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Original Article

Abstract: The predictions from an accurate prognostic model can be 
of great interest to patients and clinicians. When predictions are re-
ported to individuals, they may decide to take action to improve their 
health or they may simply be comforted by the knowledge. However, 
if there is a clearly defined space of actions in the clinical context, 
a formal decision rule based on the prediction has the potential to 
have a much broader impact. The use of a prediction-based decision 
rule should be formalized and preferably compared with the standard 
of care in a randomized trial to assess its clinical utility; however, 
evidence is needed to motivate such a trial. We outline how observa-
tional data can be used to propose a decision rule based on a prog-
nostic prediction model. We then propose a framework for emulating 
a prediction driven trial to evaluate the clinical utility of a prediction-
based decision rule in observational data. A split-sample structure is 
often feasible and useful to develop the prognostic model, define the 
decision rule, and evaluate its clinical utility. See video abstract at, 
http://links.lww.com/EDE/B656.

Keywords: Predictive signature; Prediction modeling; Emulated tri-
als; Clinical utility

(Epidemiology 2020;31: 359–364)

Predictions of the prognosis of a patient given their cur-
rent health state are prolific in medicine, as are the studies 

and tools to obtain such predictions. For example, there are 
hundreds of available risk scores for cardiovascular disease,1 

dozens for prediction of breast cancer occurrence,2 dozens 
for prediction of prostate cancer occurrence and progression,3 
several prediction models for sepsis in the intensive care unit,4 
and tens of prediction models of type II diabetes.5 Risk scores, 
risk rankings, clinical outcome predictions, or prognostic pre-
dictions, regardless of the name, are all attempting to predict 
with high accuracy the future outcome of a patient given cur-
rent information. Despite the ubiquity of such predictions, the 
vast majority of the predictions and tools go unused in clinical 
practice.6 The lack of use may be due to the lack of actionable 
information provided by risk scores alone. Physicians want 
tools to help make treatment decisions, and to achieve this 
aim, one must clearly specify the intended use of a prognostic 
model at the outset of the study.

If the intended use of a prognostic model is to drive treat-
ment decisions, a prediction-based decision rule, then it is a 
medical device, and governing bodies in the United States and 
Europe have made it clear that evidence of positive impact on 
patients is needed in order for such devices to be approved for 
clinical use.7 This requires evaluating the clinical utility, i.e., the 
comparison of expected patient outcomes under use of the pre-
diction-based decision rule to those outcomes had the patients 
received the standard of care. The gold standard for generating 
evidence of superior clinical utility is a randomized controlled 
trial. While well established for the evaluation of treatments, 
direct randomized comparisons of prediction-based decision 
rules to standard of care have received less attention.8

Very few randomized clinical trials of prediction-based 
decision rules exist, and even when randomized trials evaluate 
prediction-based decision rules, they tend to look for an interac-
tion between treatment effect and prognosis rather than directly 
assessing the clinical utility. For example, the Oncotype DX 
risk score is currently used to inform whether chemotherapy 
should be used in addition to hormonal therapy.9 Two random-
ized trials have involved the Oncotype DX risk score10 and11 
and both trials evaluated interactions of the score with random-
ized treatments rather then directly comparing to the standard 
of care for treatment selection. This lack of randomized evalua-
tions of clinical utility may be due to misunderstandings about 
the goals of the risk score or the unwillingness to risk scarce re-
sources on a trial that does not compare randomized treatments.

Our goal is to illustrate how observational data can be 
used to optimize and evaluate the clinical utility of a predic-
tion-based decision rule. In the context of comparing the ef-
fectiveness of treatments, Hernán and Robins12 have proposed 
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and promoted the concept of emulating a target trial with 
observational data, and this concept has also been applied to 
assess the utility of screening13 and in other clinical settings.14 
In this article, we similarly propose to use observational data 
to emulate a target trial to assess the clinical utility of a pre-
diction-based decision rule. Our proposal shares some key 
features with the emulated treatment trial, such as the clear 
specification of the eligibility, so we will focus on the spe-
cial considerations and the additional components that are re-
quired for the development and evaluation of prediction-based 
decision rules. By using observational data to optimize and 
evaluate the clinical utility of a prediction-based decision rule, 
future confirmatory randomized clinical trials can be better-
informed and motivated.

