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ABSTRACT

Recent in situ multiplexed profiling techniques provide insight into microenvironment forma-
tion, maintenance, and transformation through a lens of localized cellular phenotype distribu-
tion. In this article, we introduce a method for recovering signatures of microenvironments from
such data. We use topic models to identify characteristic cell types overrepresented in neigh-
borhoods that serve as proxies for microenvironment. Furthermore, by assuming spatial co-
herence among neighboring microenvironments our model limits the number of parameters that
need to be learned and permits data-driven decisions about the size of cellular neighborhoods.
We apply this method to uncover anatomically known structures in mouse spleen—identifying
distinct population of spleen B cells that are defined by their characteristic neighborhoods. Next,
we apply the method to a dataset of triple-negative breast cancer tumors from 41 patients to study
the structure of tumor-immune boundary. We uncover previously reported tumor-immune
microenvironment near the tumor-immune boundary enriched for immune cells with high
Indoleamine-pyrrole 2,3-dioxygenase (IDO) and Programmed death-ligand 1 (PD-L1) and a
novel, immunosuppressed, microenvironment-enriched for cells expressing CD45 and FoxP3.

Keywords: cellular microenvironment, in situ multiplexed imaging, LDA, spatial profiling, topic

models.

1. INTRODUCTION

Human tissues need multiple cell types and complex organization to function. Single-cell tran-

scriptome and chromatin profiling provide an unprecedented resolution of the complexity of tissue

compositions and how it changes as a result of various genetic or environmental perturbations. However,

because these methods require dissociation of the tissue into single cells, they lack the ability to resolve the

structure of the tissues. Moreover, single-cell profiling reveals significant heterogeneity in transcriptional

state even within a single-cell type. How this heterogeneity is affected by or affects the interactions that the

cell undergoes with other cells is largely unknown, but numerous examples of the effect of cellular
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environment on cellular function exist. In this study, we focus on identifying microenvironments in the

context of interactions between elements of the immune system.

The ability of the immune system to mount an effective response is increasingly thought to be dependent

on composition of the immune environment within a tissue or tumor. These immune microenvironments are

defined by their cell types, spatial organization, biochemical signals, cell–cell and receptor–ligand interactions,

whose coordination regulates the migration, differentiation, and response of immune cell subsets, and, ulti-

mately, the success or failure of an organism to recognize and remove malignant cells or an invading pathogen.

The tumor immune microenvironment (TME) is now recognized as a critical determinant of patient

outcome (Galon et al., 2006; Bindea et al., 2013). The exclusion of tumor-infiltrating lymphocytes (TILs)

from the vicinity of cancer cells is negatively correlated with survival (Galon et al., 2013) and an under-

standing of the immunosuppressive factors that drive this exclusion is an area of intense focus, particularly in

the context of understanding the high rate of failure of immune checkpoint blockade therapy (Pitt et al., 2016).

Specialized immune microenvironments also play a critical role in the normal functioning of lymphoid

organs such as the thymus (Ritter and Palmer, 1999). Here, interactions between various cell types govern

the development of functionally mature naive T cells. Although the underlying mechanisms remain un-

clear, with increasing age, these thymic microenvironments become disrupted, their resultant disorder

contributing to thymic atrophy and decline in naive T cell production (Aw et al., 2008). Similar disruption

to the local microenvironment are observed in other aging immune organs such as the lymph nodes and are

thought to contribute to immune deficiencies that accompany aging (Thompson et al., 2017).

Taken together, these studies highlight that effective immune responses are not simply dependent on the

number or type of cells resident in a given tissue, but also their spatial organization, which show evidence

of being disrupted with immune-mediated disease, increasing age, or in cancer.

2. METHODS

2.1. In situ profiling of tissues and microenvironments

Novel in situ profiling technologies, such as ‘‘co-detection by indexing’’ (CODEX) (Goltsev et al., 2018)

and ‘‘multiplexed ion beam imaging by time-of-flight’’ (MIBI-TOF) (Keren et al., 2018), enable detailed

characterization of cellular organization in tissues—how various cell types are situated relative to each

other. In both methods, a tissue section is imaged and at each location, the abundance of 30–40 markers of

interest is measured. Cells can then be classified into various canonical cell types or characterized by the

presence or absence of markers. This distribution of cellular phenotypes within a neighborhood carries

information about the local microenvironment. In our approach we will use the local distributions of cell

types or marker expression as a proxy for the microenvironment (Fig. 1).

