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Abstract

Background: Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions.
Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry
into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein
has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct
evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.

Methodology and Principal Findings: To determine whether the Gas2 protein plays a role in cell division, we over-
expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-
binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but
not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can
arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at
the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in
cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using
a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demon-
strated that Gas2 bundled microtubules into higher-order structures.

Conclusion and Significance: Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that
Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.
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Introduction

Cytoskeletal dynamics are essential for many fundamental

cellular processes, including cell division, wound healing and cell

motility [1,2,3]. During cell division, for example, dramatic

rearrangements of the actin and microtubule cytoskeletons are

required in order for the cell to change morphology, segregate its

chromosomes and execute cytokinesis. The ability of the cytoskel-

eton to adapt to constant physiological changes is mediated, in part,

by actin and microtubule-binding proteins and cross-linking

proteins that regulate cytoskeleton dynamics. Many actin-microtu-

bule cross-linking proteins have been identified; however, their

functions and mechanisms of regulation remain unclear [4]. One

such potential cytoskeleton-interacting protein is the growth-arrest-

specific (Gas) 2 protein.

The Gas2 protein belongs to the growth-arrest-specific protein

family and is widely expressed in human tissues [5]. Although

Gas2 has a putative N-terminal actin-binding calponin homology

(CH) domain [6] and a C-terminal tubulin-binding Gas2 domain,

no direct evidence for Gas2-cytoskeleton interactions has been

reported. However, immunofluorescence studies demonstrated

that the full-length Gas2 co-localizes with filamentous actin

(F-actin) at the cell cortex and in stress fibers in growth-arrested

NIH 3T3 fibroblasts [6] and the Gas2 domain co-localize with

microtubules in COS-7 cells [7].

Although the majority of cells in an organism are quiescent, they

are able to re-enter the cell cycle and proliferate after stimulation

[8]. Several lines of evidences support a role for Gas2 in cell cycle

progression. First, the gas2 gene was originally identified in a genetic

screen of murine fibroblasts that were cultured under growth arrest

conditions [9]. Second, gas2 is down-regulated upon serum and

growth factor stimulation [6]. Furthermore, the Gas2 protein is

phosphorylated on a serine residue at the G0 to G1 transition

allowing quiescent G0 cells to re-enter the cell cycle [6]. However,

whether Gas2 plays a direct role in the mechanism of cell division

and whether this function is mediated by its cytoskeletal binding

properties are completely unknown.

In this study, Xenopus embryos and oocytes were used to study Gas2

functions in cell division. Xenopus embryo undergoes a time-regulated

synchronized cell division in the early stages of its development and

therefore is a useful in vivo model system for studying cell division. An

established Xenopus oocyte wound-induced contractile array assay,

which mimics cytokinesis, was used to study Gas2 interactions with

the cytoskeleton in vivo [10]. Furthermore, cytoskeleton co-sedimen-
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tation assays and electron microscopy were performed to study Gas2-

cytoskeletal interactions in vitro. Our results suggest that the Gas2

protein plays a role in cell division and that its function is mediated by

bundling microtubules.

Results

The Gas2 protein is conserved during evolution
Bioinformatics comparisons of the Gas2 protein sequences

among Homo sapiens (human) [O43903], Canis familiaris (Dog)

[F1PBV2], Mus musculus (house mouse) [P11862], Bos taurus

(Bovine) [A8E4Q5], Gallus gallus (Chicken) [F1NSM4] and Xenopus

tropicalis (Silurana tropicalis) [ENSXETP00000005555] reveal that

Gas2 is conserved during evolution (Fig. 1A and B), which suggests

that Gas2 has a conserved biological function. The Gas2 protein

contains two cytoskeletal binding domains: a putative actin-

binding calponin homology (CH) domain near its N-terminus

(Fig. 1C for mouse Gas2 [P11862] amino acids#: 36-158), and a

tubulin-binding Gas2 domain near its C-terminus (amino acids#:

201–274). There are two low complexity domains (amino acids#:

167–178 and 181–198) between the CH and Gas2 domains, and

the second low complexity domain contains 4 proline-serine (P-S)

repeats (amino acids#: 183–190 shown in the boxed region in its

sequence), which gives this region more structural flexibility. The

N-terminus GFP-tagged full-length mouse Gas2 protein [P11862]

and its CH and Gas2 domains were cloned to study their functions

in Xenopus laevis (Fig. 1C), and the protein expression in Xenopus

oocytes was verified by Western blot analysis (Fig. 1D).

Exogenous expression of the full-length Gas2 protein in
Xenopus embryos inhibits cell division

The Gas2 protein is up-regulated upon serum starvation in NIH

3T3 cells and it also results in cells arresting at G0 phase of cell

cycle [9]. Conversely, the Gas2 protein level is down-regulated

with serum and growth factor stimulation, allowing for cell cycle

progression [6]. These two observations imply a relationship

between cell cycle progression and the Gas2 protein level. To test

this hypothesis, Xenopus laevis embryos were used to investigate

whether the over-expression of the Gas2 protein could inhibit cell

division. The first cell division of Xenopus embryo occurs

approximately 90 minutes post-fertilization at room temperature,

and subsequent cell divisions occur at 30 minute intervals. Xenopus

embryos are relatively large, approximately 1 mm in diameter,

facilitating the microinjection of the Gas2 protein and the

observation of cell morphological changes.

