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Abstract
Congenital diaphragmatic hernia is associated with pulmonary hypoplasia and respiratory

distress, which result in high mortality and morbidity. Although several transgenic mouse

models of lung hypoplasia exist, the role of miRNAs in this phenotype is incompletely char-

acterized. In this study, we assessed microRNA expression levels during the pseudogland-

ular to canalicular phase transition of normal human fetal lung development. At this critical

time, when the distal respiratory portion of the airways begins to form, microarray analysis

showed that the most significantly differentially expressed miRNA was miR-449a. Predic-

tion algorithms determined that N-myc is a target of miR-449a and identified the likely miR-

449a:N-myc binding sites, confirmed by luciferase assays and targeted mutagenesis. Func-

tional ex vivo knock-down in organ cultures of murine embryonic lungs, as well as in ovo
overexpression in avian embryonic lungs, suggested a role for miR-449a in distal epithelial

proliferation. Finally, miR-449a expression was found to be abnormal in rare pulmonary

specimens of human fetuses with Congenital Diaphragmatic Hernia in the pseudoglandular

or canalicular phase. This study confirms the conserved role of miR-449a for proper pulmo-

nary organogenesis, supporting the delicate balance between expansion of progenitor cells

and their terminal differentiation, and proposes the potential involvement of this miRNA in

human pulmonary hypoplasia.

PLOS ONE | DOI:10.1371/journal.pone.0149425 February 18, 2016 1 / 15

a11111

OPEN ACCESS

Citation: Sanford EL, Choy KW, Donahoe PK, Tracy
AA, Hila R, Loscertales M, et al. (2016) MiR-449a
Affects Epithelial Proliferation during the
Pseudoglandular and Canalicular Phases of Avian
and Mammal Lung Development. PLoS ONE 11(2):
e0149425. doi:10.1371/journal.pone.0149425

Editor: David Warburton, University of Southern
California, UNITED STATES

Received: June 15, 2015

Accepted: January 28, 2016

Published: February 18, 2016

Copyright: © 2016 Sanford et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The microarray data
discussed in this publication have been deposited in
NCBI's Gene Expression Omnibus and are
accessible through GEO Series accession number
GSE76921.

Funding: Funding was provided by National Institute
of Child Health and Human Development P01
HD068250-03 to P.K.D. (www.nichd.nih.gov). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149425&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149425&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149425&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nichd.nih.gov


Introduction
Abnormal lung development, often presenting at birth as functional respiratory distress, is a
prominent feature associated with Congenital Diaphragmatic Hernia (CDH) [1,2]. Anatomi-
cally and histologically, pulmonary embryology has been traditionally divided into five succes-
sive stages. In the first two, the embryonic and the pseudoglandular stages, the conducting
airways are formed. The later canalicular, saccular, and alveolar stages are characterized by epi-
thelial differentiation, increased vascularization, compaction of the mesenchyme, and matura-
tion of the air-blood interface in the alveoli [3–5]. At birth, the respiratory tree contains several
specialized epithelial cell types, organized along its proximo-distal axis; these include the cili-
ated, secretory, and neuroendocrine cells in the proximal bronchi, and type I/II pneumocytes
in the distal alveoli [3]. Key morphogenetic events are common between all vertebrates, despite
anatomical differences. In humans, the canalicular stage begins at 16 and ends at 24 weeks of
development. By week 20–22, type I and II alveolar cells have differentiated from their
progenitors.

Several key transcription factors and signaling pathways are known to regulate the transi-
tions in lung development. Comparatively little is known about the role of miRNAs, which are
small non-coding RNA molecules (21–24 nt) that regulate the expression of their target genes
post-transcriptionally. Most miRNAs are transcribed as primary microRNAs (pri-miRNAs),
which are processed by the Drosha complex into precursor miRNAs (pre-miRNAs) with hair-
pin structures, and finally cleaved by the RNase III enzyme Dicer. The mature miRNAs are
incorporated into nucleoprotein complexes called RNA-Induced Silencing Complexes (RISC),
which facilitate binding to the untranslated regions of mRNA transcripts with homologous
nucleotide sequences. Target mRNAs are thus rendered unstable and are degraded, or alterna-
tively their translation is blocked without degradation [6,7].