To make things concrete, we will consider the setting 
of major abdominal surgery in Crohn’s disease. Major ab-
dominal surgery due to Crohn’s disease is considered a se-
rious adverse outcome and is responsible for high healthcare 
costs and decrease in quality of life in people with Crohn’s 
disease. Identifying individuals at high risk for surgery may 
allow for targeted use of early therapeutic interventions to 
offset this natural course. Several researchers have developed 
risk prediction models for Crohn’s disease-related surgery 
and complications.15,16 There have been randomized studies 
to compare the efficacy of early combination therapy to the 
standard of care,17 but there has been no attempt, to our know-
ledge, to determine whether prediction-based decisions are 
beneficial. Throughout this article, we will illustrate our con-
cepts using this example. We provide a glossary of terms in 
the first section of the eAppendix; http://links.lww.com/EDE/
B646, followed by a step-by-step description of our proposed 
approach using this example.

Developing a Proposal for a Prediction-based 
Decision Rule

To formalize the optimization of a prognostic predic-
tion in medical decision-making and arrive at a proposal for 
a prediction-based decision rule for which we can then eval-
uate the clinical utility, the set of possible decisions needs to 
be specified. The prediction-based decision rule can then be 
viewed as a mapping of the prognostic model result to the set 
of all possible, and reasonable, medical decisions. This set is 
the action space. The best decision rule, among those that can 
be evaluated given your data, is obtained by finding the map-
ping that optimizes the expected clinical utility and minimizes 
any adverse outcomes or losses. The ideal way to do this is to 
build a utility function, i.e., a mapping from the decision rule 
to a weighted set of the possible outcomes, containing all the 
possible benefits, adverse events, and costs of treatment, and 
optimize this over a set of groupings based on the prediction 
and the possible treatments. One potential method for doing 
this is suggested in Vickers et al,18 but there are numerous 
ways to arrive at a “best” proposal for a prediction-based de-
cision rule.

Suppose we want to use the prediction model for risk of 
surgery in Crohn’s disease described in Sachs et al16 to help 
determine which treatment patients should receive. As dem-
onstrated in the article, the predictive accuracy of the model is 
adequate for prognostic prediction alone, but as we will out-
line, this accuracy may be more or less important based on 
the how the decision rule is developed. To make the problem 
feasible, we might only consider different cutoffs of the prog-
nostic prediction for major abdominal surgery in Crohn’s 
disease to define high and low risk, rather than the full (in-
finite) space of all possible groupings. Additionally, we will 
only consider two possible interventions (the action space), 
to treat with monotherapy (thiopurines alone) or to treat with 
combination therapy (thiopurines plus biologics). The optimal 
decision rule could then be any combination of these treat-
ments and the cutoff between high and low risk based on the 
predictions. Our utility function is simply the proportion of 
patients who undergo surgery within 5 years, which we want 
to minimize.

To further reduce the optimization problem, we can sep-
arate these two pieces. For example, we could use a predictive-
ness curve,19 which can be used to describe the distribution of 
the outcome conditional on the prediction, to select the “best” 
cutoff to define high and low risk. In our example, after the 
cutoff between high and low risk has been determined, there 
would only be two possible combinations of therapy and pre-
dicted risk: (1) low risk gets thiopurines alone and high risk 
gets thiopurines plus biologics, or (2) high risk gets thiopu-
rines alone and low risk gets thiopurines plus biologics. One 
could estimate the utility of both of these decision rules in an 
observational data set, as we outline in detail in the eAppen-
dix; http://links.lww.com/EDE/B646. However, in practice in 
our setting, as is often the case, expert opinion dictates that 
thiopurines plus biologics should not be given to low-risk 
patients. Although this is not directly optimizing the decision 
rule, expert opinion still allows us to develop a proposal for the 
prediction-based decision rule that would be useful in practice.