The fertilized eggs were injected after they completed their first

cell division. One cell of the 2-cell stage embryo was microinjected

with either 25 ng bovine serum albumin (BSA) in phosphate

buffered saline (PBS) solution or the bacterial purified full-length

mouse Gas2 protein into the cytoplasm of a cell. The non-injected

cell of the 2-cell embryo acts as an internal homo-genomic

negative control (Fig. 2A). The BSA-injected embryos are shown

in Fig. 2B–D (Video S1) and Gas2-injected embryos are shown in

Fig. 2E–G9 (Video S2). BSA-injected embryos proceed through

normal cell division and the number of cells increased 2-fold every

30 minutes. However, cells that were injected with 25 ng Gas2

protein divided once and then arrested in subsequent cell divisions

while the non-injected control cells of the same embryo divided

normally (Fig. 2H smaller cells on the left). In Gas2-injected cells,

cell division arrested after approximately 30 minutes, consistent

with the time required for Gas2 to diffuse in the cytoplasm of the

injected cell (approximately 3.5 mm/second under the injection

needle pressure). Statistical analysis of the microinjection exper-

iments showed that 7.264.2% BSA-injected embryos arrested in

cell division, likely as a result of unsuccessful fertilization and/or

microinjection damage to the embryos. In contrast, 79.265.5%

Gas2-injected embryos arrested in cell division, which was a

significantly higher percentage than the BSA control group

(Fig. 2K). The non-100% arresting effect by Gas2 in cell division

is thought to be caused by the Gas2 protein clotting in the

injection needle. BSA-injected embryos succeed in developing into

tadpoles, but Gas2-injected embryos all died within 24 hours,

presumably due to the interference of the arrested cells with the

embryo development. In 32-cell embryos, the cortical microtu-

bules were significantly longer in the Gas2-injected arrested cells

than non-injected control cells (Fig. 2I). The two large Gas2

arrested cells were connected together with microtubules (arrow

in J). Two-cell stage Xenopus embryos were microinjected with

increasing amounts of the Gas2 protein to investigate the

minimum amount of Gas2 required to arrest their cell division.

Dosage dependent analysis was done by microinjecting the same

volume (5 nl) of a serial dilution of Gas2 protein, and observing

the cell division arresting phenotype. The calculated lethal dose

50% (LD50) was 5.5 ng or 31 mM for one cell of the 2-cell stage

Xenopus embryo (Fig. 2L).

Gas2 co-localizes with microtubules in arrested cells and
over-expression of either the full-length Gas2 protein or
the Gas2 domain alone results in multinucleated cells

To further investigate the mechanism of how Gas2 arrested

Xenopus embryo cell division, cryo-confocal microscopy was

performed with Gas2-injected embryos that were fixed and

stained for Gas2, tubulin and DNA by DAPI (Fig. 3A–D). Gas2-

injected cells that failed division were larger than non-injected

control dividing cell. Gas2 localizes to the cortex in arrested cells

and co-localizes with cortical microtubules (arrow in A). The

Gas2-injected cell has no DAPI staining presumably due to the

fact that the injected cell arrested in the early embryo

developmental stage when the cell is relatively large; therefore, it

is difficult to maintain the integrity of all cellular organelles (such

as the cell nucleus) during cryo-cutting (Fig. 3C shows no DAPI

staining in the large arrested cell). The same observations were

obtained with repeated experiments.

To examine the exogenous Gas2 during cell division, GFP

control, full-length GFP-Gas2, GFP-CH domain and GFP-Gas2

domain constructs were injected into the cytoplasm of one cell of

the 2-cell stage embryos, and embryos were fixed at either Stage

10 or 11. Cryo-confocal microscopy was performed to examine

post-injected embryos. Embryos expressing the GFP control

(Fig. 3E–H) and GFP-CH domain (Fig. 3I–L) are approximately

the same size as neighboring non-expressing control cells, which is

an indication of normal cell division. Some GFP and GFP-CH

domain expressing cells can be recognized in anaphase of mitosis

on the basis of their microtubule morphology (arrows in F and J)

and their separating chromosomes (arrows in G and K). However,

cells expressing both full-length GFP-Gas2 (Fig. 3M–P) and GFP-

Gas2 domain (Fig. 3Q–T) are larger than control cells, and have

multiple nuclei, indicative of a failure in cell division (arrows in O

and S). The full-length GFP-Gas2 (Fig. 3M) and GFP-Gas2

domain (Fig. 3Q) localize to the cell cortex and co-localize with

microtubule spindles.

Gas2 stabilizes microtubules via its Gas2 domain in
Xenopus oocytes

To test the hypothesis that Gas2 regulated microtubule

dynamics/stability leading to cell division arrest, Xenopus laevis

oocyte wound healing contractile array assay, which mimics

Gas2 Inhibits Cell Division
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Figure 1. The Gas2 protein is conserved during evolution. (A) Phylogenetic tree of Gas2 protein. The phylogenetic relationship was derived by
ClustalW program. The numbers represent the evolutionary distances. (B) Multiple sequences alignment of Gas2 amino acid sequences from different
species. The alignment was generated using ClustalW. ‘‘*’’ indicates identical amino acids in all sequences in the alignment; ‘‘:’’ indicates that
conserved substitutions have been observed; and ‘‘.’’ indicates that semi-conserved substitutions have been observed. (C) The mouse Gas2 protein
[P11862] domain structure and amino acid sequence. N-terminal full-length GFP-Gas2, GFP-CH domain and GFP-Gas2 domain constructs were used in
this study. The domains colors are matched with relative amino acid colored sequences. The boxed region indicates the 4 P-S repeats location, which
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cytokinesis, was used to study Gas2 interactions with the

cytoskeleton in vivo [10]. The relatively large size of Xenopus Stage

VI oocytes (approximately 1 mm in diameter) provides a useful

tool for studying cytoskeleton dynamics under the cell surface [11].