MiRNAs play important roles during early and late lung development. Previous studies
have profiled miRNA expression at various developmental stages in human and mouse lung
morphogenesis, suggesting a degree of evolutionary conservation of miRNA functions [8,9]. It
has been shown that early conditional downregulation of Dicer in mouse lung epithelium leads
to arrested branching and abnormal growth of the epithelial tubes [10]. Furthermore, mice
with deletion of the miRNA17~92 cluster die shortly after birth with pulmonary hypoplasia
and cardiac defects [11]; overexpression of this cluster produces a phenotype consisting of
hyperproliferation of lung epithelial cells with incomplete differentiation [12]. MiR-17 and let-
7 were previously found to be the most abundant miRNAs expressed early in the pseudogland-
ular and at the canalicular stage, respectively, during murine lung development [13]. The let-7
family of microRNAs controls epithelial proliferation and lung branching morphogenesis.
Their expression increases as a hallmark of transition from early epithelial branching to late
embryonic development, and reaches a maximum in the adult lungs [13,14].

CDH patients with severe lethal lung hypoplasia show morphological signs of arrested or
delayed branching morphogenesis in the pseudoglandular stage (5–17 weeks of human preg-
nancy, E9.5–16.6 days in mouse embryo) [15]. Additionally, impaired vascular development
has been observed which is characterized by an apparent premature differentiation of vascular
smooth muscle cells to their contractile phenotype [16,17]. These elements suggest that a mor-
phogenetic defect occurs relatively early during lung organogenesis [18]. We hypothesized a
defect of the expansion of the undifferentiated progenitor cells after the pseudoglandular stage
before reaching terminal differentiation during the canalicular stage (16–25 weeks of human
pregnancy, E16.6–17.4 days in mouse embryo, E15-17 of chick development) [19,20].

The purpose of this study was to characterize further which microRNAs are essential in the
pseudoglandular to canalicular transition, when the gas exchanging portion of the lung begins
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its formation from the bronchioles, and to relate the discovered miRNAs to disorders associ-
ated with severe lung hypoplasia. In fact, little is known about the genetic control of CDH lung
development in comparison to diaphragm formation [21,22]. MiR-449a was found to be highly
expressed at the canalicular stage compared to the pseudoglandular stage. We showed that its
inhibition increased epithelial differentiation while its overexpression resulted in marked pul-
monary hypoplasia, as seen in severe CDH. Furthermore, we found that miR-449a controlled
epithelial proliferation in the developing lung.

Materials and Methods

Human miRNAMicroarrays
Total RNA was obtained from two 9 week old fetal lung samples using TRIzol RNA Isolation
Reagents (Life Technologies, Carlsbad, CA) homogenized by successive passages in 18G and
25G needles, and from two 18–20 week pooled human male fetal lungs (Stratagene, La Jolla,
CA) (Cat. 540177, Lot. 0450170). Total cDNA was hybridized to Human miRNAMicroarrays
(V1 and V2, based on Sanger miRbase releases 9.1 and 10.1) (Agilent technologies, Santa
Clara, CA). Data analysis was performed using the Linear Models for Microarray Data (limma)
package in Bioconductor (www.bioconductor.org). The data discussed in this publication have
been deposited in NCBI's Gene Expression Omnibus [23] and are accessible through GEO
Series accession number GSE76921 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE76921). Human studies were approved by the Partners Institutional Review Board (IRB) at
the Massachusetts General Hospital (Protocols 2000-P-000372 and 2002-P-000083) and CREC
no. 2001.201 from the Joint CUHK-NTEC Cluster Clinical Research Ethics Committee.