Regardless of how it is performed, this optimization is 
something that can be done in the observational setting prior 
to the running of the clinical trial, and there are strong advan-
tages to doing so. In a clinical trial, only a small set of deci-
sion rules can be considered, limiting the ability to optimize 
the decision. Instead, in the observational setting, all decision 
rules within the plausible space can be considered and proper 
utility/loss functions can be used to account for more than just 
the primary outcome, provided those decision rules are pre-
sented in the data. As noted above, the solution to the general 
problem of whom to treat with what is a much larger problem, 
with a long literature motivated by subgroup identification in 
clinical trials. Even when only considering a currently avail-
able predictive algorithm and a small set of therapies, the 
possible approaches to picking the “best” prediction-based 
decision rule are numerous. The important feature of any 
useful method of optimization or selection of a proposed 
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prediction-based decision rule is that it be data driven, and 
therefore it will need to be externally validated. For this, we 
suggest that a randomly split validation set be used to run the 
emulated target study as outlined in the next Section.

Evaluating a Proposed Prediction-based 
Decision Rule in an Emulated Trial

Suppose that we have a proposed decision rule for 
selecting between mono- and combination therapy in patients 
recently diagnosed with Crohn’s disease, and before this rule 
is used in clinical practice, we wish to test it in some way for 
superior clinical utility. The highest quality evidence would 
be generated by a direct randomized comparison between the 
prediction-based decision rule and the standard treatment de-
cision. Figure 1 depicts this design for our running example in 
Crohn’s disease. Note that the only randomization is between 
using the prediction-based decision rule or the standard of 
care, which may or may not use other decision rules. The Table 
summarizes the main components of a hypothetical target trial 
designed to compare the use of our prediction-based decision 
rule versus the standard of care.

In this study, we would obtain sufficient data on eligible 
study participants at the time of Crohn’s disease diagnosis 
to predict their risk of surgery within 5 years using the fixed 
prognostic model described above. Then, subjects would be 
randomized to the prediction-based decision arm, or the non-
prediction-based decision arm (standard care). The decision 
process with the higher expected utility, in this case measured 
by the proportion undergoing surgery within 5 years, would 
be more beneficial to use in clinical practice. In the absence of 
this target randomized trial, we can use a large observational 
database to provide preliminary evidence or to motivate un-
dertaking a randomized study by emulating this trial.

Hernán and Robins12 propose a framework and methods 
for using causal inference in observational data to emulate a 
clinical trial for comparing treatments. Just as they describe 
for the treatment comparison setting, we must define the eligi-
bility criteria for our population of interest that would be used 
in the target trial, and use similar criteria in our observational 
emulation. The criteria for our example are given in the Table. 
The eligibility criteria define our time zero, as subjects would 
be enrolled as soon as they meet the criteria. Not all subjects 

will start therapy of any type precisely on the day when the 
eligibility criteria are met, and failing to account for this time 
window from eligibility to treatment can potentially impact 
the feasibility of conducting the study. In addition, to avoid 
any survivor bias that this grace period may cause, subjects 
having the event within the grace period should be included 
in both arms. This concept is illustrated graphically in eFigure 
1; http://links.lww.com/EDE/B646 of the eAppendix; http://
links.lww.com/EDE/B646.

In our example, time zero would need to be shortly after 
Crohn’s disease diagnosis, when the initial treatment decision 
is made. In our emulated study, we would set the grace period 
to 2 weeks, allowing subjects assigned to mono- or combi-
nation therapy to be considered given those therapies if they 
were assigned them within 2 weeks of Crohn’s disease diag-
nosis. Subjects having surgery prior to 2 weeks post diagnosis 
with Crohn’s disease would need to be included in both arms 
regardless of treatment.