The nuclei of Stage VI oocytes were injected with either full-length

GFP-Gas2, GFP-CH domain or GFP-Gas2 domain constructs,

and incubated for 48 hours to allow for protein expression. A

micro-capillary glass tube pulled needle was used to wound the

animal poles of the oocytes. After wounding, the oocytes were

allowed to recover for approximately 5 minutes in oocyte ringer-2

(OR-2) solution, and were then fixed and stained for F-actin and

tubulin (Fig. 4A). The non-injected control oocyte forms a single

actin contractile ring around the wound; and microtubules radially

distribute around the wound (Fig. 4B–D). In oocytes pre-treated

for one hour with 10 mM taxol to stabilize microtubules, actin

assembles into two separate rings surrounding the wound (Fig. 4E–

G). The internal ring is composed of the contractile F-actin, while

the outer ring is formed by de novo actin polymerization (arrows in

E) [2]. Please see the discussion for further details.

Oocytes expressing full-length GFP-Gas2 have a similar

phenotype to taxol-treated oocytes. The GFP-Gas2 rings (arrows

in 4H) co-localize with the two separate actin rings (arrows in 4I)

during wound healing (Fig. 4H–K). This observation implies that

Gas2 mimics taxol-treatment and therefore may stabilize micro-

tubules. When full-length GFP-Gas2-expressing oocytes were pre-

treated with 20 mM nocodazole to destabilize microtubules for one

hour prior to wounding, GFP-Gas2 co-localized with a single actin

ring instead of double rings (Fig. 4L–O); therefore, microtubule

stabilization by Gas2 was sensitive to nocodazole treatment. Gas2

has an actin-binding CH domain near its N-terminus, which may

explain the observed co-localization of GFP-Gas2 and actin rings.

Oocytes expressing GFP-CH domain have a single actin ring

during wound healing (Fig. 4P–S). This result is also observed in

the control (Fig. 4B–D) and nocodazole-treated oocytes expressing

full-length GFP-Gas2 (Fig. 4L–O). GFP-CH domain co-localizes

with the actin ring since it is the actin-binding domain of Gas2.

Oocytes expressing the GFP-Gas2 domain alone form double

actin rings (arrows in 4U), and these double actin rings are similar

to the taxol pre-treated (Fig. 4E) and full-length GFP-Gas2

expressing oocytes (Fig. 4I). GFP-Gas2 domain forms a ring-like

structure and radially distributes around the wound (Fig. 4T), but

it does not overlap with either actin ring. This series of

experiments showed that the tubulin-binding Gas2 domain alone

is sufficient for eliciting the double actin rings phenotype,

suggesting that Gas2 binds microtubules via its Gas2 domain

and stabilizes them during oocyte wound healing.

The Gas2 protein co-sediments with F-actin and
microtubules

Cytoskeleton co-sedimentation assays were performed to

investigate the cytoskeletal binding properties of Gas2 in vitro.

Full-length GFP-Gas2, GFP-CH domain and GFP-Gas2 domain

constructs were injected into Xenopus oocytes and the expressed

proteins were used for co-sedimentation assays (Fig. 5A). As

expected, the CH domain co-sedimented with polymerized F-actin

in the pellet (Fig. 5B). When F-actin was de-polymerized into actin

monomers with latrunculin B, the CH domain was detected in the

supernate (Fig. 5B: SL and PL). Similarly, the tubulin binding Gas2

domain co-sedimented with microtubules in the pellet (Fig. 5C).

When microtubules were de-polymerized with nocodazole, more

Gas2 domain was found in the supernate compared with taxol-

treated samples (Fig. 5C: SN and PN vs. ST and PT). Full-length

Gas2 co-sedimented with both F-actin and microtubules (Fig. 5D).

However, when F-actin was de-polymerized with latrunculin B,

Gas2 remained in the supernate (Fig. 5D: SL and PL). It was

surprising to note that Gas2 did not co-sediment with microtubules

in the pellet in the latrunculin B treated sample.

The full-length Gas2 protein bundles microtubules
in vitro

Gas2 interactions with F-actin and microtubules were studied at

high resolution by electron microscopy (EM). The phalloidin-

stabilized polymerized F-actin alone appears as non-organized

long filaments (Fig. 6A). In the presence of the purified full-length

Gas2 protein, F-actin remains as non-organized long filaments

(Fig. 6B). Therefore, the full-length Gas2 does not possess F-actin

organizing properties in vitro. Similarly, the taxol-stabilized

polymerized microtubules appear as randomly non-organized

long cables (Fig. 6C). However, in the presence of the purified full-

length Gas2 protein, microtubules appear as distinct, well-

organized bundles (Fig. 6D). Therefore, the full-length Gas2

protein has microtubule-organizing ability. Since the Gas2 protein

has only one tubulin-binding domain, we believe Gas2 must form

a protein complex in order to bundle microtubules. When F-actin,

microtubules and full-length Gas2 are mixed together, Gas2

bundles microtubules, but F-actin still appears as non-organized

long filaments (Fig. 6E). Similar experimental results were

obtained by mixing actin or tubulin with purified full-length

Gas2 protein at the beginning of their polymerization.

Discussion

The data reported here identify Gas2 as a microtubule-bundl-

ing protein that inhibits cell division in Xenopus oocytes. Over-

expression of the full-length Gas2 protein arrested Xenopus embryo

cell division and resulted in multinucleated cells, indicating a

failure of cytokinesis. A similar phenotype was observed upon the

over-expression of the tubulin-binding Gas2 domain alone, but not

when the actin-binding CH domain was over-expressed. We

propose, therefore, that Gas2 inhibits cell division via its C-

terminal tubulin-binding Gas2 domain.