Mouse and chick tissue collection
Lungs were harvested from inbred C57/B6 timed-pregnant mice (Charles River, Wilmington,
MA) and from timed, fertilized, white leghorn eggs (Spafas Inc, Voluntown, CT) maintained in
a humidified incubator (Kuhl Corp, Flemington, NJ) at 38°C. Mouse and chick embryos were
staged according to accepted criteria [24,25]. Animal studies were approved by the Center for
Comparative Medicine at the Massachusetts General Hospital Institutional Animal Care and
Use Committee (Protocol 2012-N-000025).

Organ Culture
Freshly dissected E16.5 lung 1–2 mm slices were placed in 24-mm Transwell permeable sup-
port plates (Corning Inc., Corning, NY) and incubated for two days in BGJB (Gibco | Life
Technologies, Carlsbad, CA) medium containing 0.2 mg/ml L-Ascorbic acid (Sigma-Aldrich,
St. Louis, MO), 50 U/ml penicillin and 50 U/ml streptomycin (Sigma-Aldrich, St. Louis, MO)
at 37°C in 5% CO2 [26]. Anti-miRNA-449a and scrambled (control) Peptide Nucleic Acids
(PNA) (Panagene, Daejeon, Korea) were transfected using Effectene Transfection Reagent
(Qiagen, Venlo, The Netherlands). Tissue samples were processed after four days.

In ovo viral transduction
A replication-competent avian specific retrovirus (RCAS; A coat) was engineered to express
the RCAS(A)-449a construct composed of the miR-449a murine premiR sequence flanked by
200 nucleotides, using established techniques, and grown and harvested in DF1 cells [27,28].
Embryos were injected, in ovo, at E2 (st11-15) in the right anterior-lateral region targeting the
pre-lung field, following a published fate map, with approximately 1μl of freshly defrosted
virus [29]. Injections were carried out under a Nikon SMZ800 dissection microscope, using a
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Hamilton syringe fitted with pulled glass micropipette needles [28]. Eggs were then sealed and
returned to the incubator until harvesting at E10, E13, E15, or E17. More than 15 dozen
embryos were injected with RCAS(A)-449a. Controls consisted of sham injections and RCAS
(A)-GFP-injected embryos.

Quantitative RT-PCR
Total RNA was extracted from pooled mouse (N = 6) and chick (N = 3) embryonic lungs using
TRIzol RNA Isolation Reagents (Life Technologies). RT-qPCRs were performed using iQ
SYBR Green Supermix (Bio-Rad Laboratories, Waltham, MA). In miRNA experiments, cDNA
was synthesized from 1ug of total RNA by miScript PCR Starter Kit (Qiagen, Venlo, The Neth-
erlands); real-time data were generated using miR-449a miScript Primer Assays and normal-
ized against snRNA RNU6B (RNU6-2) (Qiagen, Venlo, The Netherlands). In mRNA
experiments, cDNA was synthesized from 1ug of total RNA by SuperScript First-Strand Syn-
thesis System (Invitrogen | Life Technologies). Real-time data were generated with primers
designed using National Center for Biotechnology Information (NCBI) Primer-BLAST. Actb
was selected as the most stable normalizer determined by Biogazelle qbase+ (www.biogazelle.
com). Human adult RNA was obtained from four pooled female donors, ages 28–66 (Strata-
gene, La Jolla, CA) (Cat. 540019, Lot. 0960449). Total RNA from freshly prepared sections of
formalin-fixed paraffin-embedded human fetal tissue was extracted with the Pinpoint Slide
RNA Isolation System II (Zymo Research Corporation, Irvine, CA). Retrotranscription and
real-time PCRs were performed as described above. Results were analyzed using the ΔΔCt

method, and significance calculated by Student's t-test.

