, p>0.05) or from animals processed at earlier
times ALE (Kruskal–Wallis, p>0.05; Figure 7A,C).

The a- and b- waves of the ERG reflect the functionality
of the photoreceptors and the bipolar and/or Müller cells,
respectively (Figure 6, five last rows; Figure 7B,D). One day
ALE, there was a reduction of the a- and b-waves (paired t
test, p<0.05) to approximately 40% of baseline values (Figure
7D). Three days ALE, both waves recovered compared with
the previous time point, but still were significantly lower than

the baseline values (70%, paired t test, p<0.05; Figure 7D). At
seven days ALE, their amplitudes continued to be
significantly reduced (paired t test, p<0.05), although they had
recovered to 65% (a-wave) and 90%, (b-wave) of their
baseline amplitudes (Figure 7B,D). Fourteen days ALE, the
a- and b-waves were reduced to approximately 65% and 80%
of their baseline values. This reduction was significant
compared to baseline (paired t test, p<0.05), but not compared
to 3 or 7 days ALE in the case of the a-wave or to 7 days ALE
in the case of the b-wave (Kruskal–Wallis, p>0.05; Figure
7D). Thirty days ALE, the amplitudes of the a- and b-waves
were still reduced to approximately to 65% and 80%, and these
reductions were statistically significant compared to controls
(paired t test, p<0.05), although not significantly different
from those observed 14 days ALE (Kruskal–Wallis, p>0.05;
Figure 7D). Ninety and 180 days ALE, the a-wave was still
maintained at 70% of control values (paired t test, p<0.05 at
90 days, p<0.001 at 180 days), while the b-wave had
recovered to 90% of controls. This value was not different
from that observed from 7 to 30 days ALE (Figure 7D). At
these time points, the reduction of the b-wave was
significantly smaller only for the most intense flash stimulus
(Student’s t test, p≤0.05; Figure 7B).

Figure 6. Changes in the electroretinogram responses after light exposure. Electroretinographic (ERG) responses recorded from the left eyes
of control animals before light exposure (red lines) and experimental animals 1, 3, 7, 30, or 180 days after light exposure (ALE; black lines).
The three first rows correspond with the scotopic threshold response (STR) waves, while the rest correspond with the a- and b-waves. For
convenience, the responses recorded in control animals before light exposure have been superimposed over the responses recorded in
experimental animals. For details on control animals, see text.
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Figure 7. Quantification of the electroretinographic responses after light exposure. A: Mean amplitudes of the positive scotopic threshold
response (pSTR; circles) and negative STR (nSTR; triangles; ±standard error of the mean [SEM]) obtained using different light stimuli from
control (open circles and triangles) and experimental animals (closed circles and triangles) at the different periods studied: 1 (n=8), 3 (n=8),
7 (n=16), 14 (n=12), 30 (n=13), 90 (n=10), and 180 days (n=10) after light exposure (ALE). The STR waves are affected by light exposure,
but recover almost completely by 14 days ALE. B: Mean amplitudes of the a- (circles) and b- (triangles) waves (±SEM) obtained using different
light stimuli from control (open circles and triangles) and experimental animals (closed circles and triangles) at the different periods studied
(same as in A). The a- and b- waves are affected by light exposure, and while the a-wave is reduced at all times points, at 90 and 180 days
ALE the b- wave is similar to control values, except for the highest intensity stimulus (2.03 log). C, D: Percentage of electroretinographic
(ERG) waves considered 100% of their control values at the different analyzed time points C: pSTR (black bars) and nSTR (gray bars) waves.
D: a- (black bars) and b- (gray bars) waves. Asterisks: statistically significant compared to control values (Kruskal–Wallis test, p≤0.05)
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Figure 8. Changes in the expression level of protein kinase C alpha (PKCα) and synaptophysin after light exposure (ALE). Retinal cross
sections reacted with antibodies to anti-PKCα and anti-synaptophysin. A-D: control animals, B, E, G, I: animals processed at 1 day ALE,
C, F, H, J: animals processed 180 days ALE. B, C: PKCα signal, magnified in G, H. E, F: synaptophysin signal, magnified in I, J. Compared
to control retinas, there is a decrease in the expression of these two proteins 1 day ALE and an increase 180 days ALE. K-L: Graphs showing
the relative levels of fluorescent signal per labeled area of PKCα (K) and synaptophysin (L) in control and experimental retinas ALE. Asterisks:
both  indexes  were  statistically  significant  compared to control. # INL (K)  and OPL (L)  index was  statistically significant  compared to