The cytoskeleton plays a key role in cell division and cytokinesis.

To investigate the cytoskeleton-binding activity of Gas2, we used a

cytoskeleton co-sedimentation assay and showed that the Gas2

protein indeed co-sedimented with both F-actin and microtubules

in vitro (Fig. 5D). Interestingly, when F-actin was de-polymerized,

full-length Gas2 did not sediment with microtubule polymers in

the pellet as would be expected considering the binding interaction

between Gas2 and microtubules (Fig. 5D: SL and PL). One

explanation is the presence of a flexible linker region connecting

the CH and Gas2 domains (Fig. 1C). This structural flexibility

could permit masking of the Gas2 domain by the N-terminal

region of the protein and would inhibit the microtubule-binding

activity of full-length Gas2. Another possibility is that, due to the

high affinity of Gas2 for F-actin, the full-length Gas2 protein binds

to small, incompletely de-polymerized F-actin filaments that are

too light to be pelleted and thus remain in the supernate.

Dynamic microtubules that are able to switch between

polymerizing and de-polymerizing states are a necessary require-

ment for cell division [12]. Using electron microscopy we have

gives this region more structural flexibility. (D) Western blot analysis of GFP Gas2 constructs expression. GFP = 27 kDa, full-length GFP-Gas2 = 62 kDa,
GFP-CH domain = 49 kDa and GFP-Gas2 domain = 44 kDa.
doi:10.1371/journal.pone.0024698.g001
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shown that Gas2 bundles purified microtubules into higher-order

structures in vitro, indicating a direct Gas2-microtubule interaction

(Fig. 6D). The full-length Gas2 microtubule-bundling ability is

preserved when F-actin is present in the same sample, but no F-

actin-microtubule cross-linking has been observed in vitro (Fig. 6E).

We hypothesize that Gas2-microtubule bundling ability inhibits

microtubule dynamics and thereby causes cell division arrest and

cytokinesis failure in Xenopus embryos.

To investigate the mechanism of Gas2-induced cell division

arrest and cytokinesis failure, we used a wound-induced contractile

array assay in Xenopus oocytes, which is also a model of cytokinesis

[10]. This assay permitted us to study Gas2-cytoskeletal interac-

tions during microtubule-dependent actomyosin array formation

and contraction in vivo [10]. Oocyte wound healing and cytokinesis

are highly dynamic processes that require coordination between

the actin and microtubule cytoskeletons [13]. We have shown that

Gas2 possesses both actin- and tubulin-binding properties in vitro;

therefore, we propose that Gas2 functions as a structural cross-

linking protein between these two cytoskeleton systems. When

oocytes are treated with taxol to stabilize microtubules prior to

wounding, an abnormal double ring of actin forms around the

wound border [2]. Staining with phalloidin for F-actin showed

that the internal ring is composed of contractile F-actin, while

staining for actin monomers showed that the outer ring is formed

by de novo actin polymerization [2,13]. Interestingly, we found that

when full-length Gas2 or its Gas2 domain was over-expressed,

oocytes developed the abnormal double actin ring phenotype upon

wounding. Thus, Gas2 mimics the taxol-treatment phenotype,

suggesting that Gas2 has microtubule-stabilizing activity. The

Gas2-induced double rings can be rescued by de-polymerizing

microtubules with nocodazole (Fig. 4L–O) perhaps because the

Gas2 protein binds dynamically to microtubules. Full-length Gas2

co-localizes with the actin rings, presumably by binding actin via

its CH domain (Fig. 4H–K). It is interesting to note that the Gas2

domain alone also forms a ring structure and localizes between

two actin rings during the wound healing (Fig. 4T–W), but it does

not overlap with either actin ring since it has no actin-binding

domain.

In summary, we have demonstrated that Gas2 can inhibit cell

division in Xenopus embryos. We have also provided evidences that

Gas2 has the ability to change microtubule dynamics and bundle

microtubules in vitro. We believe that the microtubule-bundling

ability of Gas2 causes Xenopus embryo cell division arrest and the

formation of the abnormal double actin rings in oocyte wound

healing.

Drosophila contains a spectraplakin family protein, Short stop

(Shot), that modulates microtubule dynamics via its Gas2 domains

[14]. Röper and Brown showed that Shot has a Gas2 domain at its

C-terminus and is required for organizing microtubules in a

branched membrane structure called the fusome in meiotic cysts.

They demonstrated that, in the absence of Shot, microtubules did

not assemble, and oocytes failed to become specified. The authors

postulated that Shot elicits this effect via its Gas2 domain

influencing microtubule dynamics. Similarly, Pines et al. showed

that a Gas2-like protein, Pickled eggs (Pigs) co-localizes with both

F-actin and microtubules in the giant epithelial cells in Drosophila

[15]. Pigs is postulated to facilitate cytoskeleton rearrangements by

binding and stabilizing F-actin and microtubules. Consistent with

our data, it is likely that Gas2 has conserved cytoskeleton-binding

properties in different species. Although a recent paper by Stroud

et al., showed that the GAR domain (the other name of Gas2

domain) of Gas2-like 3 protein is not essential for its localization to

microtubules and does not directly interact with microtubules in

vitro, this may be due to the large C-terminus domain which is

present in Gas2-like 3 protein, but not in the Gas2 protein [16].

This domain may directly impact on protein functions including

the ability of Gas2-like 3 to bind microtubules.