Immunohistochemistry (IHC) and In Situ Hybridization (ISH)
Mouse and chick lungs were dissected and fixed with 4% paraformaldehyde (PFA) or 10% for-
malin in RNase-free PBS, respectively, for 2 hours at 4°C. Fixed tissues were washed in PBS
with 0.1% Tween 20 (PBT) and through a graded series of methanol/PBT, or maintained at
-20°C in methanol until use. Paraffin sections were heat treated in a microwave oven at
medium power in 0.01 M sodium citrate buffer (pH 6) for 20 minutes for antigen retrieval.
Before antibody incubation, peroxidase was quenched with H2O2. Biotinylated secondary anti-
bodies (Vector Laboratories, Burlingame, CA) were used to localize antibody-antigen com-
plexes. Antigen detection was performed with the ABComplex/HRP Detection System
(DakoCytomation, Glostrup, Denmark), following the manufacturer's directions, and
enhanced with 3,30-Diaminobenzidine (DAB). The following antibodies were used in this
study: mouse anti-PCNA (1:150; NeoMarkers; Fremont, CA;, USA), anti-NKX2.1 (1:200;
mouse monoclonal; SantaCruz, Dallas, TX, USA), and anti-SOX9 (1:200; rabbit polyclonal; a
gift from Dr. de Santa Barbara, University of Montpellier, France), anti-N-MYC (1:200; rabbit
polyclonal; abcam; Cambridge, MA, USA), anti-SOX2 (1:200; rabbit polyclonal; abcam; Cam-
bridge, MA, USA), anti-pSPC (1:400; rabbit polyclonal; abcam; Cambridge, MA, USA) and
anti-Ki67 (1:150; rabbit monoclonal; abcam; Cambridge, MA, USA). Predesigned LNA-
enhanced microRNA ISH Detection Probes were used according to the manufacturer's direc-
tions (Exiqon, Vedbaek, Denmark).

Luciferase Assay
A vector with a basal promoter and the luc2P gene inserted upstream of the humanMYCN 3’
UTR (SwitchGear Genomics) and premiR-449a or scrambled premiRs (Ambion | Life Tech-
nologies, Carlsbad, CA) were co-transfected (Effectene, Qiagen, Venlo, The Netherlands) in
the immortalized Human Embryonic Kidney 293 (HEK) cells (ATCC) in Dulbecco’s Modified
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Eagle Medium (Gibco | Life Technologies, Carlsbad, CA), 10% fetal bovine serum, and 1% pen-
icillin/streptomycin. Cells were cultured at 37°C and 5% CO2 saturation. QuikChange Site-
Directed Mutagenesis Kit (Stratagene, La Jolla, CA) was used to delete either one or both pre-
dicted miR-449a binding sites within the N-myc 3’UTR in the previously described luciferase
vector. The Dual-Luciferase Reporter Assay System (Promega, Madison, WI) was used to
assess luciferase activity, normalized to background renilla activity. The reported measure-
ments are representative of three or more experiments, conducted in six-plicate in 96 well
plates. Significance was calculated by Student's t-test.

Results

miR-449a is expressed during midgestation in human, murine, and avian
lungs
Human fetal lung specimens at 9 and 18–20 gestational weeks were used to determine miRNA
expression changes during the transition from the pseudoglandular to canalicular phases of
lung development. Linear Models for Microarray Data (limma) analysis identified 100 up-reg-
ulated microRNAs in the canalicular phase. MiRNA-449a exhibited the greatest increase in
expression among differentially expressed genes, confirmed by real-time qPCR (Fig 1A) and
replicated in C57BL/6 mouse embryonic lungs at comparable developmental stages (Fig 1B). It
is worth noting that human hsa-miR-449a and its murine ortholog mmu-miR-449a-5p share
identical mature sequences in miRBase (www.mirbase.org). Interestingly, miRNA-449a
reached its peak level of expression at 18 weeks (H. sapiens), or E18.5 (M.musculus), corre-
sponding to the final stages of canalicular development. Finally, its expression declined in the
saccular stage and was minimal at birth suggesting time specific function in that critical stage
of lung development. MiR-449a, and its paralogs miR-449b and miR-449c, are co-regulated
with their host gene CDC20B [30]. During chick (G. gallus) lung development, CDC20B
expression was highest at E18 by RT-qPCR of whole-lung extracts (Fig 1B), suggesting that the
developmental control of miR-449a expression follows the same pattern in mammals and
avians. MiR-449a is expressed al low levels in the distal lung epithelium, and not in the mesen-
chyme, of mouse and chick lung explants (Fig 1C).