2.2. Modeling of cellular distributions: Bag-of-cells

The key modeling assumption we make is that the organization of a local cellular neighborhood is

invariant to reordering of cells. The rationale for this is twofold. First, a pair of cells in a sufficiently small
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FIG. 1. In situ profiling of tissue slices using

technologies such as CODEX and MIBI-TOF enable

simultaneous spatial measurement of a panel of

markers. These markers can be aggregated into cel-

lular phenotype. Counts of cell neighbor’s pheno-

types are proxies for cell microenvironment.
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neighborhood can easily signal to each other either through receptor binding or by signaling molecule

secretion. Consequently, specific layout of cells is not critical to distinguishing microenvironments. Sec-

ond, the number of equivalent multicellular patterns under rotations, mirroring, and translation is vast.

Trying to learn all those patterns would necessitate models with large number of parameters, with all the

associated disadvantages (e.g., computation time and overfitting). Consequently, we take a ‘‘bag-of-cells’’

approach similar to the ‘‘bag-of-words’’ idea in natural language processing and computer vision, where

cell-type counts are used to represent a specific microenvironment.

2.3. Modeling a bag-of-cells

We built our model based on latent Dirichlet allocation (LDA) (Blei et al., 2003). This model is typically

introduced using the documents-words-topics paradigm. We state the model in this paradigm, before

mapping it to our domain. A text document, viewed as an unordered bag of words, is represented by word

counts. Variable wij is identity of word jth word in document i. Each word is latently associated with a

topic, indicated by variable zij. Topics are defined by their preference for specific words, parameter b. Each

document has a topic preference hi that is distributed with a Dirichlet prior parameterized by a. Compactly,

LDA can be stated as

hi*Dirichlet (a): (1)

bk*Dirichlet (g): (2)

zij*Multinomial (hi): (3)

wij*Multinomial (bzij
): (4)

In our application, a ‘‘document’’ is composed of all cells in a small neighborhood. Words correspond to the

phenotype of a cell. A topic is a cellular phenotype distribution associated with typical microenvironments.

The key tasks in this model are as follows:

� Learning of typical microenvironments.
� Inferring local microenvironment loadings.

Both these tasks can be seen as inference in a Bayesian model. For completeness, we describe a

variational inference-based approach to solving these two tasks (Hoffman et al., 2010). This approach starts

by forming an Evidence Lower BOund (ELBO):

log p(wja‚ g) � Eq[ log p(w‚ z‚ h‚ bja‚ g)] -
Eq[ log q(h‚ z‚ b)]

:

With a factorization assumption, referred to as mean field,

q(h‚ z‚ b) =
Y

i

q(hi)q(zi)
Y

k

q(bk):

Factors of the posterior are given as

q(zij = k) = /iwijk

q(hi) = Dirichlet (hi; ci)

q(bk) = Dirichlet (bk; kk)

ELBO optimization procedure iterates updates:

/ = argmax
/

Eq[ log p(w‚ z‚ h‚ bja‚ g)]

- Eq[ log q(h‚ z‚ b)]

:

c = argmax
c

Eq[ log p(w‚ z‚ h‚ bja‚ g)]

- Eq[ log q(h‚ z‚ b)]
:
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k = argmax
k

Eq[ log p(w‚ z‚ h‚ bja‚ g)]

- Eq[ log q(h‚ z‚ b)]:
:

Upon convergence approximate posterior on b, h, and z can be interrogated to provide topic definition,

document topic preferences, and word-level topic assignments.

The LDA model assumes that documents are both reasonably long, and also independent of each other

given the topic model’s parameters.

In our context, the microenvironments are potentially occupied by a small number of cells—short

documents. Furthermore, locally proximal cells are likely, although not guaranteed, to have similar mi-

croenvironments.

