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The ability to predict the outcome of complex chemical
transformations has been a long-standing challenge for
chemists. The development of quantum-chemical approaches
has already opened some opportunities in this direction, and
in many cases, the outcomes of experiments can be efficiently
modeled in silico.[1–6] The advent of artificial intelligence (AI)
algorithms to automatize, improve, and generalize predictions
is gaining importance in this field, and several recent studies
have been published in this area. For example, in 2016,
Aspuru-Guzik and co-workers reported their attempt to
apply neural networks to basic reactions of alkenes and alkyl
halides, and they were able to identify the correct reaction
type for the majority of a set of textbook problems.[7] In 2017,
Gambin and co-workers tested AI algorithms to predict
a large set (450000 cases) of manifold organic reactions,
emphasizing that it might be essential to identify new
chemoinformatic descriptors for future developments.[8]

Among other important attempts to predict and optimize
organic reactions on the basis of AI, recent studies by the
group of Zare[9] as well as Jensen, Green, and co-workers are
noteworthy examples.[10] Although the predictions had some
limitations, in general, the AI algorithms showed an encour-
agingly good performance even for sophisticated organic
systems.

A recent study by the groups of Doyle and Dreher[11] now
demonstrates how the yields of a Buchwald–Hartwig coupling

(Scheme 1) with a large set of different substrates can be
accurately predicted with an AI algorithm, in this case a so-
called random forest. The particularity of the study is that the
data from which the algorithm learns are generated exper-
imentally with a nanomole-scale high-throughput robot. The
AI predictions substantially outperformed many previous
works.

The procedure is as follows: First, the random forest
model is trained. Here, molecular properties of the reactants,
for example, their vibrational frequencies or dipole moments,
are calculated by quantum chemistry. These properties serve
as “descriptors”, that is, as inputs for the random forest
algorithm. The reaction yield with a given set of reactants is
then determined experimentally with the high-throughput
robot, and is fed into the machine learning algorithm. The
algorithm learns to generate these yields as outputs when
provided with the corresponding inputs generated from
quantum-chemistry calculations. After this training step, the
random forest algorithm is able to predict the reaction yield of
other, previously untested reactant combinations, whereby
the procedure could be summarized in an oversimplified
manner as: “If the reactants feature these vibrational
frequencies and these dipole moments, then the reaction
yield will be that number.” In this regard, it is interesting to
consider that machine learning algorithms (which have been
employed for decades) think differently to an experimental
organic chemist, who would probably not take properties such
as the vibrational spectrum of a reactant or its dipole moment
into detailed account to estimate whether a reaction involving
that reactant shall result in a high or a low yield. The work of
Doyle and Dreher is a very promising breakthrough as they
managed to obtain an excellent prediction accuracy, and it
opens a range of opportunities for both theoretical and

Scheme 1. Buchwald–Hartwig coupling investigated in the study by the
groups of Doyle and Dreher.[11]
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experimental chemists. It holds promise to dramatically
accelerate the reaction optimization process in modern
organic synthesis.

A particularly interesting outcome of the study relates to
the conspicuous problems encountered when palladium-
catalyzed Buchwald–Hartwig coupling procedures are ap-
plied to the preparation of complex drug-like products,
namely the strong limitations observed for substrates con-
taining heteroatom–heteroatom bonds, such as isoxazoles
(Scheme 1). The authors sought to probe this in their model
by concurrently screening several structurally diverse oxazole
additives by using the fragment additive approach proposed
by Glorius and co-workers.[12] The results of the study and the
predictive model that it afforded (whereby certain properties
of the oxazole additives were found to strongly correlate with
the yield of the Buchwald–Hartwig coupling) ultimately
guided the mechanistic discovery that Pd0 competitively
inserts into the N@O bond of isoxazoles, as demonstrated in
a series of guided experiments. Two isoxazole fragments with
dramatically different C3 NMR shifts (13C NMR shifts being
one of the top 10 descriptors of the trained random forest
model) were shown to behave rather differently when
exposed to a prototypical Pd0 precatalyst (Figure 1). As the
authors themselves point out, such a mechanistic assumption
would certainly not have been unconceivable without the
machine learning process, and it also hints at a more “human”
intuitive dimension that must still accompany the develop-
ment of such AI-generated algorithms.

This milestone achievement immediately leads to several
questions, such as: How generalizable is this approach, that is,
is it possible to use the method for other classes of organic
reactions? Can the predictions be made even more efficient-
ly? And, for all organic chemists reading this article, how far
ahead is the (dystopian?) scenario of machine-learning
algorithms combined with synthesis robots effectively replac-
ing them?

One of the next likely steps is the improvement of the
computational approach employed to obtain the descriptors.
Indeed, other classes of organic reactions are likely to require
the consideration of more structurally flexible and branched
molecular systems. For these systems, it might not be enough
to calculate only one conformational minimum. This is

perhaps best illustrated with an example: Consider two
structurally similar reactants, each with two possible stable
conformations A and B. A single quantum-chemical mini-
mization of each reactant might find conformation A for the
one reactant and conformation B for the other reactant. The
two reactants might thus be recognized as being very different
by the AI algorithm, resulting in different reaction yields
being predicted although they may be similar in practice.

Furthermore, the actual quantum-chemistry method em-
ployed (mostly B3LYP/6-31G* in this case) can be discussed.
Just hearing this acronym might trigger a flurry of suggestions
for improvement from quantum chemists; nevertheless, one
should bear in mind that the AI algorithm only needs to learn
about the similarities of the reactants and their reactions
(which can also be obtained from similarly wrong results for
similar reactants). It is therefore imaginable that semi-
empirical methods might provide similar, satisfactory results
at reduced computational cost.

The “age of automation”[13] thus appears to hold the
potential to advance organic synthesis in a revolutionary way.
We can finally ask provocatively, as in the title of this
manuscript: Are robots replacing chemists? Looking at the
possible pitfalls of the methods discussed above, we believe
that we are not there yet. Overall, the main problem remains
a lack of generality. However, the rapid development of AI
approaches in combination with modern organic and quan-
tum chemistry might change this situation in the near future.
Additionally, the “human intuition” factor alluded to pre-
viously should provide some comfort—at least until AI
algorithms are capable of mechanistic inferences.
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