Mycn transcripts are regulated by miRNA-449a
Several transcripts were predicted as putative hsa-miR-449a targets by TargetScanHuman
Release 6.2 (N = 655; 730 conserved binding sites in the miRNA family) (www.targetscan.org),
and by miRDB (N = 295) (mirdb.org). Out of the 171 predictions in common between the two
databases, 156 were annotated in the Mouse Genome Informatics web portal (informatics.jax.
org). We chose to investigate N-Myc [v-myc myelocytomatosis viral related oncogene, neuro-
blastoma derived (avian)] which is associated, when perturbed, with abnormal branching simi-
lar to the lung morphogenesis defect and the pulmonary hypoplasia characteristic of severe
and lethal CDH (Fig 1D).

The negative correlation (anticorrelation) between N-Myc and miR-449a expression was
confirmed by RT-qPCR in human and mouse lung samples (Fig 1E). N-Myc and CDC20B
expression levels were similarly correlated in chick lungs (Fig 1E).

Hsa-miR-449a binds to theMYCN 3’-UTR
Luciferase assays based on a vector with a basal promoter and the luc2P gene upstream of the
N-myc 3’UTR were used to confirm regulation by the miR-449a (Fig 2A). The construct con-
tained both predicted binding sites S1 and S2 (Targetscan 5.1) (Fig 2B). The luciferase vector, a
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renilla vector for transcription control, and either pre-miR-449a or a negative control scram-
bled pre-miRNA were co-transfected into HEK cells, chosen from a panel of cell lines because
they exhibited the lowest endogenous miR-449a expression in order to maximize signal-to-
noise.

Pre-miR-449a transfection caused a significant reduction in luciferase activity compared to
scrambled pre-miRNA treated cells (p< 0.0001), indicating direct regulation of the N-myc
3’UTR by miR-449a (Fig 2C). The two binding sites were then deleted in the luciferase/N-Myc
3’ UTR vector by site directed mutagenesis, resulting in three new vectors with Site 1 (S1), Site
2 (S2), or S1+S2 targeted deletions. Their co-transfection with pre-miR-449a resulted in abro-
gation of the miR-449a effect when either S1 or S1+S2 were deleted, whereas deletion of S2
alone had only a modest effect on luciferase activity, indicating that S1 in the N-Myc 3’ UTR is
the critical binding site for miR-449a (Fig 2C).

Fig 1. Mir449a expression. A. Hsa-miR-449a is highly expressed at 18–20 weeks (canalicular) relative to 9 weeks (pseudoglandular) and newborn human
human lungs. B.Mmu-miR-449a, and CDC20B as a proxy for chick gga-miR-449a, in mouse and chick lungs.C.MiR-449a expression in mouse (E15.5) and
chick (E12) distal lung epithelium by LNA ISH. Expression was not detected in the mesenchyme. D. N-myc is the only predicted target of miR-449a
associated with lung hypoplasia and expressed in the lung epithelium.E. N-myc expression during mouse and chick lung development is anticorrelated with
that of miR-449a. Standard Error is indicated. FC, Fold Change.