Several studies have provided evidence suggesting that Gas2

activity is mis-regulated in cancer. Human gas2 is located on the

short arm of Chromosome 11 and genetic rearrangements or

deletions of this region are frequently found in tumors and

sporadic human cancers [17,18,19,20]. The analysis of oncogene

transformed cells v-fos, v-myc, v-ras and v-src showed that the

expression of Gas2 fails to increase in response to serum starvation

[6]. Furthermore, proteomic studies have identified Gas2 in

normal rat liver cells, but not in the rat liver tumors [21]. Finally,

translation initiation factor eIF4E binding proteins have been

shown to control p53-dependent senescence by regulating Gas2

translation [22]. In light of this, a better understanding of the role

of Gas2 functions in cell division and how Gas2 is regulated will

aid the development of improved cancer therapies.

Materials and Methods

Experimental animals
Xenopus laevis frogs were bought from Nasco (Fort Atkinson, WI,

USA). The experiments were conducted by trained skilled

personnel and were approved by McGill University Animal Care

Committee (Protocol #: 4858 to C.A.M.).

Bioinformatics analysis
Homo sapiens (human) [O43903], Canis familiaris (Dog) [F1PBV2],

Mus musculus (house mouse) [P11862], Bos taurus (Bovine)

[A8E4Q5], Gallus gallus (Chicken) [F1NSM4] and Xenopus tropicalis

(Silurana tropicalis) [ENSXETP00000005555] Growth-arrest-

specific protein 2 (Gas2) amino acid sequences were obtained

from NCBI (http://www.ncbi.nlm.nih.gov), Uniprot (http://

www.uniprot.org/) and Ensembl (http://www.ensembl.org/

Xenopus_tropicalis) websites. They were compared the similarity

with ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.

Figure 2. Exogenous Gas2 inhibits cell division in Xenopus embryos. (A) The experimental flowchart and schematically represented results.
The darker side of the egg represents the animal pole and the lighter bottom side represents the vegetal pole. The 90 degree angle rotation views
show cell numbers in BSA-injected control vs. Gas2-injected embryos. (B–D) BSA-injected Xenopus embryos continue through normal cell divisions
(Video S1). (E–G) Gas2-injected embryo cells divide once, then arrest in subsequent cell divisions. The non-injected control cell of the Gas2-injected
embryo divides normally, and the cell number increases 2-fold every 30 minutes at room temperature (Video S2). The red circles in B and E indicate
the needle injection sites. Time was set to 0 at 8-cell stage for demonstration purposes. (G’) The rotation view of Fig. 2G embryo shows one of the
large arrested cells on the left. Bars, 0.3 mm. (H) Stereo microscopy examination of a Gas2-injected embryo at the 32-cell stage. The normal dividing
cells are on the left and the two large arrested cells are on the right. Bar, 0.3 mm. (I and J) Confocal microscopy analysis of post-injected embryo cells
with tubulin antibody staining. The white arrow in J indicates that the two large, arrested cells remain connected with microtubules. Bars, 20 mm.
(K) Statistical analysis of cell division rate in BSA- and Gas2-injected embryos. Only 7.264.2% of BSA-injected embryos arrest in cell division; however,
79.265.5% of Gas2-injected embryos arrest in cell division (n = 300 embryos and from 5 experiments, p,0.001). (L) Dosage dependent analysis of cell
division rate in Gas2-injected embryos. The calculated LD50 from the dosage dependent analysis graph is 5.5 ng or 31 mM for one cell of the 2-cell
stage Xenopus embryo. The x-axis of the graph is in logarithmic scale.
doi:10.1371/journal.pone.0024698.g002
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Figure 3. Over-expression of either the full-length Gas2 protein or the Gas2 domain alone arrests cell division in Xenopus embryos.
(A–D) The Gas2 protein injected cell is relatively larger than non-injected normal dividing cells. Gas2 localizes to the injected cell cortex (arrow in A)
and also co-localizes with microtubule network shown in yellow in the merged image D. Bar, 100 mm. (E–H) Cells expressing GFP alone and (I–L) GFP-
CH domain are similar in size to the neighboring non-expressing control cells. Cells in anaphase can be recognized by their microtubule morphology
(arrows in F and J) and separating chromosomes (arrows in G and K). Bars in E–H, 10 mm and bars in I–L, 20 mm. (M–P) Cells expressing full-length
GFP-Gas2 and (Q–T) GFP-Gas2 domain expressing cells are relatively larger than neighboring non-expressing cells and they also have multiple nuclei,
indicating a failure in cell division (arrows in O and S). Bars, 20 mm.
doi:10.1371/journal.pone.0024698.g003
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Figure 4. The expression of either full-length Gas2 protein or the Gas2 domain alone results in abnormal double actin rings at the
wound border. (A) The experimental flowchart and schematically represented results. Oocytes nuclei were injected with different GFP Gas2
constructs and incubated for 48 hours to allow for protein expression. The animal pole of an oocyte was then wounded, fixed and stained for F-actin
and tubulin. The wound site was excised and examined by confocal microscopy. (B–D) Oocyte wound healing control experiment. F-actin forms a
single ring and microtubules radially distribute around the wound. Bars, 5 mm. (E–G) Oocytes pre-treated with Taxol form abnormal double actin rings
(arrows in E) during wound healing. Bars, 10 mm. (H–K) Oocytes expressing the full-length GFP-Gas2 form double Gas2 rings (arrows in H), which co-
localize with double actin rings (arrows in I) during wound healing. Bars, 20 mm. (L–O) Oocytes expressing the full-length GFP-Gas2 and pre-treated
with nocodazole form a single Gas2 ring, which co-localizes with single actin ring during wound healing. Bars, 10 mm. (P-S) Oocytes expressing GFP-
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html). Phylogenetic tree was also derived by aligning the different

species’ amino acids with ClustalW. Gas2 domain information was

acquired from http://pfam.sanger.ac.uk/protein?acc = P11862.