2.4. Spatially coherent bags-of-cells

This motivates an extension to the LDA model—to promote coherence of microenvironments between

nearby cells, we introduce a prior on a, microenvironment preferences:

p(a) /
Y

(i‚ j)2Edges

Laplace (ai - aj; dij):

Here, edges denotes a set of tuples (i, j) denoting ‘‘adjacent’’ cells that are likely to share similarity in

their microenvironment. In practice, there are several ways to induce an edge set based on the positions of a

set of cells, such as using the K-nearest neighbor graph or connecting cells within a certain radius. In our

following experiments, we induce an edge set by computing the Voronoi partitioning of cell positions and

connect cells that share a facet in the Voronoi partitioning.

A schematic of the complete model is given in Figure 2. Henceforth, we will refer to this model as the

spatial LDA model to distinguish it from the usual LDA topic model.

To incorporate this prior into model and training procedure, we rewrite the ELBO,

log p(wja‚ g) � Eq[ log p(w‚ z‚ h‚ b‚ ajg)] -
Eq[ log q(h‚ z‚ b‚ a)]

‚

where we assume

FIG. 2. We introduce a model that ties

together inferred microenvironments of

nearby cells, thereby boosting the power

to detect subtle microenvironmental

changes. This assumption is encoded in

similarity of as—previous preference for

microenvironment. We anchor microen-

vironment to a cell shown in white. We

consider two topics, purple and yellow. A

particular neighborhood is a mixture of

cells drawn from the two microenviron-

ments. Variable z indicates whether a

particular cell in the neighborhood was

drawn from purple or yellow topic. w, a

cell’s phenotype (rod or flagellate), is

drawn according to microenvironment’s

preference (e.g., purple microenvironment

prefers flagellate). The observed informa-

tion is only the shape (rod or flagellate), a

cellular phenotype readout available from

markers.
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q(h‚ z‚ b‚ a) =
Y

i

q(hi)q(zi)
Y

k

q(bk)q(a)

and

q(a) = d(a - n):

Simplification of the above bound to terms that involve only n leads to

B(n) =
X

i

log
G(
P

knik)Q
kG(nik)

+
X

k

nikcik

" #

-
X

(i‚ j)2Edges

1

dij

ni - nj

�� ��‚
where

cik =C(cik) -C
X

k

cik

 !
‚

and we obtain updates

/‚ c‚ k = argmax
/‚ c‚ k

Eq[ log p(w‚ z‚ h‚ bja = n‚ g)]

- Eq[ log q(h‚ z‚ b)]

n = argmax
n

B(n):

We optimize the ELBO by alternating between the first update, which only requires a slight modification

to any existing LDA library and the second update of n. However, the update of n involves optimizing a

nonsmooth function [Equation (5)] across thousands of cells per sample. To do this efficiently, we use an

alternating direction method of multipliers (ADMM) (Boyd et al., 2011) + primal-dual interior point

optimization approach (Boyd and Vandenberghe, 2004) we refer the reader to the Appendix for details and

the full derivation of our method.

The spatial LDA model introduces a new free parameter dij, which inversely correlates with how strongly

we believe cells i and j are similar in their topic preferences. In other words, the smaller dij is, the more

strongly we constrain adjacent cells i and j to have equal topic preferences.

3. RESULTS AND DISCUSSION

3.1. Topic modeling identifies fine grained structures in mouse spleens

We first applied our framework to identify cellular microenvironments of B cells in mouse spleen. The

spleen is a heterogeneous but highly structured organ that contains multiple resident cell types that makes it

a good validation model. A previous study had acquired images of z-sections of mouse spleens from normal

and diseased mice, each stained with a panel of 30 different antibodies using CODEX that we use in our

experiments hereunder (Goltsev et al., 2018).