Under certain assumptions, we can estimate the ex-
pected potential outcome for subjects using the prediction-
based decision rule. However, unlike the trials outlined in 
[12], the comparison is not between two treatments but be-
tween a prediction-based decision rule and the standard of 
care. The standard of care group will simply be the observed 
population, using the same eligibility criteria and the same 
time zero, but will include everyone. All subjects, regardless 
of what treatment they received, who meet the eligibility crite-
ria will thus be included in the standard of care arm.

Estimands and Estimation
For simplicity, let Yi = 1 indicate subject i having surgery 

within 5 years of Crohn’s disease diagnosis, and 0 otherwise. 

FIGURE 1. Overview of the target prediction-model based 
trial in which patients are randomized to a prediction-based 
treatment decision rule versus standard of care.

TABLE. A Summary of a Target Trial to Evaluate the Clinical 
Utility of a Proposed Prediction-Based Decision Rule in 
Crohn’s Disease

Protocol Component Description

Prediction model Prediction for major abdominal surgery within 5 

years based on clinical disease history, treatment 

history, and demographics

Prediction categories Low risk and high risk of surgery

Action space Mono versus combination therapy

Study design Randomized comparison of prediction-based 

treatment decision to standard of care. High 

risk given combination therapy, low risk given 

monotherapy

Eligibility criteria Adults with Crohn’s disease and no previous major 

abdominal surgery

Outcome Major abdominal surgery within 5 years, yes or no

Clinical utility measure Proportion undergoing surgery within 5 years

Analysis plan Comparison of the clinical utility measure in the 

prediction-driven group to the non-prediction-

driven group
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Let the two treatment options in our example be labeled A 
for monotherapy and B for combination therapy. The compar-
ison of interest in a randomized clinical trial run as in Figure 1 
is the proportion of subjects that underwent surgery within 5 
years in the arm that used the prediction to determine therapy 
compared with the proportion of subjects that underwent sur-
gery within 5 years that were randomized to standard of care.

The intention to treat estimand is

E Y used prediction E Y standard of carei i{ ( )} { ( )},−

where Y used predictioni ( ) is the potential outcome for subject 
i under use of the prediction, the outcome under the use of pre-
diction regardless of what subject i was actually assigned to, and 
Y standard of carei ( ) is their potential outcome under standard 
of care. Under standard assumptions in a randomized clinical 
trial, E Y used prediction E Y standard of carei i{ ( )} { ( )}−  can be 
unbiasedly estimated by using the observed conditional out-
comes E Y used prediction E Y standard of carei i{ | } { | }− , i.e. 
as the difference in observed proportions between those who 
were factually assigned to prediction and standard of care, 
respectively.

In our observational setting, however, we cannot equate 
E Y used predictioni{ ( )} with E Y used predictioni{ | } because 
individuals were not randomized to use the prediction-based 
decision rule. Instead, we can consider what makes up this ex-
pectation, given the deterministic treatment rule. The estimand 
E Y used predictioni{ ( )} in the trial can be decomposed as

Pr lowrisk E Y A lowrisk Pr highrisk E Y B highriski i{ }* { ( ) | } { }* { ( ) |+ }}.

We can easily estimate both Pr lowrisk{ } and 
Pr highrisk{ } provided our observational sample is a simple 
random sample of the population of interest. The expectations 
E Y A lowriski{ ( ) | } and E Y B highriski{ ( ) | } are conditional 
means of potential outcomes and thus require that we account 
for any confounders between therapy A and the outcome 
within the low-risk group, as well as any confounders between 
therapy B and the outcome in the high-risk group.