doi:10.1371/journal.pone.0149425.g001
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miR-449a regulates epithelial proliferation and differentiation ex vivo and
in ovo
By competitive binding of PNA antagomirs, we investigated whether functional knockdown of
miR-449a affected lung epithelial progenitors in ex vivo organ cultures. Lungs were harvested
from E16.5 embryos, corresponding to the end of the pseudoglandular phase, at the onset of
miR-449a expression. PNA antagomirs added to the culture media effectively increased N-Myc
mRNA levels after 48 hours. Expression of both the proliferative marker Ki-67 (Fig 3A and 3B)
and the epithelial progenitor marker SOX9 (Fig 3E, 3F and 3G) were increased in the distal
portion of the epithelium. NKX2-1 (Fig 3C and 3D), pSPC (S1 Fig), and Sox2 (S1 Fig) expres-
sion was not altered. These findings were confirmed by RT-qPCR (Fig 3H).

Given the observed increased epithelial proliferation in antagomir treated mouse lung
explants, we hypothesized that miR-449a overexpression would disrupt lung growth, resulting

Fig 2. A. Diagram of N-myc 3' UTR luciferase reporter vector. MiR-449a predicted binding sites S1 and S2
are indicated. B. Site S1 and S2 sequence aligned with miR-449a. C. PremiR-449a reduces N-myc 3' UTR
luciferase activity relative to scrambled control. S1, but not S2, deletion restores luciferase activity.

doi:10.1371/journal.pone.0149425.g002
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Fig 3. Mouse ex vivo lung culture.Right middle lobe organ culture with scrambled sequence antagomirs
(Control; A,C,E) and antagomiR-449a (B,D,F), stained with anti-Ki-67 (A,B), anti-NKX2.1 (C,D), and anti-
SOX9 (E,F) antibodies. Inhibition of MiR-449a increases SOX9 expression. Insets: 40X magnification. G.
ImageJ counts of SOX9 positive cells in histological sections of antagomiR treated lung organ cultures,
relative to untreated controls. H. Real-time qPCR results show increasedMycn and Sox9 expression in
antagomiR treated lungs (p<0.05, two-tailed t-test with unequal variances, aggregate results of 3 separate
experiments). Nkx2.1 levels were not significantly altered.

doi:10.1371/journal.pone.0149425.g003
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in lung hypoplasia. Therefore, we developed and injected in ovo an RCAS(A)-449a virus,
expressing the murine miR-449a, or the negative control RCAS(A)-GFP along with sham injec-
tions at the beginning of lung development of chick embryos (E2). Successful infection of the
epithelium at E3 was confirmed and monitored by RT-qPCR of the virion component, src, and
by AMV-3C2 (anti-gag) antibody staining in the lung buds and throughout development (S1
Fig). Samples with predominant infection of the mesenchyme were not analyzed.

Early embryonic lethality was observed; however, the lungs of surviving embryos showed
marked lung hypoplasia. Moreover, histological examination of the chick E13 lungs showed
that RCAS(A)-449a infection led to a decreased number of airways. Next, we studied the effect
of miR-449 overexpression on lung epithelial proliferation. In less severely affected E15 RCAS
(A)-449a embryos the proliferative marker, PCNA, was markedly decreased both in the mesen-
chyme and in the epithelial cells compared to the controls, in which PCNA was abundantly
expressed in and around the distal epithelium (Fig 4A and 4B). The epithelial progenitor
marker, SOX9, was markedly reduced in the distal airways (Fig 4E and 4F). In general, the
entire epithelium was affected as indicated by globally reduced Nkx2.1 expression, indicating
that terminally differentiated cells were also compromised (Fig 4C and 4D).