We first asked if our technique identified distinct microenvironments that affect the state of B cells. We

chose B cells as they are very abundant within the spleen and extensive literature exists regarding their

distinct subpopulations in different locations of the spleen. The CODEX dataset contains images of three

wild-type spleens with cell-type annotations. To generate input for the spatial LDA model, for every B cell in

the dataset, we generated a vector of cell type counts of its non-B cell neighbors within a 3D ball of radius

100 pixels. We then applied spatial LDA on this vectors to generate an increasing number of topics (Fig. 3A).

3.1.1. Spatial LDA enables the characterization of microenvironment at different scales. Increasing

the number of fitted topics allowed us to probe the spatial organization of the cellular microenvironment with

increasing resolution. Fitting the spatial LDA model with three topics resolved only differences between the
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largest regions of the spleen, namely white pulp B cells and the marginal zone B cells. Fitting five topics

revealed a finer structure of follicular B cells, and two types of marginal zone B cells (macrophage associated

and a stromal subset associated with natural killer (NK) cells and granulocytes) (Fig. 3B).

This also suggests an intuitive strategy for deciding the number of topics to fit—one can vary the

number of topics depending on the level of granularity that is required for analyzing a dataset of

choice, potentially increasing the number of topics until topics are no longer consistently reproduced

run-to-run.

3.1.2. Spatial LDA captures smoothly transitioning microenvironments. Another natural ap-

proach to identifying characteristic neighborhoods is by clustering cell-type counts, an approach taken in

Goltsev et al. (2018). However, a clustering model is a bad choice at capturing boundary transitions

between two microenvironments. Our approach, on the contrary, allows for gradual transition between

FIG. 3. Spatial LDA reveals characteristic neighborhoods of B cells in mouse spleen. (A) Row-normalized cell

type preferences of the topics fitted to the data by spatial LDA assuming 3, 5, and 8 topics. (B) Wild-type sample 1

from Goltsev et al. (2018) where each B cell is colored according to its main topic assuming 3, 5, and 8 topics. Note

increasing resolution of the structures with increasing number of topics. Black denotes non-B cells. (C) Smooth

transition between topic weights in spleen. Shown are the weights of topics 3 and 4 in five-topic model in the same

sample as in (B). (D) Distinct gene expression profiles of B cells in different neighborhoods. Normalized (Log2)

average expression of each marker in each topic for spatial LDA model with five topics. LDA, latent Dirichlet

allocation.
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different microenvironments, as each neighborhood is modeled as a combination of topics. For example,

transition between white pulp and marginal zone B cells or between marginal zone and the red pulp B cells

is gradual, as reflected by the continuous transition in the topic weights in Figure 3C.

3.1.3. Topics learned by spatial LDA are biologically consistent. Although spatial LDA

identified multiple topics with distinct localization patterns, it was not clear if these are indeed bio-

logically distinct subpopulations of B cells. To answer this question, we had a trained immunologist

label each topic with a label based only on the spatial distribution of that topic within the spleen. We

then looked at the average expression of all measured markers as grouped by microenvironment topic

(Fig. 3D) and found that each microenvironment had a characteristic expression pattern consistent with

known biology. For example, identification of the follicular B cell topic was made on the basis of its

characteristic outline and concentration at the periphery of an area identified as white pulp. Follicular B

cells are surrounded by a complex network of mesenchymal follicular dendritic cells. This expected

association was seen in high expression of the follicular dendritic cell marker CD21/35 in this mi-

croenvironment.

Similarly, the splenic red pulp typically contains F8/80 expressing macrophages that play an important

role in red blood cell homeostasis, which we also observe in the topic weights of our subset identified as

red pulp.

3.2. Topic modeling identifies clinically relevant tumor-immune microenvironment topics

Characterizing the spatial organization of the TME is of interest in cancer biology because of the complex

interactions between tumor cells and immune cells that are known to influence response to treatment and

survival (Galon et al., 2006; Bindea et al., 2013; Pitt et al., 2016). In previous study, Keren et al. (2018)

collected and analyzed a dataset consisting of 41 triple-negative breast cancer tumors using MIBI-TOF and

classified tumors into cold, mixed, and compartmentalized subsets corresponding to increasing degrees of

intermixing between tumor and immune cells. In particular, they found that compartmentalized tumors were

characterized by a clear tumor-immune boundary and was associated with better survival.