 control,  § IPL (K and L) index was  statistically  significant  compared to  control  (Kruskal-Wallis  test p≤0.05).  Signal  intensity  level  is
  expressed in  arbitrary units, where 0 would   be no  fluorescence  (black) and 65,335 (6×10   )   would be the maximum  fluorescence (white). 
  See methods for further explanations.  Abbreviations: IPL: inner  plexiform layer. INL:  inner nuclear layer.  OPL: outer  plexiform  layer.

   Bar=100 µm. 
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In conclusion, our data indicate that phototoxicity causes
a transient functional impairment of the inner retina, because
after a significant decrease during the first 7 days ALE, the
STR recovers, regaining its baseline values at 14 days.
Photoreceptor functionality is permanently affected, as the a-
wave impairment lasts until 180 days ALE, although it
showed some recovery during the period of the study. Bipolar
and/or Müller cells do not regain full functionality because,
even though the b-wave improves almost to control values, at
90 and 180 days ALE the response to the brightest stimulus is
still affected (Figure 6 and Figure 7).
Compensatory changes: protein kinase C α and
synaptophysin expression levels after light exposure: Because
our functional data indicated a partial recovery of the a-wave,
an almost complete recovery of the b-wave in the first 3
months ALE, and a complete recovery of the STR waves in
the first 14 days, we speculated that there could be
compensatory retinal changes to account for the functional
recovery. To assess this possibility, we studied the expression
pattern and levels of two proteins: PKCα, a protein kinase
associated with bipolar cells, and synaptophysin, an integral
membrane protein expressed in the presynaptic vesicles [34].

In control retinas, PKCα is expressed in the inner
plexiform layer (IPL) and the INL (Figure 8A). Quantification
of the intensity of fluorescence per area (Figure 8K) showed
that this expression is around 3.6±0.3 (×104) and 2.9±0.3
(±104) arbitrary units for the INL and IPL, respectively.
Synaptophysin is expressed in the OPL and IPL (Figure 8D),
with a fluorescence intensity of 1.3±0.2 (×104) and 1.6±0.2
(×104) arbitrary units, respectively (Figure 8L).

One day ALE, the PKCα signal decreases in both layers
below control values (INL: 0.9±0.09 [×104]; IPL: 1.6±0.13
[×104] arbitrary units; Figure 8B,G,K). From   this   time
forward, PKCα expression recovers gradually, and by 90 days
ALE in the IPL and 180 days ALE in the INL, reaches values
similar to those found in control animals (Kruskal–Wallis,
p>0.05). In the IPL, the PKCα signal at 180 days is
significantly higher than in control retinas (5.7±0.49 [×104]
arbitrary units, Kruskal–Wallis, p<0.05; Figure 8C,H,K).

The behavior of synaptophysin follows a similar trend.
One day ALE, its signal diminishes below control values in
the IPL (0.36±0.04 [×104]) and OPL (0.66± 0.08 [×104])
(Kruskal–Wallis, p<0.05; Figure 8E,I,L). In the OPL its signal
is kept at the same lower levels up to day 14 ALE, and
thereafter its expression augments until reaching normal
values at day 180 ALE (Kruskal–Wallis, p>0.05; Figure 8L).
In the IPL, however, after reaching its lowest level at day 14
ALE, the synaptophysin signal continuously increases and by
day 180 ALE, its value is significantly higher than in control
animals (3.9±0.3 [×104] arbitrary units, Kruskal–Wallis,
p<0.05; Figure 8F,J,L).
Retinal ganglion cell population and spatial distribution: In
albino rats, phototoxicity induces a delayed death of RGCs,

which affects the whole retinal surface, although there are
specific sectors devoid of RGCs. To analyze whether there is
also RGC death in albino mice, we automatically quantified
FG-labeled RGCs and assessed their spatial distribution. The
mean number±standard deviation (SD) of FG-traced RGCs in
control animals was 42,477±3,953 cells (Figure 9 and Figure
10A). RGCs were distributed in a nonhomogeneous way. An
area of maximal RGC density was observed above the optic
nerve horizontally from the nasal to the temporal retina
(Figure 10B), as described in normal mice [33,35].