One way to estimate these potential quantities is 
through g-computation.20 Considering E Y A lowriski{ ( ) | } 
first, subset to those patients classified as low risk. Then 
specify and estimate a regression model, often referred to 
as the Q model, for the mean outcome conditional on the 
observed treatment Zi and observed covariates Ci using this 
subgroup:  E Y Z C lowrisk g Z Ci i i i i{ | , , } = ( ; , ).β

Then, predicted potential outcomes for each subject are 
obtained by setting Z Ai =  for each subject, combining with their 
observed covariates and the estimated regression coefficients, 
and obtaining a prediction ˆ ˆE Y Z A C g A Ci i i i( | = , ) = ( ; , )β . 
Our estimated mean of the potential outcomes is the average 
of these predictions. The validity of this estimate relies on sev-
eral assumptions:

1. Positivity of treatment assignment: Within each subgroup 
defined by the covariates Ci, there must be a positive prob-
ability of receiving treatment A.

2. No unmeasured confounding. All confounders of the effect 
of treatment on the outcome are measured.

3. Correct specification of the Q model. The model above is 
correctly specified in terms of the treatment and covariates.

Under these assumptions, our suggested estimated po-
tential outcome means are consistent for the true potential out-
come means. The argument applies equally to the estimation 
of E Y B highriski{ ( ) | } and other similar quantities. The data 
needed to fulfill these assumptions will clearly vary with the 
treatments and outcomes of interest. However, the data must 
contain subjects receiving all treatment types of interest in 
each of the risk groups, and must have all confounders meas-
ured and observed.

The final piece of the desired estimand, 
E Y standard of care{ ( )}, is easier to estimate and requires no 
additional assumptions. As all subjects in the observational 
data set that meet the eligibility criteria received the standard 
of care, the potential outcome is the factual outcome so this can 
simply be estimated by calculating the proportion of subjects 
that underwent surgery within 5 years of diagnosis, E Yi{ }.

We are glossing over some of the details regarding es-
timation in these cases, and thus we will not outline how in-
ference should be undertaken, in general. However, it should 
be noted that although the subjects contributing to the esti-
mation of E Y A lowrisk{ ( ) | } and E Y B highrisk{ ( ) | } will be 
different, all subjects will contribute to the estimation of 
E Y standard of care{ ( )}, and this must be accounted for in the 
variance estimate of the final comparison, for example, with 
the nonparametric bootstrap. In the eAppendix; http://links.
lww.com/EDE/B646, we work through a step-by-step example 
of our proposed framework to demonstrate how it works.

We have outlined our conceptual framework for devel-
oping a proposed prediction-based decision rule and evaluat-
ing its clinical utility in an emulated clinical trial. One can 
view this development and evaluation process of a prediction-
based decision rule in three separate steps: first developing a 
prognostic model, then determining a proposed decision rule 
based on it, and finally evaluating the proposed decision rule 
for superior clinical utility. In a data-rich scenario, such as a 
large population based disease register, it may be possible to 
randomly split the dataset into a training sample, optimization 
sample, and clinical assessment validation sample. Figure 2 
illustrates the possible strategies for split-sample training and 
optimization, and comments on their merits. If a good prog-
nostic prediction model has already been developed, then it 
can be considered external information and only a two-way 
data split would be needed to do the second and third step. 
Likewise, if the prediction-based decision rule has already 
been proposed externally, all of the data can be used for the 
third step. In less data-rich scenarios, it may be possible to use 
cross-validation or bootstrapping techniques to make more ef-
ficient use of available data for the development of a predic-
tion model and optimization of the decision rule. As always, 
the bootstrap can be used in the prediction step to obtain, 
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potentially better, estimates of the prediction error.21 The emu-
lated trial, however, should aim to evaluate the clinical utility 
of a specific, fixed decision rule, in an independent sample.