As further validation of our framework, we applied the spatial LDA model to this dataset of triple

negative breast cancer tumors from Keren et al. (2018). We defined the immune neighborhood of a tumor

cell as the count of all immune cells within a 39 mm (100 pixels) radius of the cell center. We then

generated a histogram of 36 counts—each count representing the number of immune cells in a neigh-

borhood expressing a given cell marker—and applied the spatial LDA model to learn five TME topics. To

summarize the topic distribution for a tumor, we compute the fraction of tumor cells that have topic weight

>1/number of topics for a given topic across all topics.

3.2.1. Spatial LDA identifies two tumor-immune microenvironments near the tumor-immune
boundary. Previous work Keren et al. (2018) proposed a method for identifying the tumor-immune

boundary by smoothing the density of immune and tumor cells and aggregating them into connected

components. In our study, we replicate their findings, demonstrating that the tumor-immune boundary is

characterized by a distinct TME that can be inferred directly from the local composition of immune cells.

We identified two distinct TME topics near the tumor-immune boundary (Fig. 4a). Our first TME topic

(topic 2) corresponded to the tumor-immune boundary TME reported by Keren et al. (2018); immune cells

in this region coexpressed high levels of Indoleamine-pyrrole 2,3-dioxygenase (IDO), Programmed death-

ligand 1 (PD-L1), Integrin alpha M (CD11b), and Integrin alpha X (CD11c) (Fig. 4b). This TME topic

generally lies close to but not directly on the tumor-immune boundary [Fig. 4a or Fig. 6 in Keren et al.

(2018)]. However, we also identify a second TME topic (topic 1), which typically lies much closer to or on

the tumor-immune boundary itself. In this second TME topic, immune cells express high levels of CD45,

and FoxP3—possibly indicating the presence of immunosuppressive regulatory T cells.

In our survival analysis, the presence of TME topic 2 was associated with better survival even after

stratifying on compartmentalized versus mixed tumors (Fig. 6). In contrast, TME topic 1 was not signif-

icantly associated with overall survival.

3.2.2. Spatial LDA identifies substructure within tumor interior and mixed tumors. In addition,

we identify two TME topics found in the interior of tumors (Fig. 5A).
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FIG. 4. (A) Two TME topics found near the tumor-immune boundary. Topic 2 corresponds to the TME cluster

reported in Keren et al. (2018), whereas topic 1 is a new, immunosuppressive topic. Red points denote tumor cells

where intensity denotes the degree to which a tumor cell’s microenvironment resembles a given topic. Gray points

denote immune cells. (B) Topics discovered by spatial LDA and their preferences for cells expressing different

markers. Red entries denote a strong preference for cells expressing that marker and blue relatively low preference.

TME, tumor immune microenvironment.

FIG. 5. Tumor sections colored by the ‘‘dominant’’ TME topic (TME topic with the highest weight) for each cell.

Note the heterogeneity within the tumor interior and across the mixed tumor samples. Purple corresponds to topic 1,

green to topic 2, blue to topic 3, yellow to topic 4, and pink to topic 5. Note the overrepresentation of TME topic 4 in

mixed tumors with poor prognosis. (A) Five compartmentalized tumors. (B) Bottom quartile of mixed tumors by

predicted hazard. (C) Top quartile of mixed tumors by predicted hazard.
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We identify a TME topic (topic 3) that is typically located deep within the interior of compart-

mentalized tumors (colored yellow in Fig. 5A–C) characterized by the lack of immune cells expressing

CD8, CD45 consistent with a dearth of infiltrating cytotoxic T lymphocytes (TILs). Confirming this

finding, the average proportion of TME topic 3 within a tumor is also strongly negatively correlated

with TIL score ( p < 0.005, Spearman rank test). TME topic 3 is also strongly overrepresented in mixed

tumors with poor predictive survival (Fig. 5B, C), but the proportion of tumor cells in a TME topic

3-like microenvironment is not significantly associated with poor survival after controlling for mixed

status (Fig. 6).