The population of RGCs decreased slightly, with lower
numbers present at 180 than at 90 days ALE. However, this
diminution was not significant (Mann–Whitney, p>0.05;
Figure 9 and Figure 10C,E). In addition, the distribution of the
FG-traced RGCs in light-exposed mice was similar to the
distribution observed in control retinas (Figure 10D,F). In
conclusion, although the number of FG-traced RGCs
decreased with time, there was not a significant RGC loss
during the first 180 days ALE.

DISCUSSION
To our knowledge, this is the first study that analyzes in detail
the temporal course (from 1 to 180 days) of the functional,
anatomic, and compensatory changes taking place in the
mouse retina following a phototoxic insult. Anatomically,
photoreceptors die mostly in the dorsocentral retina, sparing
the periphery. Interestingly, the inner retina is not affected.
These data correlate with the ERG analysis, which showed
that the a-wave is permanently affected, while the b-wave
(which reflects bipolar cell function) recovers 90% of  its
amplitude and the STR waves (which correspond to RGC
function) recover their basal values. All these data, together
with the changes observed in PKCα and synaptophysin
expression, show that light exposure in mice results in retinal
remodeling changes that allow the functional recovery of the
inner retina.

We exposed mice to 24 h of cold white light (fluorescent
tubes situated in the ceiling above the cages) to broadly
reproduce the lighting conditions used in our previous
experiments in rats [5,6]. Because retinal phototoxicity
depends on light spectra and the shorter wavelengths usually
cause more severe damage [3,36,37], other authors have
preferentially used blue or green light to induce retinal damage
[38,39]. However, we used cold white fluorescent light
because this does not have a heating effect, contains all
wavelength spectra, and better reproduces the normal lighting
conditions of the animals in nature or captivity.

In this study, white light damage induced photoreceptor
degeneration by apoptosis and an initial loss of retinal
function. Photoreceptor death was quicker and more severe in
the dorsal than in the ventral retina, progressed during the time
of study (6 months), and in this species, did not reach the
retinal periphery. However, the functional impairment
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recovered partly with time and the degree of recovery was
found to depend on the neuronal population under study. Thus,
while the STR waves recovered completely and the b-wave
(bipolar cells) almost reached control values, indicating the
functional recovery of the inner retina, the a-wave (linked to
photoreceptor function and reflecting the outer retinal
function) was permanently impaired.

These data allow us to conclude that with the
experimental conditions used, there are differences in the
pattern of light-induced retinal degeneration between albino
rats and mice. It should be noted, however, that the duration
of light exposure differed between the two models studied.
The temporal course of the retinal degeneration in albino rats
exposed to the same light intensity (3,000 lx) but during 48 h
instead of 24 h, included the following events: i) complete
abolishment of the ERG waves from the first day ALE; ii)
rupture of the blood-retinal barrier and vascular leakage in an
area of the dorsal retina, the “arciform” area; iii) apoptotic
death of photoreceptors, commencing in the dorsal retina and
later spreading to the whole retinal surface; iv) changes in the
nerve fiber layer, marking the degeneration of RGCs; v) RGC
axons being dragged by displaced retinal vessels; and vi)
significant RGC loss by 6 months ALE [5]. In this study in
albino mice, we also observed apoptotic death of
photoreceptors starting in the dorsal retina. In this study,
however, photoreceptor loss was slower and less severe than
in the rat and did not affect the whole retina [5]. While it could
be that the difference is due to the shorter length of light
exposure, we do not think that this is the primary reason
because in previous experiments with albino mice, 48 h of
exposure caused devastating effects (data not shown) that

were much more severe than those observed in the rat. Thus,
given that 48 h of light exposure causes disproportionate
damage in albino mice than in albino rats, our data would
suggest that there are other differences in the phototoxic
response between these species. In addition, while in mice,
pupil dilation does not seem to affect the degree of the damage,
in rats, mydriasis quickens photoreceptor death during the first
month ALE [5]. Collectively, these differences very likely
reflect strain differences in light sensitivity [25,29].