Cloning
DNA constructs were generated by PCR and cloned into pCS2-

eGFP vector (a kind gift from Prof. Bill Bement, University of

Wisconsin-Madison, USA). The full-length Gas2 (cDNA clone

MGC:18565) was cloned with N-terminus GFP tag by using the

forward primer 59-ATGTGCACTGCCCTGA-39 and reverse

primer 59-TCATTTAATCTCCTTCTTAGCCTTG-39. Gas2

CH domain (with N-terminus GFP tag) was cloned with the

forward primer 59-TGCACTGCCCTGAGCC-39 and reverse

primer 59-TCATCCAGTACTCTTCTTTCCTGAAG-39; and

its Gas2 domain (with N-terminus GFP tag) was cloned with the

forward primer 59-AGGTATGGTGTGGAGCCTCCT-39 and

reverse primer 59-TCATTTAATCTCCTTCTTAGCCTTGT-

39. All clones were sequenced to ensure the sequence correctness.

Western blot
GFP tagged Gas2 constructs were injected into Xenopus oocytes

nuclei and oocytes were incubated for 48 hours to allow for

relative protein expression. The oocytes were then sonicated in

phosphate buffered saline (PBS: 137 mM NaCl, 2.7 mM

KCl, 10 mM Na2HPO4 and 2 mM KH2PO4 at pH 7.4) with

ultrasound sonicator, and samples were centrifuged at 30,000 g for

10 minutes at 4uC. Supernatants were collected for Western blot

analysis. Protein assays were performed using the BCA protein

assay kit (Thermo). Protein samples were run on a 12% SDS-

PAGE gel and transferred to 0.45 mm Trans-Blot nitrocellulose

paper (Bio-Rad), which was blocked with blotto buffer (5% non-fat

milk in PBS) after transferring. After washing in 0.1% Tween-20

(Fisher) in PBS (PBS-T), monoclonal mouse GFP antibodies

(Roche, Clone 7.1 and 13.1) were used at 1:3000 dilution in blotto

buffer incubated at room temperature for 2 hours. The non-

specific antibody binding was washed 3 times with PBS-T.

Primary antibodies were detected using goat anti-mouse IgG

antibodies conjugated to horse radish peroxidase (HRP) (Molec-

ular Probes) at 1:3000 dilution in PBS at room temperature for

1 hour, and followed by 3 times washing with PBS-T. Detection

was performed using the ECL method.

Protein expression and purification
Gas2 (cDNA clone MGC:18565) was cloned into pTrcHis2B

vector with 6X His tag at N-terminus using the forward primer 59-

ATGTGCACTGCCCTGA-39 and reverse primer 59-TTTAA-

TCTCCTTCTTAGCCTTG-39. Basically, transform pTrcHis-

2B-Gas2 construct into DH5a Escherichia coli to express full-length

Gas2 protein. Protein was collected with Probond nickel-chelating

resin (Invitrogen). The elution protein solution was kept in a

dialysis bag (Spectra/Pov molecularporous membrane tubing,

MWCO 12–14 kDa, Fisher 08-667B) in PBS at 4uC overnight to

remove imidazole. The protein sample was re-concentrated with

Microcon centrifugal filter devices (Millipore: YM-10), and then

was aliquoted into small volume and frozen in liquid nitrogen.

Samples were stored at 280uC for further use. The protein purity

was tested by Coomassie-stained SDS-PAGE, and no significant

additional bands were observed.

Xenopus laevis eggs collection and fertilization
Human chorionic gonadotropin (hCG) was injected into 3 adult

Xenopus females (1000 U/ml, 0.5 ml per frog) to induce ovulation.

Eggs were harvested in glass Petri dish by gently squeezing the

female. Eggs were fertilized by adding up a piece of a testis in the

Petri dish and swirling gently. Ninety minutes later, 40 ml of 2%

cysteine (Sigma) at pH 8.0 was added for 5 minutes to de-jelly

embryos. Cysteine was poured of and replaced with Marc’s

modified ringers (MMR: 100 mM NaCl, 2 mM KCl, 1 mM

MgCl2, 2 mM CaCl2 and 5 mM HEPES at pH 7.5). Embryos

were incubated at 16uC. They develop more rapidly at room

temperature.

Microinjection
Microinjection needles (10 ml Drummond microdispenser,

Drummond Scientific Company) were pulled by Flaming/Brown

micropipette puller (Model P-97, Sutter Instrument Company).

Five nl of 12 mg/ml bovine serum albumin (BSA) in PBS solution

or the same amount of purified full-length Gas2 protein in PBS

solution was injected into one cell of 2-cell stage Xenopus embryos.

Injections were performed using a Model PLI-100 Pico-Injector

(Harvard Apparatus).

Live imaging movies
The movies were recorded at a rate of 1 frame per minute with

Zeiss Axioskop 2 microscope. Zeiss AxioCam MRm color camera

and Plan-Neofluar 2.5X/0.075 N.A. objective lens were used. The

images were modified with Volocity version 5.3.0 software

(PerkinElmer) and played at 10 frames per second in Apple

QuickTime (*.mov) format.

Microinjection experiments results statistics tabulation
The post-injected embryos were examined for the arrested cell

division phenotype under a stereo microscope. Statistics results

were charted with Microsoft Office Excel software, and analysis

was performed using Student’s t-test.