DISCUSSION
If a prognostic prediction will be used to drive med-

ical decisions, that prediction-based decision rule should be 
optimized and tested independently to determine whether it is 
worthwhile. To optimize and test a prediction-based decision 
rule, one must first define the space of possible actions that 
can be taken at the time or shortly after the prediction is made 
and propose a deterministic rule based on the predictions op-
timally. Then, evidence must be generated that the use of the 
decision rule based on the prediction model leads to improved 
clinical outcomes in comparison to the current standard of 
care. Often, the optimization in the development phase is 
overlooked, or is based on expert opinion without formal op-
timization, while the direct assessment of the utility of the 
prediction-based decision rule in comparison to the standard 
of care is even more rare.

We have outlined one approach to the development, op-
timization and evaluation of a prediction-based decision rule. 
This approach involves the optimization of a proposal for a 
prediction-based decision rule in observational data and the 
specification of the target prediction driven trial of interest, 
which can then be emulated in independent observational 
data, to formally evaluate the clinical utility of the optimized 
prediction-based decision rule.

The ideal procedure to develop an optimal decision rule 
based on baseline information may not involve prognostic pre-
diction at all. Instead, one could directly optimize a decision 

rule for a utility function that quantifies all the benefits in 
terms of the relevant clinical outcomes, treatment decisions, 
as well as the costs. This decision rule would be a direct func-
tion of all available baseline information at the point a treat-
ment decision was needed. There has been previous work on 
this in the context of identifying biomarkers for treatment se-
lection in randomized trials.22,23 This may be practically in-
feasible, due to limitations on the observed treatments under 
study, and computationally challenging due to the high dimen-
sional space in which one needs to optimize.

Using our proposed framework in observational data 
allows for optimization and assessment and therefore has the 
potential to improve current medical practice in a timely man-
ner. Clearly, a randomized clinical trial evaluating a predic-
tion-based decision rule would be ideal. In lieu of this gold 
standard, an emulated trial can be used. As with all observa-
tional studies aiming to estimate causal contrasts, confounding 
is a major limitation. Prediction-based decision rules imply 
some special considerations regarding confounding. Predic-
tion models are generally not designed with consideration of 
causal relationships, so colliders may be included in the mod-
els—see Sjölander24—and this has implications for the nature 
of the confounding that one needs to consider and control for. 
The precise conditions under which this is possible for differ-
ent estimators needs to be explicitly investigated, and, like the 
assumption of no unmeasured confounding, it is likely that 
the assumptions that generate these conditions are untestable. 
However, quantitative bias analysis25,26 is a sensible approach 
to assessing the sensitivity of one’s findings to these assump-
tions that should be further developed in this context.

One practical limitation of our suggested approach is 
that the set of actions under consideration need to be observed 
in the sample to a sufficient degree to estimate the relevant 
conditional expectations (the positivity assumption). This 
may not be possible if the action space contains novel or un-
approved treatments. For example, decision rules to treat with 
novel cancer drugs cannot be assessed unless those drugs are 
administered in practice. Other practical considerations, such 
as survivor and selection biases, which are inherent in retro-
spective studies, can be reduced by carefully planning studies 
with pre-specified protocols that mimic those used in random-
ized controlled trials.12,27 This approach has been suggested 
and applied in comparative effectiveness research13,14,28 and 
we advocate for a similar approach.

The optimization and utility assessment of a decision 
rule may depend on more than simply the clinical outcome. 
For instance, cost and quality of life considerations are im-
portant in many settings. Our proposed framework can apply 
such a utility function in both the optimization and evalua-
tion phases, as long as the utility function is pre-specified and 
estimable using observed data. This is a concept that should 
be considered even in randomized clinical trials, but is likely 
easier to apply in register data, where many more measure-
ments are available.
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We have outlined the use of one target trial design for the 
evaluation of prediction-based decision rules, but as summa-
rized in Micheel et al,29 Chapter 4, there are a variety of study 
designs that can be used to assess the value of predictions for 
guiding treatment decisions. Elucidation of this framework in 
alternative trial designs as well as efficient use of available 
data for the optimization step are of future research interest 
for the authors, as are applications of these methods in real 
data settings.
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