Differences between rat and mouse responses to light
exposure have been previously shown, and are proposed to
have a genetic origin. For example, a sequence variant in the
RPE65 gene has been shown to determine the susceptibility
to light damage in different mouse strains [40-42], as well as
in mice with inherited retinal degeneration [43]. In rats,
however, light damage did not seem to correlate with RPE65
protein levels [44], and thus it has been proposed that there
are other genes involved in light toxicity that may
differentially influence the effect of the RPE65 gene across
species [45].

Another difference between albino rats and mice is that
in the latter, we did not observe vascular leakage. The retinal
degeneration triggered by light in rats ends with the death of
RGCs [5,6], which is significant by 6 months ALE [5], and
RGC loss is clearly quantifiable when photoreceptor
degeneration is complete. In mice, phototoxicity damage does
not appear to reach the RGCs, at least up to 6 months ALE.
This agrees with the ERG data, which show that the STR
waves recover completely by 14–30 days ALE (see below).
Nevertheless, because photoreceptor loss ALE in mice

Figure 9. Number of Fluoro-Gold-
traced retinal ganglion cells in control
and experimental retinas at 90 and 180
days after light exposure. The mean
numbers (±standard deviation [SD]) of
retinal ganglion cells (RGCs) in these
groups were 42,477±3,953,
41,015±3,045, and 40,566±4,146,
respectively. The numbers of RGCs
were not significantly different between
control (white bars) and experimental
retinas (black bars) at any time point
analyzed (Mann–Whitney, p>0.05), or
between the two groups of experimental
animals (t test, p>0.05) or the left and
right retinas counted in each group
analyzed (t test for control and 90 days
after light exposure [ALE] groups and
Mann–Whitney test for the 180 days
ALE group, p>0.05). n=number of
retinas.
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Figure 10. Distribution of retinal ganglion cells (RGCs) in control and experimental retinas. A, C, E: Retinal photomontages showing fluoro-
gold traced RGCs and B, D, F: their corresponding isodensity maps. A, B: control mouse; C, D: experimental retina processed 90 days ALE;
E, F: experimental retina processed 180 days ALE. Isodensity maps are filled contour plots generated by assigning to each one of the
subdivisions of each individual frame a color code according to its RGC density value within a color-scale range that goes from 0 (purple) to
5,700 or higher (red) RGCs/mm2 (B bottom). The numbers of RGCs in these representative retinas are shown at the bottom of A, C, E. Bar=1
mm.
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develops at a slower pace than in rats, it is possible that in
mice, RGC degeneration also occurs later.

The ERG a- and b- waves reflect photoreceptor
functionality and thus are severely affected after light-induced
retinal damage [17,46,47]. Depending on the severity of the
damage, the a- and b-waves may recover partially or
completely afterwards [48], with a decrease in the a-wave/b-
wave ratio that is also indicative of the features of retinal light
damage [17]. Comparable reductions of the a- and b-waves
have been shown to be the result of retinal pigment epithelial
(RPE) damage, while a smaller reduction of the b-wave is the
result of photoreceptor damage [49]. We have observed a
large decrease of both waves during the first days ALE that
coincides with the massive death of photoreceptors detected
at days 1 and 3 ALE. At later times ALE, the ratio between
both waves changes, the reduction of the b-wave being smaller
than that of the a-wave. Thus, it is likely that in our model
there is an impairment of the RPE during the first three days
ALE, which is followed by photoreceptor impairment at later
time points. Because the RPE cells will phagocyte the dead
photoreceptors [3,50,51], their impairment ALE may be
responsible for the subretinal photoreceptor debris
accumulation that is observed at early times ALE. Subretinal
deposits have been observed previously in animal models of
light toxicity [3,52], inherited retinal degeneration [53], and
human age related macular degeneration (ARMD) [54], and
thus might be common to all the diseases that present with
rapid photoreceptor death.

We observed a decrease of photoreceptor functionality
down to 60%–65% of the control values. Because the
dorsocentral retina is the only part of the retina that shows
photoreceptor loss, the surviving photoreceptors could be
responsible for the maintenance of 60%–65% of the a-wave
after damage. As there has been some photoreceptor loss,
however, there is a permanent decrease of the a-wave
amplitude. Sugawara et al. [17] studied the a-, b-, and STR
waves 7 days ALE in the albino rat, and were able to show
that there is a correlation between b- and STR wave
characteristics and the amount of photoreceptor loss. We have
observed an early impairment of the b- and STR waves that
may correlate with photoreceptor loss. Later, there is a
complete recovery of these waves that may occur because
photoreceptor loss in this animal model is not as severe, and
compensatory mechanisms can come into play. In accordance
with this, in albino rats, which suffer a much more severe
photoreceptor loss ALE, there is a complete and permanent
abolition of the ERG response [5].