We further identified a distinct TME topic (topic 4) also typically found in the interior of compart-

mentalized tumors (colored pink in Fig. 5A–C) characterized by high proportion of immune cells ex-

pressing CD3, CD4, CD8, CD45RO, and PD1. The proportion of tumor cells with a TME topic 4-like

microenvironment is also strongly associated with poor overall survival and we hypothesize that this TME

topic represents an immunosuppressed TME because of the high expression of PD1 and CD45RO. TME

topic 4 is the most negatively associated with survival out of all the TMEs identified by spatial LDA

(Fig. 5).

4. CONCLUSION

The advent of in situ multiplexed imaging techniques such as CODEX (Goltsev et al., 2018) and MIBI-

TOF (Keren et al., 2018) enable the quantification of dozens of molecular markers at subcellular resolution.

This motivates the development of analytical tools that model such data.

In this article, we present a model of cellular microenvironment called spatial LDA. We extend the well-

known LDA model by introducing a regularization term that encourages agreement about microenviron-

ments between nearby cells. We also derive an efficient variational Bayes update procedure to fit such

models, alternating between fitting an almost standard LDA model and an ADMM + primal-dual interior

point optimization to update the topic prior. Spatial LDA is able to model smooth transitions between

microenvironments, captures organization at multiple scales, and increases power to infer microenviron-

ment types using positional information.

To validate the effectiveness of spatial LDA, we apply spatial LDA to two existing datasets, one of mouse

spleens (Goltsev et al., 2018) and one of Triple-negative breast cancer (TNBC) tumors (Keren et al., 2018).

We validate our model by recovering known immunological compartments in mouse spleen

(Goltsev et al., 2018) and identifying clinically relevant microenvironments in TNBC (Keren et al.,

2018).

We find that spatial LDA is able to identify distinct subpopulations of B cells in the mouse spleen at

multiple scales and capture gradual transitions in the microenvironment. These subdivisions of B cells

identified also reflect known biology of B cell compartments in the spleen.

When applied to a dataset of TNBC tumors, spatial LDA is able to recover previously reported features

of the TME near the tumor-immune boundary. In addition, it also identified several novel TME types both

within the tumor interior and along the tumor-immune boundary.

We hope that spatial LDA provides both a tool for analyzing tissue microenvironments and a foundation

on which more complex topic models can be developed.

FIG. 6. Cox regression coefficients [expressed

as log(hazard ratio) with 95% confidence inter-

val] of regressing overall survival, across all tu-

mors (both mixed and compartmentalized), on

proportion of tumor cells in a particular TME

topic (controlling for mixed vs. compartmenta-

lized tumors, stage, and age at diagnosis).

**Significant at <0.01 level. ***Significant at

<0.001 level.
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5. APPENDIX—DERIVING UPDATES FOR TOPIC PRIOR

5.1. Spatially regularized LDA

We extend the usual LDA model such that each document has a topic prior ai and introduce a prior on

a = (a1,., an) and an edge set (Edges) connecting ‘‘neighboring’’ cells.

p(a) /
Y

(i‚ j)2Edges

Laplace(ai - aj; dij)‚

where dij is a constant or a deterministic function of a spatial distance between i and j. The variational lower

bound (ELBO) then becomes

L(/‚ c‚ k‚ n) = Eq[ log p(w‚ z‚ h‚ bja‚ g)p(a)] - Eq[ log q(h‚ z‚ b‚ a)]:

We will assume

qn(a) = d(a - n):

Considering only terms involving a and noting that entropy is 0 for delta function:

Eq[ log p(hja = n)] + log p(a = n) = Eq[ log p(hja = n)] -
X

(i‚ j)2Edges

1

dij

ni - nj

�� ��:
We plug in distributions

1

N

X
i

Z
qi

q(hi) log
G(
P

knik)Q
kGnik

Y
k

hnik - 1
ik dh -

X
(i‚ j)2Edges

1

dij

ni - nj

�� ��

and simplify

1

N

X
i

log
G(
P

knik)Q
kG(nik)

+
X

i

X
k

(nik - 1) C(cik) -C
X

k

cik

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cik

-
X

(i‚ j)2Edges

1

dij

ni - nj

�� ��

noting that term Cik does not depend on n.