Cyro sample preparation and immunofluorescence
One hundred pg each of GFP, full-length GFP-Gas2, GFP-CH

domain or GFP-Gas2 domain constructs were injected into one

cell of 2-cell stage embryos cytoplasm. The injected embryos were

incubated in MMR solution and developed until Stage 10 or 11

before cryo preparation. Embryos were fixed and embedded in

15%, then 25% fish gelatin (Norland). They were frozen on dry ice

before cutting. Ten mm thickness of cryo sections were cut in

220uC cyrotome (Leica), and collected on Superfrost plus slides

(Fisher). A polyclonal rabbit Gas2 antibody (against peptide 78–99

KLH conjugation, provided by Prof. Jacque Paiement at

University of Montreal) at 1:300 dilution, or a polyclonal rabbit

GFP antibody (Molecular Probes) at 1:200 dilution, and a

monoclonal alpha tubulin antibody (Sigma, DM1A) at 1:200

dilution were used. A goat-anti rabbit antibodies coupled to Alexa

Fluor 488 (Molecular Probes) at 1:200 dilution, and a goat-anti

mouse antibodies coupled to Alexa Fluor 546 (Molecular Probes)

at 1:200 dilution were used for the staining. Nuclei were stained

with DAPI (Molecular Probes) (0.5 g/ml) in PBS for 10 minutes.

The yolk auto-fluorescence was quenched with 0.2% Eriochrome

black (Sigma) in PBS for 10 minutes. Finally, the slides were

CH domain alone form a single actin ring during wound healing. Bar, 10 mm. (T-W) Oocytes expressing GFP-Gas2 domain alone form a single Gas2
domain ring, which localizes between the double actin rings (arrows in U) during wound healing. The GFP-Gas2 domain does not co-localize with
either actin ring. Bar, 10 mm.
doi:10.1371/journal.pone.0024698.g004
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Figure 5. The Gas2 protein co-sediments with F-actin and microtubules. (A) The experimental flowchart of the cytoskeleton co-
sedimentation assays. The samples were pre-treated with either 10 mM taxol, 20 mM nocodazole, 20 mM phalloidin, or 20 mM latrunculin B to study
the cytoskeletal binding properties of Gas2. The samples were incubated on ice for one hour to de-polymerize microtubules. Taxol was added
stepwise to a final concentration of 20 mM to polymerize tubulin into microtubules and samples were incubated at room temperature for one hour.
Samples were loaded on the top layer of 30% sucrose solution in tubulin stabilization buffer (TSB), then centrifuged at 100,000 g for 30 minutes at
room temperature. The pellets were re-suspended into the same volume as the supernate. Samples were run on SDS-PAGE for Western blot analysis.
(B) The GFP-CH domain co-sediments with F-actin in the pellet. When F-actin was de-polymerized into actin monomers with latrunculin B, the CH
domain was detected in the supernate (Fig. 5B: SL and PL). (C) The GFP-Gas2 domain co-sediments with microtubule in pellets. When microtubules
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mounted with ProLong Gold anti-fading reagent (Molecular

Probes) and covered with cover slips (Fisher: 12–545M) for

microscopy examination.

Xenopus laevis ooctyes collection and preparation
Oocytes were surgically removed from an anesthetized adult

Xenopus laevis female, as previously described [11] and stored at

16uC in oocyte ringer-2 solution (OR-2: 82.5 mM NaCl, 2.5 mM

KCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, 5 mM

HEPES at pH 7.4). Oocytes were treated with 0.2% collagenase

(Type 2) OR-2 solution with gentle rotation at room temperature

for 1 hour. Oocytes were washed after the treatment until the

brown color collagenase was removed. The washed oocytes were

kept at 16uC in OR-2 solution for at least 3 hours for recovery.

Healthy oocytes have uniform animal and vegetal hemispheres.

StageVI oocytes were manually chosen and de-folliculated with

Watchmaker’s forceps (Dumont #5) in a Petri dish containing

OR-2 solution. This step is critical for cortex wound healing

experiments.

Pharmacological perturbations and oocyte wounding
Oocytes were incubated in fresh 10 mM taxol (Sigma) or 20 mM

nocodazole (Calbiochem) OR-2 solution for 1 hour at 16uC. The

wounding experiments were performed in the same solutions.

Oocytes were placed in a Petri dish fitted with a nylon grid to

position the animal pole facing upwards. They were then wounded

in the animal pole with a microinjection needle (cut to outside with

a diameter of approximate 150 mm). Cells were incubated for

about 5 minutes in OR-2 solution for recovering before being

placed in fix solution.

Xenopus laevis embryos and oocytes
immunofluorescence

The protocol was the same as previously described [11]. Briefly,

embryos or wounded oocytes were fixed and incubated with Alexa

Fluor 568 phalloidin (6.6 mM, at 1:200 dilution) (Molecular

probes) and monoclonal alpha tubulin antibody (1:200 dilution)

(Sigma, DM1A). Samples were then re-probed with Alexa Fluor

568 phalloidin for F-actin and Alexa Fluor 647 goat anti-mouse

IgG antibody (1:200 dilution) (Molecular probes) for alpha tubulin.

Finally, samples were carefully placed in the center of a high

vacuum grease (Dow Corning Co.) mounted ring on a microscope

slide plain (Fisher), and covered with a microscope cover glass

#1.5 thickness (Fisher) for microscopy examination.