In photoexposed albino mice, photoreceptor
degeneration peaks at days 1–3, decreasing by day 7, when
some TUNEL-positive nuclei are still found; by day 15, no
more apoptotic nuclei are detected. If the outer retina is
affected, the signal that is sent to the bipolar cells (the next
layer of neurons) would be also affected, and consequently,

the response of these second-order neurons would be
impaired. Two articles have studied the functional response
of inner retina ALE in rat [17] and mice [48] and have reported
that the functionality of the inner retina was less affected than
the outer one. This was demonstrated by analyzing the STR
at 7 days ALE [17] or by studying the oscillatory potentials at
different times ALE [48]. Richards et al. [48] observed
functional compensatory changes in mice in the inner layers
90 days ALE and in specific bipolar functionality at 180 days
after the insult. It is worth highlighting that this is the first
study wherein the STR responses of the albino mouse retina
are analyzed ALE. Here, we have demonstrated that the STR
is affected immediately ALE, but starts to recover slowly from
3 days and is close to baseline values by 14 days ALE. The
temporal differences in the recovery of the inner layers’
functionality observed between our data and those from
Richards et al. [48] might be explained by the different
methods used. Richards et al. [48] studied the oscillatory
potentials, which are probably generated by amacrine cells
[55], while we analyzed the STR, which is associated mainly
with RGCs [10,12,14,15]. Another explanation could be the
differences between the phototoxicity models, because
Richards et al. [48] exposed mice to an intensity of 150–175 lx
for 20 days, while our model was more acute.

The temporal impairment of the b- and STR waves
observed in this study suggests that there are retinal
compensatory changes ALE [48]. In this study, if light damage
had only affected photoreceptors, the STR should have been
fully recovered at 3 days ALE, because it is at this time point
that the a-wave is stabilized to the value that will be
maintained until the end of the experiment. However, the STR
was statistically recovered at 14 days ALE, and this may be
interpreted as an indication that the circuitry of other layers
that ends in the RGCs must undergo compensatory changes
that take longer to complete than those at the outer retinal
level. One of these compensatory changes could be
synaptogenesis or an amplification of the existent synapses,
as this has been observed in various studies that show
remodeling of the retina ALE or in other types of
photoreceptor degeneration [1,34,56-59]. Here, we also show
that PKCα and synaptophysin, proteins related to
compensatory mechanisms, are downregulated up to 90 days
ALE, recovering their normal values at 180 days ALE in the
INL and IPL and above control values in the IPL and OPL,
respectively. Because PKCα is a protein kinase associated
with retinal bipolar cells (with a key regulatory role in a
variety of cellular functions), and synaptophysin is an integral
membrane protein situated in the presynaptic vesicles that
contain neurotransmitters, the recovery of these proteins may
suggest an improvement of bipolar cell function. However,
the recovery of PKCα and synaptophysin was slow, and thus
did not match the fast recovery of the b-wave or the STR
waves; therefore, it may constitute only a part of a more
complex compensatory retinal mechanism that involves other
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retinal changes, such as, for example, the expression of
glutamate or other inhibitory receptors, as this has been shown
during retinal development [60,61] or degeneration [59,62,
63]. Future experiments will elucidate this possibility.

In conclusion, our data show that light exposure causes
photoreceptor death in albino mice, which is limited and
followed by the recovery of inner retinal function. We also
show that in this model (in contrast to our previous study in
adult rats), there is preservation of the architecture of the inner
retina, and that the RGCs do not seem to be affected. Taken
together, these findings suggest that when photoreceptor loss
is not too severe, the inner retina may only suffer limited
damage and can therefore recover its function. Although
further electron microscopy and/or behavioral studies may be
required to confirm this hypothesis, our present results give
hope to retinal therapies aimed to replace only the lost
photoreceptors, such as photoreceptor transplantation or
retinal prosthesis implantation.
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