L(n) =
1

N

X
i

log
G(
P

knik)Q
kG(nik)

+
X

i

X
k

nikcikð Þ -
X

(i‚ j)2Edges

1

dij

ni - nj

�� ��: (5)

5.2. Alternating direction method of multipliers

In this section, we derive ADMM updates for maximizing objective [Equation (5)] efficiently.

We will denote the beta function (B), Gamma function (G), digamma function (c), and trigamma

function (F)

B(a) =
Q

kG(ak)

G(
P

kak)
:

Using B our problem can be expressed as:

minimize
n

1

N

X
i

log B(ni) -
1

N

X
i

nT
i ci +

X
(i‚ j)2Edges

1

dij

ni - nj

�� ��
1
: (6)

We add variables that will enable us to separate [Eq. (6)] into per-topic subproblems and convert the

nonsmooth l1 penalty into constraints:
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minimize
n‚ s‚ x

1

N

X
i

log B(si) -
1

N

X
i

sT
i ci +

X
l

1

dl

xlk k1

subject to s = n

An = x
:

where A is a differencing matrix. We eliminate the norm using inequalities

minimize
n‚ s‚ x

1

N

X
i

log B(si) -
1

N

X
i

sT
i ci +

X
l

1

dl

1T xl

subject to s = n

x � - An

x � An:

(7)

The augmented Lagrangian for Equation (7) is thus:

L(n‚ x‚ u‚ v) =
1

N

X
i

log B(si) - sT
i ci

� �
+
X

l

1

dl

1T xl - uT
1 (x - An) - uT

2 (x + An)

- vT (s - n) + q=2 s - nk k2
2

5.2.1. Splitting the objective

We first list updates for different sets of variables and complete the square:

e(k) = s(k) + 1=qv(k)

n(k + 1)‚ x(k + 1)‚ u(k + 1) = arg min
n‚ x

max
u

X
l

1

dl

1T xl - uT
1 (x - An)

- uT
2 (x + An) + q=2 n - e(k)

�� ��2

2
:

(8)

r(k) = n(k + 1) - 1=qv(k) + 1=qcs(k + 1) = argmin
s

1

N

X
i

log B(si) + q=2 s - r(k)
�� ��2

2

v(k + 1) = v(k) + q(s(k + 1) - n(k + 1))

: (9)

We solve for these updates in two parts:

� Fusion problem with Gaussian appearance [Eq. (8)].
� Dirichlet ML fitting with Gaussian regularization [Eq. (9)].

5.2.2. Fusion problem with Gaussian appearance. In this section, we derive a primal-dual interior

point optimization for solving [Eq. (8)]. We will solve for updates:

e(k) = s(k) + 1=qv(k)

n(k + 1)‚ x(k + 1)‚ u(k + 1) = arg min
n‚ x

max
u

X
l

1

dl

1T xl - uT
1 (x - An)

- uT
2 (x + An) + q=2 n - e(k)

�� ��2

2

using a primal-dual interior point method. We refer the reader to chapter 11 of Boyd and Vandenberghe

(2004) for an overview of primal-dual interior point methods.

5.2.3. Karush-Kuhn-Tucker (KKT) conditions for fusion problem. For simplicity, we introduce

c = (n‚ x), and C = A - I

- A - I

� �
Letting

1214 CHEN ET AL.



f0(c) = q=2 n - e(k)
�� ��2

2
+
X

l

1

dl

1T xl

f1(c) = Cc

Karush-Kuhn-Tucker (KKT) condition for the problem

Cc � 0

u � 0

=c f0(c) + uT f1(c)
� �

= 0

uT f1(c) = 0

(10)

5.2.4. Primal-dual updates for fusion problem. As in Boyd’s book, Eq. 11.15, we will solve a

modified KKT for the centering problem instead by replacing [Eq. (10)] with:

uT f1(c) =
1

t
1

where 1/t will be tuned toward zero.