Hsa-miR-449a expression in hypoplastic CDH lungs
As pulmonary hypoplasia is associated with diaphragmatic defects in humans and in animal
models, we assessed miR-449a expression levels in lung paraffin embedded specimens from
available CDH fetuses by RT-qPCR. MiR-449a expression differences were not detectable at
the onset of the canalicular phase between a 17 week CDH specimen (N = 1) and 16 week refer-
ence samples (N = 2) (Fig 5A). In the mid-late canalicular phase, at 20 weeks gestation, miR-
449a appeared to be reduced in a CDH fetus (N = 1) relative to a reference sample of the same
gestational age (N = 1) (Fig 5A). NKX2.1 expression was not altered in these samples (Fig 5B
and 5C), while SOX9 expression was increased (Fig 5D and 5E). In addition, N-MYC expres-
sion in CDH lungs was increased and more widely expressed thorough the distal tips of grow-
ing airways in diseased lungs (Fig 5F and 5G) This phenotype is consistent with reduced miR-
449a levels, possibly correlated with lung immaturity. These data, necessarily based on the lim-
ited samples available for research purposes, suggest a role for hsa-miR-449a in the pulmonary
phenotype of CDH patients prenatally, which should be further explored.

Discussion
Microarray expression profiles from human lung tissue in the pseudoglandular and canalicular
stages of lung development revealed several differentially expressed miRNAs. The most highly
upregulated miRNA was miR-449a, confirming published microarray data in mice [31]. MiR-
449a is a critical regulator of genes involved in cellular proliferation, differentiation, and apo-
ptosis [30,31]. In fact, miR-449a expression is normally controlled by the transcription factor
E2F1, a potent stimulator of cell cycle progression [31,32].

In the present study, quantitative PCR revealed a time specific increase in expression of
miR-449a at E15.5-E18.5, which corresponds to the end of branching morphogenesis in the
late pseudoglandular phase, and throughout the canalicular phase; its expression decreased
dramatically at birth. This pattern suggests a specific role for miR-449a in the mid stages of
lung development. In the lung, upregulation of the miRNA-449a had been correlated with the
differentiation of ciliated cells in proximal pulmonary epithelia through the Delta/Notch path-
way [30,33]. Mucociliary differentiation largely occurs late in lung development; our data, how-
ever, support the hypothesis that miR-449a may additionally influence distal epithelial
progenitor proliferation.
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A prioritized list of likely miRNA-449a targets was obtained through a compilation of the
online tools TargetScanHuman Release 6.2 and miRDB. The MGI database was queried to
identify which of the target genes were known to cause pulmonary hypoplasia in mouse mod-
els. N-myc, a transcription factor belonging to the myc basic Helix-Loop-Helix DNA binding
domain family, was the only predicted miR-449a target in the MGI database to be associated to
both abnormal branching morphogenesis and pulmonary hypoplasia in mouse models, and
also expressed in lung epithelial cells like miR-449a. Its paralog c-myc is a proto-oncogene with

Fig 4. In ovo injections. E15 chick lungs after RCAS(A)-Gfp (A,C,E) or RCAS(A)-mir449a (B,D,F) in ovo infection, stained with anti-PCNA (A,B), anti-
NKX2.1 (C,D), and anti-SOX9 (E,F) antibodies. MiR-449a overexpression reduces PCNA, NKX2.1, and SOX9 expression. Insets: 40X magnification.

doi:10.1371/journal.pone.0149425.g004
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Fig 5. CDH lungs. A. hsa-miR-449a expression increases from 16 to 20 wk in human lungs (left) (n = 2 and
n = 1, respectively), but not in patients with CDH (right) (n = 1 and n = 1, respectively). B-E. NKX2.1 (B,C) and
SOX9 (D,E) expression revealed by immunohistochemistry. F-G. N-MYC expression is increased and more
widely distributed in distal epithelium of CDH lungs.

doi:10.1371/journal.pone.0149425.g005
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a role in several human cancers including Burkitt’s lymphoma [34]. Similarly, N-myc plays a
role in tumorigenesis; for example, neuroblastoma patients with N-myc overexpression are at
increased risk of metastasis and mortality, and small cell carcinomas of the lung are also
known to overexpress N-myc in certain subtypes [35–37].