Confocal fluorescence microscopy
All confocal images were collected using Zeiss 510 LSM Meta

confocal microscope at Cell Imaging and Analysis Network at

McGill University. The samples were examined with Plan-

Neofluar 25X/0.8 N.A. Immersion Correction DIC or Plan-

Apochromat 63X/1.4 N.A. oil DIC objective lens. DAPI

(Molecular probes) staining was visualized with 405 nm blue

diode laser and band pass (BP) 420–480 filter; GFP signal was

visualized with 458 nm Ar ion laser and BP 505–530 filter; Alexa

Fluor 568 was visualized with 543 nm HeNe green laser and BP

560–615 filter; and Alexa Fluor 647 was visualized with 633 nm

HeNe red laser and long pass (LP) 650 filter. Z-sections of varying

depths were stacked into projection images with maximum

intensity to allow visualization of details.

Cytoskeleton co-sedimentation assays
The full-length GFP-Gas2, GFP-CH domain and GFP-Gas2

domain constructs were injected into Xenopus oocytes and oocytes

were incubated at 16uC for 48 hours to allow for relative proteins

expression. The expressing proteins were collected by sonication

were de-polymerized with nocodazole, more Gas2 domain was found in the supernate compared with taxol-treated samples (Fig. 5C: SN and PN vs. ST

and PT). (D) The full-length GFP-Gas2 co-sediments with both F-actin and microtubules. When F-actin is de-polymerized with latrunculin B, the full-
length Gas2 surprisingly remains in the supernate only. ST: Supernate of Taxol treatment, PT: Pellet of Taxol treatment; SN: Supernate of Nocodazole
treatment, PN: Pellet of Nocodazole treatment; SP: Supernate of Phalloidin treatment, PP: Pellet of Phalloidin treatment; SL: Supernate of Latrunculin B
treatment, and PL: Pellet of Latrunculin B treatment.
doi:10.1371/journal.pone.0024698.g005

Figure 6. The full-length Gas2 protein bundles microtubules
in vitro. (A) F-actin alone appears as non-organized long filaments. (B)
In the presence of Gas2, F-actin remains as non-organized long
filaments as in A. Bars, 200 nm. (C) Microtubules alone appear as long,
randomly distributed cables. (D) Microtubules bundle together when
Gas2 is present in the sample. Bars, 0.2 mm. (E) Gas2 bundles
microtubules, but does not organize F-actin when microtubules, F-
actin and Gas2 protein are mixed together. Bar, 200 nm. The order of
Gas2 addition relative to the microtubules or F-actin has no effect on
the observed results.
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and following by centrifugation. Only the cytosolic layers were

used for co-sedimentation assays. The samples were separately

pre-treated with 10 mM taxol (Sigma), 20 mM nocodazole

(Calbiochem); and 20 mM phalloidin (Calbiochem), and 20 mM

latrunculin B (Calbiochem) to investigate Gas2 cytoskeleton

binding properties. The mixture samples were incubated on ice

for 1 hour to de-polymerize microtubules, and then taxol was step

wisely added to the final concentration 20 mM to polymerize

tubulin into microtubules filaments at room temperature for one

hour. Samples were loaded on the top layer of 30% sucrose in

tubulin stabilization buffer (TSB: 1 mM EGTA, 5 mM MgCl2,

80 mM K-PIPES at pH 7.0), and then they were centrifuged at

100,000 g for 30 minutes at room temperature. The pellets were

diluted into equal volume as the supernatant samples. Samples

were run on 10% SDS-PAGE for Western blot analysis. The

following antibodies were used for the Western blot analysis: the

monoclonal mouse tubulin antibodies (Sigma, DM1A) were used

at 1:3000 dilution; the polyclonal rabbit actin antibodies

(Biomedical Technologies Inc. BT-560) were used at 1:3000

dilution; the monoclonal mouse GFP antibodies (Roche, Clone 7.1

and 13.1) were used at 1:3000 dilution. Primary antibodies were

detected using IgG antibodies conjugated to HRP (Molecular

Probes) at 1:3000 dilution by ECL method.

Electron microscopy
Purified actin (AKL99-A) and tubulin (TL238-A) were bought

from Cytoskeleton Inc. (Denver, CO.). Actin was first dissolved in

the general actin buffer (5 mM Tris-HCl at pH 8.0, 0.2 mM

CaCl2, 0.2 mM ATP), and then phalloidin (Calbiochem) was

added up to final concentration 20 mM to polymerize actin into F-

actin. Tubulin was first dissolved into general tubulin buffer

(80 mM PIPES at pH 6.9, 2 mM MgCl2, 0.5 mM EGTA, 1 mM

GTP), and then 20 mM final concentration taxol (Sigma) was used

to polymerize tubulin into microtubules. The purified full-length

Gas2 protein in PBS was mixed with F-actin or microtubules or

both for EM examination. A similar experiment was done by

adding the full-length Gas2 to actin or tubulin samples before their

polymerization.

For each EM sample, 5 ml protein sample was placed on a glow

discharged pre-carbon coated copper grid for 1 minute, and then

was replaced by 5 ml 1% uranyl acetate for 1 minute treatment.

Uranyl acetate was carefully removed and the treated grid was left

by air-dried. Samples were examined in an FEI Tecnai 12 electron

microscope, and digital images were taken by a Gatan 792 Bioscan

wide angle multiscan CCD camera.

Supporting Information

Video S1 BSA-injected Xenopus embryos cell division
time-lapse movie. The movie was recorded at 1 frame per

minute and plays at 10 frames per second.

(MOV)

Video S2 Gas2-injected Xenopus embryos cell division
time-lapse movie. The movie was recorded at 1 frame per

minute and plays at 10 frames per second.

(MOV)
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