Following 11.7.1 in Boyd and Vandenberghe (2004), we state the modified KKT conditions in an

equation form

rt(c‚ u) = 0

where

rt(c‚ u) = =f0(c) + Df1(c)T u

- diag uð Þf1(c) - 1=t1

� �
and derivative matrices given by

f (c) =
f1(c)

� � �
fm(c)

2
4

3
5‚ Df (c) =

=f1(c)T

� � �
=fm(c)T

2
4

3
5:

Calling out specific parts of r

rdual = =f0(c) + Df1(c)T u: (11)

rcent = - diag uð Þf1(c) - 1=t1: (12)

To obtain Newton direction we solve the system

=2f0(c) + uT =2f1(c) Df1(c)T

- diag uð ÞDf1(c) - diag f1(c)ð Þ

� �
Dc
Du

� �
= - rdual

rcent

� �
:

We are therefore interested in computing =f0(c), =2f0(c), =2f1(c), and Df1(c). Recall that

c = (n‚ x)

C =
A - I

- A - I

� �

f0(c) =
1

N

X
i

log B(ni) - nT
i ci

� �
+
X

l

1

dl

1T xl

f1(c) = Cc

We can immediately observe that constraints are linear and hence =2f1(c) = 0, and because f1(c) = Cc, we

have Df1(c) = C.
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5.2.5. Computing =f0(c).

f0(c) = q=2 n - e(k)
�� ��2

2
+
X

l

1

dl

1T xl

Hence,

=cf0 =

q(n1 - e(k)
1 )

..

.

q(nN - e(k)
N )

1
d1

1K

..

.

1
dL

1K

2
66666666664

3
77777777775

5.2.6. Computing =2f0(c). We observe overall structure of the matrix

=2f0(c) =
=2

nf0(n‚ x) =n=xf0(n‚ x) = 0

=n=xf0(n‚ x) = 0 =2
xf0(n‚ x) = 0

" #

where blocks off-diagonal are zeros because of absence of cross-terms involving v and n, and lower right

block is zero because objective is linear in v. Because

=2
nf0(n‚ x) = qI

we have

=2f0(c) = qI 0(N�K) · (L�K)

0(L�K) · (N�K) 0(L�K) · (L�K)

� �

5.2.7. Constructing and solving the linear system. Putting all the above pieces together,

qI 0(N�K) · (L�K)

0(L�K) · (N�K) 0(L�K) · (L�K)

� �
CT

- diag uð ÞC - diag Cc)ð Þ

2
4

3
5 Dc

Du

� �
= - rdual

rcent

� �
: (13)

In practice, we solve the above linear system with a sparse linear solver to obtain step directions and

perform a backtracking line search to determine step size.

5.2.8. Dirichlet likelihood with Gaussian regularization. In this section, we solve for updates for

optimizing [Eq. (9)]. Recall that we wish to solve for:

s(k + 1) = argmin
s

1

N

X
i

log B(si) - sT
i ci

� �
+ q=2 s - t(k)

�� ��2

2

we observe that this problem is separable across sis

s(k + 1)
i = argmin

si

li(si) = argmin
si

log B(si) - sT
i ci + q=2 si - t(k)

i

�� ��2

2
‚

which can be simplified to

s(k + 1)
i = argmin

si

log B(si) + q=2 si - rk
i

�� ��2

2
‚

where
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r(k)
i = t(k)

i -
1

q
ci

This can be accomplished using Newton’s method.

5.2.9. Matrix inversion-free Newton update for t. To obtain a matrix-inversion-free Newton step,

we use results from Minka (2000). Using the same notation as in Minka (2000). The gradient

snew = sold - H - 1g

y =C
X

k

sk

 !

g = W(s) - 1Ky + q(s - r)

Hessian:

z =F
X

k

sk

 !

Q = diag F(s) + qð Þ
H = Q + 11T z

and derive the update

H - 1 = Q - 1 -
Q - 111T Q - 1

1=z + 1T Q - 11

(H - 1g)k =
gk - b

qkk

b =
1T Q - 1g

1=z + 1T Q - 11
=

P
jgj=qjj

1=z +
P

j1=qjj
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