Homozygous deletion of N-myc results in embryonic lethality at E11.5. Null embryos dem-
onstrated a normal appearance and formation of early primordial organs, but failure of subse-
quent proliferation resulted in severe hypoplasia of the lungs, genitourinary system, gut, and
parts of the nervous system [38]. Heterozygous mice were also less viable than wild-type and
exhibited impaired fitness [38]. Conversely, N-myc overexpression in utero results in a lung
phenotype consisting of hyperproliferation and decreased differentiation, resulting in distal
epithelial tubules surrounded by abundant mesenchyme [39]. Transgenic pups with condi-
tional overexpression of the miRNA 17~92 cluster in the fetal lung similarly die soon after
birth or have severe respiratory distress, and manifest increased epithelial cell proliferation and
increased expression of Sox9 and N-myc in the lungs [12]. Further, overproliferation of Sox9-
positive cells was also described in nitrofen-treated lung explants, a validated model of CDH-
associated lung hypoplasia [40].

Thus, N-myc plays an important role in embryonic lung development and the data pre-
sented herein point to a role for miR-449a as a regulator of N-myc, as confirmed by luciferase
assays. Site directed mutagenesis experiments with a series of 7 nucleotide deletions of the
miR-449a:N-myc binding site, confirmed a direct interaction. Specific deletion of the 5’ S1 pre-
dicted binding region alone was sufficient to result in significant loss of the miR-449a effect,
indicating that S1 is the functionally active binding site.

By the time miR-449a can be first detected by our methodology, proximal cells arising from
a pool of epithelial progenitors, have already begun to abandon their undifferentiated state
[41]. Specifically, the reduction in their proliferation rate is an absolute requirement for correct
differentiation, indicating that the balance between proliferation and differentiation is tightly
controlled [42]. The miR-449a target N-myc belongs to the group of genes that maintain the
proliferation of undifferentiated progenitors [39]. Similarly, the pool of Sox9 expressing pro-
genitors is expanded when miR-449a is antagonized, or reduced when it is overexpressed.
Therefore, we speculate that the N-myc regulation operated by miR-449a may be one of several
cellular mechanisms used by epithelial progenitors to escape their undifferentiated proliferative
state and thus coordinate the critical process of epithelial differentiation. Distal populations of
epithelial progenitors start to express miR-449a as they leave the tip of the airways. MiR-449a
expressing cells then engage two separate pathways, the first to reduce their proliferative rate,
the second to initiate proximal epithelial mucociliary differentiation [30].

In conclusion, although several candidates have emerged from this unbiased microarray
screen between the pseudoglandular and canalicular phases of lung development, miR-449a
stood out as the most significantly upregulated, with N-myc as a likely target in the epithelium
at this time in development according to prediction algorithms, the MGI database of mouse
phenotypes, and luciferase assays. Furthermore, miR-449a murine ex vivo functional knock-
down and avian in ovo overexpression documented morphological changes consistent with
impaired lung differentiation and proliferation. Precise gene regulation during lung develop-
ment is critical for proper organogenesis; consequently, its disruption may be a feature of
human disorders characterized by pulmonary hypoplasia. Dynamic regulation of N-myc by
miR-449a is a promising interaction to investigate further as a likely mediator of epithelial cell
differentiation. Additionally, we detected abnormal miR-449a expression in the necessarily
limited human CDH samples available for research purposes. N-MYC expression was
increased in the available CDH lung sample. Interestingly, at least one patient with aMYCN
mutation has been reported to have CDH [43]. Although we do not presently know whether
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decreased miR-449a expression is sufficient to cause the full human phenotype or how it affects
the diaphragm, the present study suggests that miR-449a dysregulation plays a role in the
pathophysiology of CDH-associated lung hypoplasia.

Supporting Information
S1 Fig. A-D. Mouse lung explants and ex vivo organ culture. Sox2 and pSPC positive cells
were identified by IHC in scrambled sequence antagomirs as controls (A, C), or treated with
antagomir-449a (B, D). E-F. Expression of the 3C2 viral marker was measured in RCAS-
mir449 infected chick samples (�, lung airways or parabronchi).
(TIF)
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